research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 5| Part 3| May 2018| Pages 293-303
ISSN: 2052-2525

Exploitation of knowledge databases in the synthesis of zinc(II) malonates with photo-sensitive and photo-insensitive N,N′-containing linkers

CROSSMARK_Color_square_no_text.svg

aN. S. Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Pr., 31, Moscow, 119991, Russian Federation, bNational Research Center Kurchatov Institute, Ploshchad' Akademika Kurchatova, 1, Moscow, 123098, Russian Federation, cA. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow, 119991, Russian Federation, and dPirogov Russian National Research Medical University, Ostrovityanov Street, 1, Moscow, 117997, Russian Federation
*Correspondence e-mail: vologzhanina@mail.ru

Edited by L. R. MacGillivray, University of Iowa, USA (Received 8 September 2017; accepted 28 January 2018; online 27 March 2018)

Photoinitiated solid-state reactions are known to affect the physical properties of coordination polymers, such as fluorescence and sorption behaviour, and also afford extraordinary architectures (e.g. three-periodic structures with polyorganic ligands). However, the construction of novel photo-sensitive coordination polymers requires an understanding of the factors which govern the mutual disposition of reactive fragments. A series of zinc(II) malonate complexes with 1,2-bis(pyridin-4-yl)ethylene and its photo-insensitive analogues has been synthesized for the purpose of systematic analysis of their underlying nets and mutual disposition of N-donor ligands. The application of a big data-set analysis for the prediction of a variety of possible complex compositions, coordination environments and networks for a four-component system has been demonstrated for the first time. Seven of the nine compounds possess one of the highly probable topologies for their underlying nets; in addition, two novel closely related four-coordinated networks were obtained. Complexes containing 1,2-bis(pyridin-4-yl)ethylene and 1,2-bis(pyridin-4-yl)ethane form isoreticular compounds more readily than those with 4,4′-bipyridine and 1,2-bis(pyridin-4-yl)ethylene. The effects of the precursor, either zinc(II) nitrate or zinc(II) acetate, on the composition and dimensionality of the resulting architecture are discussed. For three of the four novel complexes containing 1,2-bis(pyridin-4-yl)ethylene, the single-crystal-to-single-crystal [2 + 2] cycloaddition reactions were carried out. UV irradiation of these crystals afforded either the 0D→1D or the 3D→3D transformations, with and without network changes. One of the two 3D→3D transformations was accompanied by solvent (H2O) cleavage.

1. Introduction

Topotactic reactions in the crystals of coordination compounds may proceed keeping (e.g. 1D→1D, 2D→2D or 3D→3D) or changing (e.g. 0D→1D, 0D→2D, 1D→2D or 2D→3D, including transformations from interpenetrated to non-interpenetrated architectures) the periodicity of the complexes (Vittal, 2007[Vittal, J. J. (2007). Coord. Chem. Rev. 251, 1781-1795.]; Vittal & Quah, 2017[Vittal, J. J. & Quah, H. S. (2017). Coord. Chem. Rev. 342, 1-18.]; Huang et al., 2017[Huang, S.-L., Hor, T. S. A. & Jin, G.-X. (2017). Coord. Chem. Rev. 346, 112-122.]). Solid-state reactions involve atomic and molecular movement, which can be accompanied by changes in the properties of a compound such as fluorescence (Papaefstathiou et al., 2004[Papaefstathiou, G. S., Zhong, Z., Geng, L. & MacGillivray, L. R. (2004). J. Am. Chem. Soc. 126, 9158-9159.]), luminescence (Hu et al., 2015[Hu, F., Shi, Y.-X., Chen, H.-H. & Lang, J.-P. (2015). Dalton Trans. 44, 18795-18803.]), sorption (Sato et al., 2012[Sato, H., Matsuda, R., Mir, M. H. & Kitagawa, S. (2012). Chem. Commun. 48, 7919-7921.]) and others. However, the number of types of thermoinitiated topotactic reactions greatly exceeds that of photoinitiated reactions. For example, in the review by Vittal (2007[Vittal, J. J. (2007). Coord. Chem. Rev. 251, 1781-1795.]) only examples of 0D→1D, 1D→1D and 2D→3D transformations are given; since that time, few examples of 1D→3D (Ou et al., 2012[Ou, Y.-C., Zhi, D.-S., Liu, W.-T., Ni, Z.-P. & Tong, M.-L. (2012). Chem. Eur. J. 18, 7357-7361.]), 1D→2D (Hu et al., 2015[Hu, F., Shi, Y.-X., Chen, H.-H. & Lang, J.-P. (2015). Dalton Trans. 44, 18795-18803.]) and 3D→3D (Mir et al., 2010[Mir, M. H., Koh, L. L., Tan, G. K. & Vittal, J. J. (2010). Angew. Chem. Int. Ed. 49, 390-393.]; Liu et al., 2010[Liu, D., Ren, Z.-G., Li, H.-X., Lang, J.-P., Li, N.-Y. & Abrahams, B. F. (2010). Angew. Chem. Int. Ed. 49, 4767-4770.]; Michaelides et al., 2011[Michaelides, A., Skoulika, S. & Siskos, M. G. (2011). Chem. Commun. 47, 7140-7142.]; Li et al., 2014[Li, G.-L., Liu, G.-Z., Ma, L.-F., Xin, L.-Y., Li, X.-L. & Wang, L.-Y. (2014). Chem. Commun. 50, 2615-2617.]) reactions have been published. We consider the insufficient investigation of photoinitiated reactions a result of the factors that govern the mutual disposition of reactive fragments, which are not well understood. With regards to metal complexes, mainly hydrogen bonds (Peedikakkal & Vittal, 2008[Peedikakkal, A. M. P. & Vittal, J. J. (2008). Chem. Eur. J. 14, 5329-5334.]) and metallophilic interactions (Georgiev et al., 2010[Georgiev, I. G., Bučar, D.-K. & MacGillivray, L. R. (2010). Chem. Commun. 46, 4956-4958.]; Chu et al., 2005[Chu, Q., Swenson, D. C. & MacGillivray, L. R. (2005). Angew. Chem. Int. Ed. 44, 3569-3572.]; Schmidbaur & Schier, 2012[Schmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370-412.]) were used to carry out 0D→1D transformations, or in some cases, planar chelate (Papaefstathiou et al., 2004[Papaefstathiou, G. S., Zhong, Z., Geng, L. & MacGillivray, L. R. (2004). J. Am. Chem. Soc. 126, 9158-9159.], 2005[Papaefstathiou, S., Georgiev, G. G., Friščić, I. & MacGillivray, T. (2005). Chem. Commun. pp. 3974.]) and bridging (Mir et al., 2010[Mir, M. H., Koh, L. L., Tan, G. K. & Vittal, J. J. (2010). Angew. Chem. Int. Ed. 49, 390-393.]; Sato et al., 2012[Sato, H., Matsuda, R., Mir, M. H. & Kitagawa, S. (2012). Chem. Commun. 48, 7919-7921.]; Nagarathinam & Vittal, 2006[Nagarathinam, M. & Vittal, J. J. (2006). Angew. Chem. Int. Ed. 45, 4337-4341.]; Chanthapally et al., 2013[Chanthapally, A., Oh, W. T. & Vittal, J. J. (2014). Chem. Commun. 50, 451-453.]; Toh et al., 2005[Toh, N. L., Nagarathinam, M. & Vittal, J. J. (2005). Angew. Chem. 117, 2277-2281.]) carboxylate anions were applied to fix the photo-sensitive species in reactive positions for intramolecular 1D→1D or 2D→2D reactions. For example, 1D coordination polymers with ladder-type structures are characterized by close and parallel orientation of the double bonds in photoreactive spacer ligands (depicted in black in Fig. 1[link]) if the bridging ligands (shown in red) facilitate the shortening of the metal–metal distances. Solid-state photodimerization in zinc(II) carboxylates containing 1,2-bis(pyridin-4-yl)ethylene (bpe) was carried out (Toh et al., 2005[Toh, N. L., Nagarathinam, M. & Vittal, J. J. (2005). Angew. Chem. 117, 2277-2281.]; Papaefstathiou et al., 2005[Papaefstathiou, S., Georgiev, G. G., Friščić, I. & MacGillivray, T. (2005). Chem. Commun. pp. 3974.]); the bridging carboxylate groups make the distance between Zn centers as short as 3.82–3.85 Å. The reduction in distance between opposite linkers is chemically driven and can be carried out for other coordination polymer nets (see the square-planar and honeycomb nets in Fig. 1[link]).

[Figure 1]
Figure 1
Schematic representation of a ladder [44(0,2)], a square-planar (sql) and a honeycomb (hcb) net and the shortening of the distance between opposite sides of tetragonal and hexagonal polygons in the case of inequivalent linkers (short edges are red). Herein, the notation of nets is given in accordance with the literature (O'Keeffe et al., 2008[O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782-1789.]; Blatov et al., 2009[Blatov, V. A., O'Keeffe, M. & Proserpio, D. M. (2010). CrystEngComm, 12, 44-48.]).

In our opinion, recent progress in reticular chemistry and data analysis of coordination polymers allows new directions for developing the syntheses of coordination polymers with a desired mutual disposition of photo-sensitive species. The reticular chemistry approach (Yaghi et al., 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705-714.]; Furukawa et al., 2013[Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.]) to photoactive materials can be based on the replacement of a photo-insensitive ligand with its photo-sensitive analogue in architectures with desired disposition of reactive fragments. In this case, a chemist should determine which ligands form an isoreticular series. An expert system based on the analysis of all X-rayed compounds allows prediction of the most abundant compositions and architectures of coordination polymers, even for insufficiently explored mixtures (Alexandrov et al., 2011[Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947-3958.], 2015a[Alexandrov, E. V., Shevchenko, A. P., Asiri, A. A. & Blatov, V. A. (2015a). CrystEngComm, 17, 2913-2924.],b[Alexandrov, E. V., Virovets, A. V., Blatov, V. A. & Peresypkina, E. V. (2015b). Chem. Rev. 115, 12286-12319.]; Mitina & Blatov, 2013[Mitina, T. G. & Blatov, V. A. (2013). Cryst. Growth Des. 13, 1655-1664.]; Schoedel & Zaworotko, 2014[Schoedel, A. & Zaworotko, M. J. (2014). Chem. Sci. 5, 1269-1282.]), but cannot predict which of all the possible architectures will form and how 1D and 2D polymers will be situated with respect to each other. Nevertheless, despite various coordination numbers, coordination environments and complex compositions, similar networks can be obtained; also 2D nets such as honeycomb or square-planar (Fig. 1[link]) and 3D nets such as diamond or primitive-cubic appear much more often than nets with the same connectivity of nodes, making the synthesis of architectures with the desired disposition of ligands possible.

Herein, we discuss the results of our investigation, which aimed to reveal the effectiveness of the reticular chemistry approach and expert system predictions for the construction of zinc(II) coordination polymers with photo-sensitive bpe linkers situated in reactive positions. Zinc(II) aqueous solutions were used because zinc can have various coordination numbers. Photo-insensitive 4,4′-bipyridine (bipy) and 1,2-bis(pyridin-4-yl)ethane (bpa) were used as analogues of bpe to reveal if these ligands could form isoreticular series. We assumed that not only bridging monocarboxylates, but also short bridging dicarboxylate anions are able to distort networks and shorten the distance between the nitrogen-containing ligands (Fig. 1[link]). Thus, dimethylmalonate (Me2mal) and diethylmalonate (Et2mal) anions (An) were used, as these fix the Zn:An ratio to 1:1 (to decrease the number of symmetrically independent anions in the unit cell) and have less coordination modes than the malonate anion (Gogoleva et al., 2017[Gogoleva, N. V., Zorina-Tikhonova, E. N., Bogomyakov, A. S., Efimov, N. N., Alexandrov, E. V., Ugolkova, E. A., Kiskin, M. A., Minin, V. V., Sidorov, A. A. & Eremenko, I. L. (2017). Eur. J. Inorg. Chem. 2017, 547-562.]).

2. Results and discussion

2.1. Knowledge-based prediction of complex composition, periodicity and topology in ZnII:L:An2−:H2O mixtures

An algorithm for the estimation of the most abundant nets of coordination polymers has been described in recent papers (Mitina & Blatov, 2013[Mitina, T. G. & Blatov, V. A. (2013). Cryst. Growth Des. 13, 1655-1664.]; Alexandrov et al., 2015a[Alexandrov, E. V., Virovets, A. V., Blatov, V. A. & Peresypkina, E. V. (2015b). Chem. Rev. 115, 12286-12319.],b[Alexandrov, E. V., Shevchenko, A. P., Asiri, A. A. & Blatov, V. A. (2015a). CrystEngComm, 17, 2913-2924.]; Shevchenko et al., 2017[Shevchenko, A. P., Blatov, I. A., Kitaeva, E. V. & Blatov, V. A. (2017). Cryst. Growth Des. 17, 774-785.]). It is based on the analysis of crystallographic databases to reveal possible coordination numbers and coordination polyhedra of a given metal atom, ratio of cations, anions and neutral ligands which depend on the coordination number, and possible coordination modes of all ligands. Moreover, the probability of the occurrence of a particular motif can be estimated if the number of X-rayed representatives in a mixture is large enough. Let us take ZnII:L:An2−:H2O mixtures as an example (L = bipy, bpe or bpa; An = Me2mal or Et2mal). The Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains data for only 12 compounds constructed of zinc(II), 4,4′-bipyridine or its analogues and malonate derivatives (see Table S1 in the supporting information). Eleven of the compounds form an isoreticular series with ins topology and a parallel orientation of the N,N′-containing linkers and long intermolecular distances between their centers (≃ 7.5 Å). Although this net seems to be inappropriate for the construction of photo-sensitive coordination polymers, we expected that the other architectures with close disposition of neutral linkers can appear in this system. In order to reveal all possible motifs in this system and estimate the probability of their occurrence, we examined the data for the crystal structures of similar compounds. Distribution of zinc(II) coordination numbers and the compositions of coordination polyhedra have been obtained from 1473 complexes containing both zinc(II) and a bipy, bpe or bpa ligand. Among them, 220 compounds containing 298 symmetrically independent bpe ligands (the target photo-sensitive ligand) were used to determine the possible coordination modes of this linker and the probable Zn:L ratios. Finally, 54 zinc(II) malonates were analyzed to estimate the distribution of coordination modes of the anion. Both bpe and the An group are able to crystallize as non-coordinated species or terminal ligands, but this is a rare case more typical for acidic solutions. The other coordination modes found are depicted in Fig. 2[link] (cases of terminal anion ligands have not been depicted).

[Figure 2]
Figure 2
Coordination modes and their associated probabilities of occurrence for bpe or malonate anion and its derivatives in zinc(II) complexes.

Coordination modes are denoted in accordance with the nomenclature described by Serezhkin et al. (2009[Serezhkin, V. N., Vologzhanina, A. V., Serezhkina, L. B., Smirnova, E. S., Grachova, E. V., Ostrova, P. V. & Antipin, M. Y. (2009). Acta Cryst. B65, 45-53.]). Each ligand L is designated by one of the letters M, B, T or K depending on the number of donor atoms connected to the metal (1, 2, 3 or 4, respectively). The total number of metal atoms coordinated by the ligand (ν) is given as upper index in the form of the string mbtk where each integer m, b, t, k is equal to the number of metal atoms coordinated by one, two, three or four donor atoms; ν = m + b + t + k. The coordination mode of the ligand is represented by the symbol Lmbtk, and the local topology of the complex group is written as coordination formula (CF) AnL1mL2k… where A denotes a metal atom, for example, zinc(II), n is the number of metal atoms in a polynuclear unit, and L1, L2… designate the coordination modes of ligands. This compact nomenclature allows us to easily distinguish different types of bridge or chelate ligands, in order to calculate the coordination number of a metal atom and the composition of its coordination polyhedron (see supporting information for details). Based on the coordination formula, further possible structural motifs can be proposed using reported correlations between coordination formulas of complexes and the topologies of coordination polymers (Mitina & Blatov, 2013[Mitina, T. G. & Blatov, V. A. (2013). Cryst. Growth Des. 13, 1655-1664.]; Alexandrov et al., 2015a[Alexandrov, E. V., Virovets, A. V., Blatov, V. A. & Peresypkina, E. V. (2015b). Chem. Rev. 115, 12286-12319.],b[Alexandrov, E. V., Shevchenko, A. P., Asiri, A. A. & Blatov, V. A. (2015a). CrystEngComm, 17, 2913-2924.]; Shevchenko et al., 2017[Shevchenko, A. P., Blatov, I. A., Kitaeva, E. V. & Blatov, V. A. (2017). Cryst. Growth Des. 17, 774-785.]).

Further analysis of complexes obtained from ZnII:L:An2−:H2O mixtures will be limited to those containing: (i) at least one nitrogen atom coordinated to a zinc(II) atom; (ii) a zinc(II) atom with a coordination number of 4, 5 or 6; (iii) a ZnII:L ratio equal to 2:1, 1:1 or 1:2; (iv) ZnII:An2− = 1:1 or ZnII:HAn = 1:2. Additional requirements include: (v) if the number of independent zinc atoms or ligands (A, An or L) is equal to 2, both species should have the same coordination mode; (vi) water molecules act as terminal (M1) ligands only. The first requirement (i) is needed to control the disposition of nitrogen-containing ligands. The restrictions (ii) and (iii) are true for 98% of all ZnII:L complexes and 86% of ZnII:bpe or bpa complexes, respectively. From requirement (v), it follows that zinc(II) in [Zn2L(HAn)4(H2O)x] and [Zn2LAn2(H2O)x] complexes have an even number of nitrogen atoms and [ZnL2An(H2O)x] complexes have an odd number of nitrogen atoms in the coordination polyhedron. The full table of the complexes which satisfy the above criteria, including their coordination formulas and possible nets is given in the supplementary information (Table S2). In Fig. 3[link], predictions of the most probable complexes are derived from the following facts: 92% of bpe molecules in zinc complexes act as bridging (B2) ligands; HAn tends to act as a terminal ligand or counterion in contrast with An2−, which have bridge (B2), chelate (B01) or bridge-chelate (B11, T11, T21, K21) coordination modes mainly (Fig. 2[link]). Note, that anions in the B2, B11 and T11 or T21 and K21 coordination modes bind two or three metal atoms in a similar disposition; thus, they form similar complexes, and often similar networks. Fig. 3[link] contains the most expected architectures for these complexes, either discrete complexes (for example, dimers of the [Zn2L(H2O)6+2x]4+ composition), or coordination polymers (one-, two- or three-periodic). Note that polymers can have various L:Zn ratios and CFs, but still produce the same topology of the underlying net. For example, both [Zn2LAn2(H2O)2+2x] and [ZnLAn(H2O)x] complexes with CFs, A2B2B22M12+2x and AB2B2M1x (x = 0, 1 or 2), respectively, can belong to the set of the one-periodic ladder 44(0,2) or two-periodic square-planar sql architectures.

[Figure 3]
Figure 3
The family of the most probable complexes and their coordination formulas in the ZnII:L:An2− (or HAn):H2O mixtures as well as the most probable nets (depicted in Figs. 1 and 4) found for these coordination formulas. CP: coordination polyhedron; CF: coordination formula; CN: coordination number; D: dimensionality of a network; Examples: synthesized compounds which have the topology of the underlying net are given at the left column.

As shown by Fig. 3[link], discrete complexes or complexes with simple chain structures are mainly found in acidic solutions (corresponding chemical formulas are marked in red). Similar architectures are typical for complexes with chelate (B01) anions, as these do not act as linkers. The complexes containing bridge (B2) anions and 4,4′-bipyridine analogues are able to give one-, two- and three-periodic coordination polymers, including the widespread chain (2C-1), ladder [44(0,2)], sql, hcb, dia and cds nets [see Mitina & Blatov (2013[Mitina, T. G. & Blatov, V. A. (2013). Cryst. Growth Des. 13, 1655-1664.]) and Alexandrov et al. (2011[Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947-3958.]) for the analysis of the distribution of two- and three-periodic nets]. A characteristic feature of these nets and the neb and zst networks is that all ligands including the anions act as linkers. Nets such as ins require an anion to connect three zinc atoms in order to have the T21 or K21 coordination mode. As illustrated in Figs. 1[link] and 4[link], nets including ladder 44(0,2), sql, hcb, ins, cds and zst allow realisation of close and parallel disposition between linkers if the net is distorted by some short linkers. For dia and neb nets, close disposition within the net is hardly possible, although it can appear between parallel linkers from interpenetrated nets. To summarise, there is a high probability of two- and three-periodic ladder architectures with parallel orientation of ethenyl groups in ZnII:R2mal2−:bpe:H2O mixtures, because the malonate anion and its alkyl derivatives favour close disposition of zinc(II) cations and all ligands connected with them.

[Figure 4]
Figure 4
Selected 1D, 2D and 3D underlying nets derived for zinc(II) malonates.

The validity of above approach is verified by the fact that a number of previously obtained zinc(II) dicarboxylates containing 4,4′-bipyridine and its analogues are characterized by the above CFs and have one of the proposed topologies (Table S2). Moreover, a number of zinc(II) nitrate (Peedikakkal & Vittal, 2008[Peedikakkal, A. M. P. & Vittal, J. J. (2008). Chem. Eur. J. 14, 5329-5334.]), monocarboxylate (Toh et al., 2005[Toh, N. L., Nagarathinam, M. & Vittal, J. J. (2005). Angew. Chem. 117, 2277-2281.]; Chanthapally et al., 2014[Chanthapally, A., Oh, W. T. & Vittal, J. J. (2014). Chem. Commun. 50, 451-453.]) or dicarboxylate (Mir et al., 2010[Mir, M. H., Koh, L. L., Tan, G. K. & Vittal, J. J. (2010). Angew. Chem. Int. Ed. 49, 390-393.]; Sato et al., 2012[Sato, H., Matsuda, R., Mir, M. H. & Kitagawa, S. (2012). Chem. Commun. 48, 7919-7921.]; Ou et al., 2011[Ou, Y.-C., Liu, W.-T., Li, J.-Y., Zhang, G.-G., Wang, J. & Tong, M.-L. (2011). Chem. Commun. 47, 9384-9386.], 2012[Ou, Y.-C., Zhi, D.-S., Liu, W.-T., Ni, Z.-P. & Tong, M.-L. (2012). Chem. Eur. J. 18, 7357-7361.]; Hu et al., 2015[Hu, F., Shi, Y.-X., Chen, H.-H. & Lang, J.-P. (2015). Dalton Trans. 44, 18795-18803.]) complexes with bpe have the above topologies and are known to undergo solid-state photochemical [2 + 2] cycloadditions. Particularly, dicarboxylates with the compositions: [Zn(bpe)(muco)]·DMF·H2O and [Zn(bpe)(1,4-bdc)]·DMF (Mir et al., 2010[Mir, M. H., Koh, L. L., Tan, G. K. & Vittal, J. J. (2010). Angew. Chem. Int. Ed. 49, 390-393.]), [Zn2(bpe)(1,2-bdc)2] (Ou et al., 2011[Ou, Y.-C., Liu, W.-T., Li, J.-Y., Zhang, G.-G., Wang, J. & Tong, M.-L. (2011). Chem. Commun. 47, 9384-9386.]), [Zn(bpe)(moip)]·DMF (Sato et al., 2012[Sato, H., Matsuda, R., Mir, M. H. & Kitagawa, S. (2012). Chem. Commun. 48, 7919-7921.]), [Zn(bpe)2(1,2-chdc)(H2O)2] (Ou et al., 2012[Ou, Y.-C., Zhi, D.-S., Liu, W.-T., Ni, Z.-P. & Tong, M.-L. (2012). Chem. Eur. J. 18, 7357-7361.]) and [Zn(bpe)(L)(H2O)] (Hu et al., 2015[Hu, F., Shi, Y.-X., Chen, H.-H. & Lang, J.-P. (2015). Dalton Trans. 44, 18795-18803.]) are characterized by their CF and net, respectively, AB2K21/fet, A2B2B112/44(0,2), AB2K21/3,5L2, AM12B2M12/2C-1 and AM1B2M1/2C-1 {H2muco = trans,trans-muconic acid, H2bdc = benzene dicarboxylic acid; H2moip = 5-methoxy­isophthalatic acid; H2chdc = cyclohexanedicarboxylate; H2L = 4,4′-[1,2-phenylenebis(methylene)bis(oxy)]dibenzoic acid}.

2.2. Synthesis

The reaction of zinc(II) nitrate or zinc(II) acetate with dimethylmalonic or diethylmalonic acid in the presence of a nitrogen-containing ligand such as bipy, bpe or bpa afforded nine novel compounds (Figs. 5, 6). Synthesis was carried out by the slow mixing of solutions. Attempts to use a direct synthesis (mixing the reagents in an appropriate solvent) as well as the use of solvothermal methods were unsuccessful, since in both cases we failed to obtain single crystals suitable for X-ray diffraction. The results obtained indicate that the initial zinc(II) salt source can affect the chemical composition of precipitate complexes. All acidic salts and hence, the cationic complexes, were obtained from zinc(II) nitrate. However, starting from zinc(II) acetate, anhydrous neutral complexes more readily formed. Only bpa-containing mixtures (for both Me2mal2− and Et2mal2−) and the ZnII:bipy:Me2mal2− gave the same products regardless of the cation source.

2.3. Crystallography

Compounds obtained were characterized by means of single-crystal and powder X-ray diffraction techniques. Powder X-ray diffraction confirmed that the samples were phase pure and consisted mainly of the above reaction products (see supporting information). Single-crystal XRD confirmed the validity of our proposal about possible ZnII:L:An2− ratios and coordination formulas. Only [Zn2(bipy)3(Et2mal)2] (5) has an unexpected 2:3:2 ratio with two different coordination modes of the bipy ligands, but even in this case the complex can be regarded as an analogue of the [Zn2LAn2(H2O)2] complex with the A2B2B22M12 CF. Four of the nine complexes obtained [(2), (4), (7), (9)] have the ratio ZnII:L:An2− = 1:1:1 with ligands and anions in bridge mode (and the CF = AB2B2). Among these, only [Zn(bpe)(Me2mal)]·H2O (2) and [Zn(bpa)(Me2mal)]·H2O (4) are isostructural (Table S3) and have the same underlying net; however, the networks of (7) and (9) differ in the disposition of neutral linkers (see below). In [Zn(bpe)(HMe2mal)2] (3) and [Zn(bipy)(H2O)4](HEt2mal)2·bipy·2H2O (6) an anion is protonated, so the ZnII:L:HAn ratio is equal to 1:1:2, and only a neutral N,N′-containing ligand acts as a linker, while the anion is a terminal ligand or counterion (the CFs are: AB2M12 and AB2M14, respectively). In [Zn(bpe)2(H2O)4](HEt2mal)2 (8) the anion is also protonated and acts as a counterion, but the ratio ZnII:L = 1:2 and the CF = AM12M14 to give the discrete complex only. At last, [Zn2(bipy)(Me2mal)2(H2O)2] (1) belongs to the family of complexes with ZnII:L:An2− = 2:1:2 with the A2B2K212M12 CF. Note that all these CFs are among the most expected for ZnII:L:An2−:H2O mixtures (Fig. 3[link]).

The discrete [Zn(bpe)2(H2O)4](HEt2mal)2 (8) complex can be regarded as representative of the family of O—H⋯N bonded compounds with parallel and close orientation of the neighbouring bpe or bipy molecules (Table S2). Similar to its nitrate-containing analogue, [Zn(bpe)2(H2O)4](NO3)2·8/3H2O·2/3bpe (Peedikakkal & Vittal, 2008[Peedikakkal, A. M. P. & Vittal, J. J. (2008). Chem. Eur. J. 14, 5329-5334.]), it readily undergoes the [2 + 2] cycloaddition 0D→1D photoreaction to give a coordination polymer (see §2.4[link] for details).

[Zn(bpe)(HMe2mal)2] (3) and [Zn(bipy)(H2O)4](HEt2mal)2·bipy·2H2O (6) are simple chains with CFs AB2M12 and AB2M14, respectively (Fig. 7[link]). As zinc(II) has tetrahedral and octahedral coordination in these complexes, the chains are zigzag and linear, respectively. The chains of [ZnL(H2O)4] composition are always linear with nitrogen atoms of the two linkers situated in the apical position of octahedral zinc(II); the coordinated water molecules are involved in hydrogen bonding with counterions or solvent molecules, which separate L from one another. Thus, in such systems photoreactions would be possible if either both L and the counterion are UV-sensitive and are situated in positions appropriate for a [2 + 2] cycloaddition reaction, or additional photoreactive L molecules are stabilized by O—H⋯N hydrogen bonds in reactive positions with coordinated ones. The head-to-tail packing of zigzag chains of the [ZnLAn2] composition is not forbidden in general; there are a few examples with bipy ligands and close parallel disposition of planar ligands [see Mulijanto et al. (2017[Mulijanto, C. E., Quah, H. S., Tan, G. K., Donnadieu, B. & Vittal, J. J. (2017). IUCrJ, 4, 65-71.]) for example of photoreactive zigzag chains], but it requires small or linear anions. Bulky anions typically prevent packing of bipy and its analogues in reactive positions, as in the case of (3).

[Figure 7]
Figure 7
Fragment of [Zn(bpe)(HMe2mal)2] (3) [r(Zn–Zn) = 13.5 Å, ∠(Zn–Zn–Zn) = 108°] and [Zn(bipy)(H2O)4](HEt2mal)2·bipy·2H2O (6) [r(Zn–Zn) = 11.4 Å, ∠(Zn–Zn–Zn) = 180°] chains.

[Zn2(bipy)3(Et2mal)2] (5) represents layered complexes and has the hcb network topology (Fig. 8[link]). The layer is almost planar with terminal bipy ligands situated on both sides of the layer. The anions connect the metal atoms in a zigzag chain with r(Zn⋯Zn) = 5.4 Å and ∠(Zn–Zn–Zn) = 99°; the chains are further bonded by bipy ligands to the hcb net with the distance between metal atoms equal to 11.1 Å. Thus, the net is distorted as four of the six sides of the hexagons are shorter than the other two. This shortening makes the distance between parallel bipy ligands as short as 5.5 Å, but it is still too long to allow the occurrence of a photoreaction for a hypothetical bpe analogue. Note that for the sql network found in [Zn(bipy)(Ph(CH2)3mal)(H2O)]·4H2O (Gao et al., 2012[Gao, E. J., Wang, R. S., Lin, L., Liu, S. H., Sun, T. D. & Zhu, M. C. (2012). Russ. J. Coord. Chem. 38, 386-391.]) with a bridge-chelate Ph(CH2)3mal anion, this distance is shorter (4.8 Å). Terminal bipy ligands in (5) are directed towards the centres of six-membered cycles of (5) sheets, so the layers are packed in a way that also prevents close packing of bridge bipy ligands from neighbouring layers. In the case of less bulky terminal ligands, for example, for tetracoordinated zinc(II) atoms in [Zn2(bpa)3(tpp)2]ClO4 (Dias de Souza et al., 2015[Dias de Souza, N. L. G., Garcia, H. C., de Souza, M. C., Fernandes, A. L., do, A., Pereira, G. C., Diniz, R. & de Oliveira, L. F. C. (2015). J. Mol. Struct. 1085, 21-27.]) [tpp = 3-(2-thienyl)propanoato] bpa ligands are situated in stacks with closest C–C distances of 4.9 Å, affected by the repulsion from hydrogen atoms of ethane moieties. One can propose fewer restrictions in the case of planar bpe ligands and the possibility of [2 + 2] cycloaddition reactions for bpe analogues.

[Figure 8]
Figure 8
Fragment of the crystal packing in [Zn2(bipy)3(Me2mal)2] (5) and [Zn(bipy)(Ph(CH2)3mal)(H2O)]·4H2O (Gao et al., 2012[Gao, E. J., Wang, R. S., Lin, L., Liu, S. H., Sun, T. D. & Zhu, M. C. (2012). Russ. J. Coord. Chem. 38, 386-391.]) and the underlying nets depicted in black (for bipy linkers) and red (for anions). Hydrogen atoms, terminal ligands and solvent molecules have been omitted.

The other coordination polymers synthesized are 3D networks. Complex [Zn2(bipy)(Me2mal)2(H2O)2] (1) belongs to the family of zinc(II) malonates with the A2B2K212M12 CF. Note, that 11 of the 12 previously reported zinc(II) complexes with bipy, bpa or bpe and malonate derivatives have the same CF and form as the ins 3,4-coordinated net (e.g. it contains two nodes, one node is the anion connected with three metal atoms, and the four-coordinated node is zinc connected with four neighbours – here, three anions and one zinc atom through a bridge L). The ideal ins net occurs in the orthorhombic Pnnm space group with the longest crystal parameter twice the length of the shortest one. Among the 11 reported and the new zinc(II) malonate complexes containing bipy and its analogues and ins architecture, only [Zn2(bipy)(Me2mal)2(H2O)2] (1), [Zn2(bipy)(cbdc)2(H2O)2] [(Zhang et al. (2014[Zhang, M.-L., Wang, J.-J. & Chen, X.-L. (2014). J. Inorg. Organomet. Polym. 24, 879-883.]) cbdc = cyclobutane-1,1-dicarboxylato] and [Zn2(bpa)(Memal)2(H2O)2] (Déniz et al., 2012[Déniz, M., Pasán, J., Fabelo, O., Cañadillas-Delgado, L., Lorenzo-Luis, P., Lahoz, F., López, D., Yuste, C., Julve, M. & Ruiz-Pérez, C. (2012). C. R. Chim. 15, 911-923.]) crystallize in the same Pnnm space group and similar crystal parameters; thus, (1) can be regarded as isostructural with [Zn2(bipy)(cbdc)2(H2O)2] (Zhang et al., 2014[Zhang, M.-L., Wang, J.-J. & Chen, X.-L. (2014). J. Inorg. Organomet. Polym. 24, 879-883.]) and [Zn2(bpa)(Memal)2(H2O)2] (Déniz et al., 2012[Déniz, M., Pasán, J., Fabelo, O., Cañadillas-Delgado, L., Lorenzo-Luis, P., Lahoz, F., López, D., Yuste, C., Julve, M. & Ruiz-Pérez, C. (2012). C. R. Chim. 15, 911-923.]). At the same time, despite the fact that other complexes crystallize in P21/n, Pna21 or Pnn2 space groups, their crystal parameters are all close to 7.2, 7.4 and 21.0 Å, respectively, and the distortion of the network accounted for by the various substituents at the malonate anion and elongation of the L linker is insignificant. The net can be regarded as a combination of [ZnAn(H2O)] layers with the AK21M1 CF and hcb topology, connected through L linkers that bridge between zinc(II) atoms from neighbouring sheets (Fig. 9[link]). The coordination mode of the anion does not affect the Zn–Zn interatomic distances; in (1) these are ∼5.4 Å as in complex (5) described previously. The length of a linker affects only the distance between layers, the Zn–Zn distance in bipy-containing compounds is ∼11.5 Å and that in bpe and bpa-containing compounds is ∼13.5 Å. As N,N′-containing ligands are not perpendicular to the [ZnAn(H2O)] layers, the distance between them is longer than 5.4 Å and varies from 7.1 to 7.5 Å. To sum up, the family of [Zn2LAn2(H2O)2] complexes forms an isoreticular series for a variety of ligands [L = bipy, bpe, bpa and 4,4′-(propane-1,3-diyl)bipyridine; An = mal, Memal, Me2mal, cyclobutane­dicarboxylate (cbdc)].

[Figure 9]
Figure 9
Fragment of the crystal packing in [Zn2(bipy)(Me2mal)2(H2O)2] (1) (top) and the underlying net (bottom) depicted in blue (for bipy linkers) and red (for anions). Hydrogen atoms have been omitted.

At the same time, reactions of zinc(II) acetate with Me2mal or Et2mal in the presence of bpe and bpa, but not bipy, afforded complexes [Zn(bpe)(Me2mal)]·H2O (2) and [Zn(bpa)(Me2mal)]·H2O (4) or [Zn(bpe)(Et2mal)] (7) and [Zn(bpa)(Et2mal)]·0.38H2O (9), having the same CF. As the CF AB2B2 allows a variety of architectures, similar networks were expected only for isostructural (2) and (4). Indeed, these realize the zst topology of the underlying net which can be regarded as a parallel packing of zigzag [ZnAn] chains connected by neutral bpe or bpa linkers with water molecules situated in the pores of the net (Fig. 10[link]). Again, the anions fix the distance between zinc(II) atoms within the [ZnAn] chains as short as 5.8 Å; the length of a neutral linker defines the distance between the chains (13.3 Å). The fact that the linkers are not parallel allows rather tight packing of nitrogen-containing ligands so that a [2 + 2] cycloaddition reaction successfully occurred in (2) (see §2.4[link]). In [Zn(bpa)(Et2mal)] (9) the same parallel zigzag [ZnAn] chains with r(Zn–Zn) = 5.4 Å are revealed, which are connected by bridging bpa ligands, but the disposition of the bpa molecules in the network differs from that in the zst net (Fig. 10[link]). In fact, we synthesized a new, previously unreported 4-c net with the point symbol (65.8), registered at ToposPro TTD collection as igc1 (see supporting information for Systre input files for this, and all the other nets).

[Figure 10]
Figure 10
Fragment of the crystal packing in [Zn(bpe)(Me2mal)]·H2O (2) and [Zn(bpa)(Et2mal)]·0.38H2O (9) and their underlying nets depicted in black (for bpa and bpe linkers) and red (for anions). Hydrogen atoms have beem omitted.

Complex [Zn(bpe)(Et2mal)]·0.25bpe (7) crystallizes in the Cmcm space group for which automatic determination of net topology is restricted by the presence of numerous symmetry elements [for example, zinc(II) is eight-coordinated with all positions only half-occupied]. Careful analysis of the net assuming P1 symmetry allowed us to restore connectivity of a network for a coordination polymer with the [Zn(bpe)(Et2mal)] composition, zinc(II) in tetrahedral ZnN2O2 environment and bridge bpe and Et2mal linkers, and to estimate net architecture. Surprisingly, (7) also has a 4-coordinated (65.8) topology very similar with igc1, but the number of zinc(II) atoms in the fifth and other coordination spheres differs from that in igc1. Close disposition of coordinated and co-crystallized bpe ligands allows their packing in reactive positions, although strong disorder does not allow prediction of which of the two tpcb stereoisomers can be obtained in this crystal.

Thus, eight of the nine novel compounds are characterized by one of the most expected compositions and ligand connectivities, and seven also have one of the highly probable topologies of the underlying net. This means that previously reported crystallographic data can be used to assume the most abundant architectures of complexes crystallized in complex reaction mixtures. It was demonstrated that bpe and bpa ligands in zinc(II) complexes with malonate derivatives form isoreticular series more readily than their bipy analogues. Initially, these results appear to contradict the results obtained by Kim et al. (2017[Kim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, 19, 99-109.]), who studied zinc(II) alkane (or alkene)-dicarboxylates with bpe and bpa and found only few isoreticular compounds. But the absence of isoreticularity was associated with various coordination modes of anions; so for dicarboxylate anions which have only a small number of coordination modes, one can expect isoreticular complexes with bpa and bpe.

Regarding the effects of the zinc(II) precursors, one can propose that starting from zinc(II) nitrate, zinc(II)–aqua complexes with nitrogen-containing ligands and acidic salts (which act as counterions or terminal ligands) form more readily. Conversely, using [Zn(CH3COO)2(H2O)2] as a precursor would likely produce networks constructed of [ZnAn] chains or layers connected by nitrogen-containing linkers, probably because An is able to replace acetate ions in the coordination sphere of a zinc(II) atom. The other part of the coordination sphere of a zinc(II) atom can contain neutral water as well as N,N′-containing ligands. Although the distance between metal atoms in the [ZnAn] chain is not very small (ca 5 Å), various types of connections between the chains sometimes allow close packing of bpe ligands in reactive positions for post-synthetic modification by means of photoinitiated reactions.

2.4. Single-crystal-to-single-crystal [2 + 2] cycloaddition reactions

Three of the four bpe-containing compounds have a close disposition of the bpe ligands; these were attested to undergo a solid-state photoinitiated [2 + 2] cycloaddition reaction. Their single crystals were irradiated with a Xe lamp and then analyzed by means of single-crystal XRD. Bulk samples were investigated using powder XRD and 1H NMR. All three methods confirmed that compounds had undergone solid-state reactions.

2.4.1. Complex (2)

Mutual disposition of bpe ligands in (2) is not very efficient for a [2 + 2] cycloaddition reaction (Figs. 10, 11); neither of the two ligands are coplanar, no ethylene fragments are parallel, the distances between the carbon atoms of the ethylene groups are equal to 3.9 and 4.4 Å. At the same time, powder XRD (Fig. 12[link]) clearly indicates that UV irradiation affects the structure and a solid-state reaction has taken place. UV irradiation of a single crystal under N2 flow for 4 h did not affect the structure; thus, the same single crystal was irradiated in air at room temperature for a further 8 h. In this case, reflection intensities changed dramatically, so that the structure could be obtained using synchrotron radiation only. XRD revealed the reasons for the varied behaviour of the sample at low temperatures in air. During irradiation in air, the sample was also heated and the quantity of water molecules in the crystal structure decreased. The absence of a proportion of water molecules could affect the mutual disposition of the bpe molecules in the coordination polymer and could promote the photoinitiated [2 + 2] cycloaddition reaction. Loss of solvent molecules followed by other single-crystal-to-single-crystal (SCSC) reactions was previously observed in other zinc(II) carboxylates (Ou et al., 2011[Ou, Y.-C., Liu, W.-T., Li, J.-Y., Zhang, G.-G., Wang, J. & Tong, M.-L. (2011). Chem. Commun. 47, 9384-9386.]; Li et al., 2014[Li, G.-L., Liu, G.-Z., Ma, L.-F., Xin, L.-Y., Li, X.-L. & Wang, L.-Y. (2014). Chem. Commun. 50, 2615-2617.]), so this reaction is a new example of a two-step SCSC process. The reaction proceeded with a change in space group (P21/c → Pnna) and despite the loss of solvent, incurred a 1.5% increase in cell volume. The number of water molecules in the reaction product obtained by free refinement of the occupancy of a water oxygen is equal to 0.25 [per zinc(II) atom]; thus, one can hardly expect full conversion of bpe molecules. Indeed, the refinement of the occupancies of carbon atoms gives the ratio of one molecule of the rtct isomer of tetrakis(4-pyridyl)cyclobutane (tpcb) per two molecules of bpe and the composition of the complex obtained by an SCSC two-step process [Zn(bpe)(Me2mal)]2[Zn2(tpcb)(Me2mal)2]·H2O. 1H NMR data (Fig. S15) also provides evidence that the reaction product contains only the rtct isomer as proposed from the preorganization of ligands within the crystal (Fig. 10[link]). Both 1H NMR and PXRD data (Fig. S6) indicate that the conversion of the bpe molecules in the sample was unfinished.

[Figure 12]
Figure 12
Powder XRD data for (2), (7) and (8) before irradiation (blue) and after irradiation for 6 h (red).

As the initial complex and reaction product are both three-periodic polymers, the photoinitiated process in (2) is of the 3D→3D type. At the same time, the reaction product contains the K4 ligand instead of two B2 ligands; thus, the change in the network is also of interest. Assuming full conversion of the polymer to [Zn2(tpcb)(Me2mal)2]·0.5H2O, we estimated the topology of the irradiated sample to be the 4,4,4-coordinated net with the point symbol {4·64·8}{65·8}{43·63} (Fig. 11[link]). This is also a novel net that has not been seen before.

[Figure 11]
Figure 11
Fragment of crystal packing in [Zn(bpe)(Me2mal)]·H2O (2), the underlying net and the hypothetical underlying net of [Zn2(tpcb)(Me2mal)2]·0.5H2O.
2.4.2. Complex (7)

A crystal of (7) underwent a Cmcm → Pbcn transfer in an SCSC manner after irradiation for 6 h with a 0.9% decrease in cell volume. PXRD indicates total conversion of the bulk sample; 1H NMR revealed that the sample contains both rctt-tetrakis(4-pyridyl)cyclobutane as the major reaction product and trace amounts (<5%) of the rtct isomer (Fig. S16). Single-crystal XRD of the irradiated crystal showed that the reaction product is fully occupied and ordered in contrast with the initial compound, and indeed contains a 3D coordination polymer with the [Zn(bpe)0.75(tpcb)0.25(Et2mal)] composition, the AB2B2 CF and the net topology proposed for (7) (registered as igc2). The net is depicted in Fig. 13[link]; it can also be described, again, as parallel packing of the [Zn(Et2mal)] zigzag chains connected to hcb layers by one of the two independent bpe molecules. These layers are further connected to the igc2 net by means of bridge ligands (these positions are shared with bpe and tpcb molecules). Only XRD analysis of the reaction product allowed us to undoubtedly reveal the presence of co-crystallized bpe molecules in the pores of the initial complex (7), because these are highly disordered in the Cmcm space group. The disorder does not allow the mutual disposition of coordinated and co-crystallized bpe molecules to be confirmed and hence an estimation of which of the two tpcb isomers should form more readily. But based on 1H NMR data, one can propose that there exists some pedal-like motion prior to photodimerization, as both isomers appear in this spectrum (but only the rctt isomer was found as a single crystal). As the reaction occurred between the coordinated and co-crystallized bpe molecules, the coordination network remained unchanged.

[Figure 13]
Figure 13
Fragment of the crystal packing in [Zn(bpe)(Et2mal)]·0.25bpe (7) (top) and its underlying net (bottom).
2.4.3. Complex (8)

The parallel orientations of the discrete [Zn(bpe)2(H2O)4]2+ complexes in (8) are stabilized by intermolecular O—H⋯N bonds (Fig. 14[link]). The mean planes of bpe ligands are parallel and the distance between equivalent atoms is equal to 3.7366 (3) Å. Being constructed from 1,4-bis(pyridin-4-yl)buta-1,3-diene or 1,4-bis(pyridin-4-yl)buta-1,3-diyne, such architectures could give a 0D→2D photoreaction with metal–organopolymeric coordination networks. In this case only a 0D→1D [2 + 2] cycloaddition occurred during UV irradiation. Mutual disposition of bpe ligands in (8) allows the rctt tpcb to act as a bridge ligand, and the [Zn2(tpcb)(H2O)8]4+ chain is the only reaction product. The reaction proceeds in an SCSC manner so that the resulting structure is also suitable for single-crystal XRD. XRD data indicates that after irradiation for 3 h the single crystal contained 15% of initial substance. Further irradiation of the same single crystal does not change the conversion rate. The geometry of the chain (linear, zigzag or random, see Fig. 14[link]) can not be evaluated, because the cyclobutane ring is probably equally disordered over two sites by symmetry. The presence of both bpe and rctt tpcb molecules was also demonstrated by powder XRD (Fig. S13) and 1H NMR data (Fig. S17).

[Figure 14]
Figure 14
H-bonded layers in (8) and possible coordination polymers obtained after UV irradiation of a single crystal of (8).

To sum up, we succeeded in carrying out the [2 + 2] cycloaddition reactions in an SCSC manner for three of the four novel compounds obtained from ZnII:bpe:Me2mal (or Et2mal):H2O mixtures.

3. Conclusions

We analyzed the crystal structures of previously reported zinc(II) complexes with N,N′-containing bidentate linkers in order to establish the possible coordination architectures of zinc(II) malonate complexes with 1,2-bis(pyridin-4-yl)ethylene and its photo-insensitive analogues. Nine novel compounds obtained from ZnII:bpe:Me2mal(or Et2mal):H2O mixtures have highly probable compositions, zinc(II) environments and ligand connectivities, estimated from previously reported crystallographic data for zinc(II) complexes. Seven complexes also have one of the highly expected topologies of underlying nets and two form novel networks. A series of isoreticular coordination polymers containing malonate derivatives and analogues of 4,4′-bipyridine were found. 1,2-Bis(pyridin-4-yl)ethane was found to be a better analogue of 1,2-bis(pyridin-4-yl)ethylene than 4,4′-bipyridine. We found that zinc(II) acetate readily forms the target 2D and 3D architectures, whereas zinc(II) nitrate solutions produced aqua complexes and complexes with acidic malonates. Replacement of the acetate groups in the zinc(II) coordination sphere will most likely result in the formation of neutral [ZnAn] architectures with relatively short ZnII–ZnII distances, followed by the interaction with nitrogen-containing linkers. As these linkers are longer than bridging anions, the [ZnAn] chains can be connected by neutral linkers in numerous ways to obtain polymers with parallel or interwoven orientation of the latter.

Three of the four novel complexes containing 1,2-bis(pyridin-4-yl)ethylene were found to have close packing of ethylene groups (<4.2 Å). We succeeded in carrying out a photoinitiated [2 + 2] cycloaddition reaction for these compounds in an SCSC manner. The UV irradiation of the crystals of {[Zn(bpe)(Me2mal)]·H2O}n, {[Zn(bpe)(Et2mal)]·0.25bpe}n and [Zn(H2O)4(bpe)2](HEt2mal)2 afforded the 3D→3D (with network change), 3D→3D (with a constant net topology) and 0D→1D transformations with formation of {[Zn(bpe)(Me2mal)]2[Zn2(tpcb)(Me2mal)2]·H2O}n, [Zn(bpe)0.75(tpcb)0.25(Et2mal)]n and {[Zn(H2O)4(bpe)2]0.15[Zn(H2O)4(tpcb)]0.85(HEt2mal)4}n, respectively. Overall, we think that our study provides a foundation for future development in the application of reticular synthesis as well as a big data analysis for a synthetic approach to photoreactive coordination polymers.

Supporting information


Computing details top

Data collection: Bruker APEX2 for (3). Cell refinement: Bruker SAINT for (3). Data reduction: Bruker SAINT for (3). Program(s) used to solve structure: ShelXT (Sheldrick, 2015) for (1), (2), (7), (8a); SHELXS97 (Sheldrick, 1990) for (3). Program(s) used to refine structure: XL (Sheldrick, 2008) for (1), (2), (2a), (4), (5), (6), (7), (8), (8a), (9); SHELXL97 (Sheldrick, 1997) for (3); SHELXL2014 (Sheldrick, 2014) for (7a). Molecular graphics: Olex2 (Dolomanov et al., 2009) for (1), (2), (2a), (4), (5), (6), (7), (8), (8a), (9); Bruker SHELXTL for (3). Software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) for (1), (2), (2a), (4), (5), (6), (7), (8), (8a), (9); Bruker SHELXTL for (3).

Catena(bis(mu3-dimethylmalonato-O,O',O'',O''')-(mu2-4,4'-bipyridine-N,N') -diaqua-dizinc(II)) (1) top
Crystal data top
0.5(C40H48N4O20Zn4)Dx = 1.840 Mg m3
Mr = 583.15Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnmCell parameters from 1788 reflections
a = 7.4159 (16) Åθ = 3.0–28.8°
b = 19.318 (4) ŵ = 2.34 mm1
c = 7.3457 (16) ÅT = 120 K
V = 1052.3 (4) Å3Prism, colourless
Z = 20.15 × 0.11 × 0.08 mm
F(000) = 596
Data collection top
Bruker APEX-II CCD
diffractometer
1859 reflections with I > 2σ(I)
φ and ω scansRint = 0.094
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0889 before and 0.0679 after correction. The Ratio of minimum to maximum transmission is 0.8205. The λ/2 correction factor is 0.00150.
θmax = 36.7°, θmin = 2.1°
Tmin = 0.282, Tmax = 0.344h = 1210
15845 measured reflectionsk = 3131
2674 independent reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.020P)2 + 6.2P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2674 reflectionsΔρmax = 0.83 e Å3
103 parametersΔρmin = 2.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.48860 (7)0.71895 (3)0.50000.01475 (13)
O10.6379 (3)0.77397 (11)0.6902 (3)0.0183 (4)
O20.8680 (3)0.83692 (12)0.7860 (3)0.0191 (5)
O30.2611 (5)0.78321 (18)0.50000.0195 (6)
H3A0.26490.80980.40780.029*0.5
H3B0.26030.80740.59660.029*0.5
N10.6867 (6)0.6378 (2)0.50000.0257 (10)
C60.9875 (6)0.5963 (2)0.50000.0166 (7)
C10.7510 (5)0.82253 (15)0.6715 (4)0.0159 (6)
C50.8601 (7)0.6481 (2)0.50000.0185 (8)
H50.90160.69470.50000.022*
C20.7438 (8)0.8683 (2)0.50000.0199 (9)
C30.8969 (10)0.9197 (3)0.50000.0348 (15)
H3D0.88140.95220.60130.052*0.5
H3E0.89710.94530.38480.052*0.5
H3C1.01160.89510.51390.052*0.5
C40.5635 (9)0.9070 (3)0.50000.0296 (13)
H4B0.46480.87390.48330.044*0.5
H4A0.56220.94070.40040.044*0.5
H4C0.54820.93110.61630.044*0.5
C90.6360 (9)0.5732 (3)0.4329 (9)0.0168 (11)0.5
H90.51700.56700.38790.020*0.5
C80.7538 (9)0.5182 (3)0.4302 (9)0.0157 (11)0.5
H80.72550.47600.37010.019*0.5
C70.9349 (7)0.5290 (3)0.5306 (8)0.0145 (11)*0.5
H61.103 (10)0.608 (3)0.538 (12)0.022*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0153 (2)0.0134 (2)0.0156 (2)0.0025 (2)0.0000.000
O10.0246 (12)0.0148 (9)0.0155 (10)0.0011 (9)0.0014 (9)0.0031 (8)
O20.0220 (12)0.0182 (10)0.0172 (11)0.0018 (9)0.0003 (9)0.0016 (8)
O30.0236 (17)0.0217 (15)0.0132 (13)0.0070 (14)0.0000.000
N10.0154 (19)0.0125 (16)0.049 (3)0.0026 (14)0.0000.000
C60.0122 (19)0.0152 (16)0.0225 (19)0.0022 (15)0.0000.000
C10.0239 (15)0.0111 (11)0.0126 (12)0.0027 (11)0.0027 (11)0.0017 (9)
C50.018 (2)0.0136 (18)0.024 (2)0.0003 (15)0.0000.000
C20.037 (3)0.0097 (16)0.0127 (18)0.0002 (17)0.0000.000
C30.069 (5)0.015 (2)0.020 (2)0.016 (3)0.0000.000
C40.055 (4)0.018 (2)0.017 (2)0.018 (2)0.0000.000
C90.014 (3)0.015 (2)0.021 (3)0.001 (2)0.001 (2)0.001 (2)
C80.014 (3)0.013 (2)0.020 (3)0.001 (2)0.000 (2)0.0007 (19)
Geometric parameters (Å, º) top
Zn1—O12.076 (2)C5—H50.9500
Zn1—O1i2.076 (2)C2—C1i1.540 (4)
Zn1—O2ii2.106 (2)C2—C31.509 (8)
Zn1—O2iii2.106 (2)C2—C41.532 (8)
Zn1—O32.095 (3)C3—H3D0.9800
Zn1—N12.149 (4)C3—H3E0.9800
O1—C11.266 (4)C3—H3C0.9800
O2—Zn1iv2.106 (2)C4—H4B0.9800
O2—C11.240 (4)C4—H4A0.9800
O3—H3A0.8500C4—H4C0.9800
O3—H3B0.8499C9—H90.9500
N1—C51.301 (7)C9—C81.375 (9)
N1—C91.393 (7)C8—H80.9500
C6—C51.377 (6)C8—C71.546 (8)
C6—C7i1.376 (7)C7—C7v1.547 (11)
C6—C71.376 (7)C7—C7vi1.480 (11)
C6—H60.93 (7)C7—C7i0.450 (11)
C1—C21.540 (4)
O1—Zn1—O1i84.61 (13)C1i—C2—C1109.8 (3)
O1—Zn1—O2ii89.23 (9)C3—C2—C1110.6 (3)
O1i—Zn1—O2ii172.48 (10)C3—C2—C1i110.6 (3)
O1i—Zn1—O2iii89.23 (9)C3—C2—C4109.6 (4)
O1—Zn1—O2iii172.48 (10)C4—C2—C1i108.1 (3)
O1—Zn1—O397.25 (10)C4—C2—C1108.1 (3)
O1i—Zn1—O397.25 (10)C2—C3—H3D109.5
O1—Zn1—N190.51 (11)C2—C3—H3E109.5
O1i—Zn1—N190.51 (11)C2—C3—H3C109.5
O2iii—Zn1—O2ii96.55 (14)H3D—C3—H3E109.5
O2iii—Zn1—N185.20 (10)H3D—C3—H3C109.5
O2ii—Zn1—N185.20 (10)H3E—C3—H3C109.5
O3—Zn1—O2ii87.80 (10)C2—C4—H4B109.5
O3—Zn1—O2iii87.80 (10)C2—C4—H4A109.5
O3—Zn1—N1169.48 (15)C2—C4—H4C109.5
C1—O1—Zn1131.3 (2)H4B—C4—H4A109.5
C1—O2—Zn1iv133.5 (2)H4B—C4—H4C109.5
Zn1—O3—H3A109.3H4A—C4—H4C109.5
Zn1—O3—H3B109.3N1—C9—H9119.1
H3A—O3—H3B109.5C8—C9—N1121.7 (6)
C5—N1—Zn1124.3 (3)C8—C9—H9119.1
C5—N1—C9113.9 (4)C9—C8—H8122.0
C9—N1—Zn1118.0 (4)C9—C8—C7116.1 (5)
C5—C6—H6117 (4)C7—C8—H8122.0
C7—C6—C5119.5 (4)C6—C7—C8107.2 (4)
C7i—C6—C5119.5 (4)C6—C7—C7vi122.0 (6)
C7—C6—C7i18.8 (5)C6—C7—C7v117.4 (6)
C7i—C6—H6123 (4)C8—C7—C7v107.8 (6)
C7—C6—H6116 (4)C7i—C7—C680.6 (2)
O1—C1—C2119.4 (3)C7vi—C7—C8117.7 (5)
O2—C1—O1123.8 (3)C7i—C7—C861.5 (3)
O2—C1—C2116.8 (3)C7vi—C7—C7v16.9 (4)
N1—C5—C6124.5 (4)C7i—C7—C7vi89.995 (4)
N1—C5—H5117.8C7i—C7—C7v73.1 (4)
C6—C5—H5117.8
Zn1—O1—C1—O2157.7 (2)C5—C6—C7—C839.3 (5)
Zn1—O1—C1—C223.6 (4)C5—C6—C7—C7i95.39 (17)
Zn1iv—O2—C1—O121.1 (5)C5—C6—C7—C7v160.7 (5)
Zn1iv—O2—C1—C2160.2 (3)C5—C6—C7—C7vi179.43 (12)
Zn1—N1—C5—C6180.0C9—N1—C5—C622.8 (3)
Zn1—N1—C9—C8179.1 (5)C9—C8—C7—C637.8 (7)
O1—C1—C2—C1i54.2 (6)C9—C8—C7—C7v165.0 (6)
O1—C1—C2—C3176.5 (4)C9—C8—C7—C7vi180.0 (5)
O1—C1—C2—C463.6 (4)C9—C8—C7—C7i106.5 (6)
O2—C1—C2—C1i127.1 (3)C7—C6—C5—N110.8 (3)
O2—C1—C2—C34.8 (5)C7i—C6—C5—N110.8 (3)
O2—C1—C2—C4115.2 (4)C7i—C6—C7—C856.1 (4)
N1—C9—C8—C78.6 (9)C7i—C6—C7—C7vi84.0 (2)
C5—N1—C9—C822.1 (7)C7i—C6—C7—C7v65.3 (6)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+3/2, z+3/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+2, y+1, z+1; (vi) x+2, y+1, z.
Catena((mu-Dimethylmalonato-O,O')(mu-1,2-bis(4-pyridine)ethylene)- zinc(II) monohydrate) (2) top
Crystal data top
C17H16N2O4Zn·H2OF(000) = 816
Mr = 395.70Dx = 1.568 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2852 (11) ÅCell parameters from 3437 reflections
b = 10.4999 (14) Åθ = 2.2–29.7°
c = 21.684 (3) ŵ = 1.50 mm1
β = 117.282 (3)°T = 120 K
V = 1676.5 (4) Å3Prism, colourless
Z = 40.53 × 0.49 × 0.26 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
5502 independent reflections
Radiation source: sealed tube4217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 8 pixels mm-1θmax = 31.5°, θmin = 2.1°
phi and ω scansh = 1212
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0774 before and 0.0550 after correction. The Ratio of minimum to maximum transmission is 0.8648. The λ/2 correction factor is 0.00150.
k = 1515
Tmin = 0.645, Tmax = 0.746l = 3131
19935 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.015P)2 + 5.230P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5502 reflectionsΔρmax = 1.03 e Å3
236 parametersΔρmin = 0.76 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.94010 (4)0.49185 (3)0.31425 (2)0.01124 (8)
O10.8734 (2)0.39897 (18)0.25040 (10)0.0144 (4)
O20.6245 (3)0.36734 (19)0.34889 (11)0.0198 (4)
O30.8462 (3)0.1389 (2)0.14612 (11)0.0208 (4)
O40.8486 (3)0.09836 (18)0.24633 (10)0.0143 (4)
N10.7705 (3)0.6292 (2)0.37554 (12)0.0125 (4)
N20.9770 (3)0.3528 (2)0.37174 (12)0.0127 (4)
C10.7703 (4)0.7452 (3)0.34932 (15)0.0157 (5)
H10.83300.75620.30040.019*
C20.6838 (4)0.8485 (3)0.38977 (15)0.0157 (5)
H20.68640.92870.36900.019*
C30.5919 (4)0.8345 (3)0.46196 (15)0.0147 (5)
C40.5915 (4)0.7137 (3)0.48878 (15)0.0172 (5)
H40.53030.69970.53750.021*
C50.6798 (4)0.6150 (3)0.44448 (15)0.0156 (5)
H50.67630.53300.46360.019*
C60.5022 (4)0.9398 (3)0.50943 (15)0.0164 (5)
H60.44200.92100.55760.020*
C71.0104 (4)0.0627 (2)0.50265 (17)0.0174 (5)
H71.03420.09090.53930.021*
C81.0034 (4)0.3796 (3)0.42709 (15)0.0158 (5)
H81.01560.46620.43700.019*
C91.0135 (4)0.2866 (3)0.47005 (15)0.0174 (5)
H91.03010.30970.50910.021*
C100.9993 (4)0.1592 (3)0.45620 (15)0.0149 (5)
C110.9765 (4)0.1314 (2)0.39780 (15)0.0151 (5)
H110.97030.04540.38540.018*
C120.9631 (4)0.2291 (2)0.35818 (14)0.0143 (5)
H120.94330.20860.31950.017*
C130.7163 (4)0.3485 (2)0.28622 (14)0.0134 (5)
C140.6478 (4)0.2628 (2)0.24587 (15)0.0145 (5)
C150.7922 (4)0.1602 (2)0.20837 (15)0.0136 (5)
C160.6169 (4)0.3444 (3)0.19418 (17)0.0236 (6)
H16A0.72890.39030.16440.035*
H16B0.58250.28970.16550.035*
H16C0.51950.40580.21930.035*
C170.4709 (4)0.1971 (3)0.29533 (18)0.0246 (7)
H17A0.37920.26160.32140.037*
H17B0.42760.14440.26860.037*
H17C0.49230.14320.32770.037*
O50.6585 (3)0.4538 (3)0.57415 (13)0.0329 (6)
H5A0.575 (5)0.499 (4)0.605 (2)0.076 (17)*
H5B0.697 (6)0.421 (4)0.601 (2)0.070 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01379 (13)0.00727 (12)0.01406 (14)0.00049 (12)0.00760 (11)0.00000 (12)
O10.0151 (9)0.0127 (8)0.0170 (10)0.0019 (7)0.0088 (8)0.0015 (7)
O20.0198 (10)0.0199 (10)0.0165 (10)0.0008 (8)0.0057 (8)0.0031 (8)
O30.0230 (10)0.0231 (10)0.0216 (11)0.0050 (8)0.0149 (9)0.0076 (9)
O40.0148 (9)0.0122 (8)0.0167 (10)0.0027 (7)0.0079 (8)0.0013 (7)
N10.0112 (10)0.0104 (9)0.0155 (11)0.0008 (8)0.0059 (9)0.0015 (8)
N20.0135 (10)0.0107 (9)0.0149 (11)0.0002 (8)0.0074 (9)0.0006 (8)
C10.0159 (12)0.0144 (12)0.0166 (13)0.0014 (10)0.0074 (11)0.0009 (10)
C20.0168 (12)0.0108 (11)0.0184 (14)0.0017 (10)0.0073 (11)0.0014 (10)
C30.0144 (12)0.0136 (11)0.0173 (13)0.0016 (10)0.0083 (11)0.0026 (10)
C40.0190 (13)0.0164 (12)0.0153 (13)0.0007 (10)0.0071 (11)0.0005 (10)
C50.0164 (12)0.0117 (11)0.0175 (13)0.0005 (10)0.0067 (11)0.0004 (10)
C60.0182 (12)0.0161 (12)0.0141 (14)0.0031 (11)0.0068 (11)0.0040 (10)
C70.0221 (13)0.0158 (12)0.0190 (13)0.0001 (11)0.0135 (11)0.0037 (11)
C80.0222 (13)0.0116 (11)0.0176 (13)0.0001 (10)0.0125 (11)0.0005 (10)
C90.0237 (14)0.0147 (12)0.0188 (14)0.0004 (10)0.0140 (12)0.0006 (10)
C100.0150 (12)0.0128 (11)0.0181 (14)0.0003 (9)0.0086 (11)0.0028 (10)
C110.0196 (13)0.0094 (11)0.0197 (14)0.0004 (10)0.0118 (11)0.0009 (10)
C120.0175 (12)0.0130 (11)0.0165 (13)0.0012 (10)0.0113 (11)0.0008 (10)
C130.0159 (12)0.0091 (10)0.0164 (13)0.0035 (9)0.0085 (10)0.0019 (9)
C140.0139 (11)0.0116 (11)0.0221 (14)0.0001 (9)0.0116 (11)0.0015 (10)
C150.0123 (11)0.0100 (11)0.0207 (14)0.0020 (9)0.0094 (11)0.0005 (10)
C160.0297 (16)0.0184 (13)0.0348 (18)0.0049 (12)0.0252 (15)0.0033 (13)
C170.0112 (12)0.0195 (13)0.0370 (19)0.0015 (10)0.0059 (13)0.0053 (13)
O50.0298 (13)0.0455 (15)0.0271 (13)0.0132 (11)0.0163 (11)0.0027 (11)
Geometric parameters (Å, º) top
Zn1—O11.9684 (19)C7—C7iv1.339 (5)
Zn1—O4i1.9832 (19)C7—H70.9500
Zn1—N12.027 (2)C7—C101.461 (4)
Zn1—N22.032 (2)C8—H80.9500
O1—C131.285 (3)C8—C91.378 (4)
O2—C131.232 (3)C9—H90.9500
O3—C151.232 (3)C9—C101.387 (4)
O4—Zn1ii1.9832 (19)C10—C111.394 (4)
O4—C151.292 (3)C11—H110.9500
N1—C11.345 (3)C11—C121.375 (4)
N1—C51.339 (4)C12—H120.9500
N2—C81.345 (3)C13—C141.534 (4)
N2—C121.348 (3)C14—C151.537 (4)
C1—H10.9500C14—C161.523 (4)
C1—C21.372 (4)C14—C171.528 (4)
C2—H20.9500C16—H16A0.9800
C2—C31.400 (4)C16—H16B0.9800
C3—C41.395 (4)C16—H16C0.9800
C3—C61.460 (4)C17—H17A0.9800
C4—H40.9500C17—H17B0.9800
C4—C51.374 (4)C17—H17C0.9800
C5—H50.9500O5—H5A0.850 (3)
C6—C6iii1.335 (5)O5—H5B0.850 (3)
C6—H60.9500
O1—Zn1—O4i105.12 (8)C8—C9—H9120.0
O1—Zn1—N1118.68 (8)C8—C9—C10120.0 (3)
O1—Zn1—N2104.19 (9)C10—C9—H9120.0
O4i—Zn1—N199.75 (9)C9—C10—C7118.8 (3)
O4i—Zn1—N2118.44 (8)C9—C10—C11117.3 (2)
N1—Zn1—N2111.28 (9)C11—C10—C7124.0 (2)
C13—O1—Zn1108.20 (17)C10—C11—H11120.2
C15—O4—Zn1ii109.18 (17)C12—C11—C10119.7 (2)
C1—N1—Zn1120.15 (19)C12—C11—H11120.2
C5—N1—Zn1121.26 (18)N2—C12—C11122.9 (2)
C5—N1—C1117.6 (2)N2—C12—H12118.5
C8—N2—Zn1121.93 (18)C11—C12—H12118.5
C8—N2—C12117.5 (2)O1—C13—C14115.7 (2)
C12—N2—Zn1120.45 (18)O2—C13—O1122.9 (2)
N1—C1—H1118.4O2—C13—C14121.4 (2)
N1—C1—C2123.2 (3)C13—C14—C15108.1 (2)
C2—C1—H1118.4C16—C14—C13108.7 (2)
C1—C2—H2120.4C16—C14—C15111.0 (2)
C1—C2—C3119.3 (3)C16—C14—C17109.9 (2)
C3—C2—H2120.4C17—C14—C13110.6 (2)
C2—C3—C6123.3 (2)C17—C14—C15108.6 (2)
C4—C3—C2117.2 (2)O3—C15—O4123.5 (2)
C4—C3—C6119.4 (3)O3—C15—C14120.7 (2)
C3—C4—H4120.1O4—C15—C14115.9 (2)
C5—C4—C3119.7 (3)C14—C16—H16A109.5
C5—C4—H4120.1C14—C16—H16B109.5
N1—C5—C4122.9 (3)C14—C16—H16C109.5
N1—C5—H5118.5H16A—C16—H16B109.5
C4—C5—H5118.5H16A—C16—H16C109.5
C3—C6—H6117.4H16B—C16—H16C109.5
C6iii—C6—C3125.3 (3)C14—C17—H17A109.5
C6iii—C6—H6117.4C14—C17—H17B109.5
C7iv—C7—H7117.6C14—C17—H17C109.5
C7iv—C7—C10124.8 (4)H17A—C17—H17B109.5
C10—C7—H7117.6H17A—C17—H17C109.5
N2—C8—H8118.7H17B—C17—H17C109.5
N2—C8—C9122.7 (2)H5A—O5—H5B97 (4)
C9—C8—H8118.7
Zn1—O1—C13—O25.1 (3)C2—C3—C6—C6iii0.6 (6)
Zn1—O1—C13—C14175.30 (17)C3—C4—C5—N11.0 (4)
Zn1ii—O4—C15—O310.2 (3)C4—C3—C6—C6iii177.8 (4)
Zn1ii—O4—C15—C14170.93 (17)C5—N1—C1—C20.7 (4)
Zn1—N1—C1—C2168.2 (2)C6—C3—C4—C5178.3 (3)
Zn1—N1—C5—C4167.3 (2)C7iv—C7—C10—C9176.4 (4)
Zn1—N2—C8—C9174.4 (2)C7iv—C7—C10—C114.1 (6)
Zn1—N2—C12—C11176.2 (2)C7—C10—C11—C12178.4 (3)
O1—C13—C14—C1554.9 (3)C8—N2—C12—C110.6 (4)
O1—C13—C14—C1665.7 (3)C8—C9—C10—C7180.0 (3)
O1—C13—C14—C17173.6 (2)C8—C9—C10—C110.5 (4)
O2—C13—C14—C15125.6 (3)C9—C10—C11—C122.1 (4)
O2—C13—C14—C16113.9 (3)C10—C11—C12—N22.2 (4)
O2—C13—C14—C176.8 (3)C12—N2—C8—C91.1 (4)
N1—C1—C2—C30.5 (4)C13—C14—C15—O3130.3 (3)
N2—C8—C9—C101.1 (5)C13—C14—C15—O450.7 (3)
C1—N1—C5—C41.5 (4)C16—C14—C15—O311.2 (3)
C1—C2—C3—C41.0 (4)C16—C14—C15—O4169.9 (2)
C1—C2—C3—C6177.5 (3)C17—C14—C15—O3109.7 (3)
C2—C3—C4—C50.2 (4)C17—C14—C15—O469.3 (3)
Symmetry codes: (i) x2, y+1/2, z+1/2; (ii) x2, y1/2, z+1/2; (iii) x1, y+2, z+1; (iv) x2, y, z+1.
Catena((mu-Dimethylmalonato-O,O')(mu-1,2-bis(4-pyridine)ethylene-N,N')- zinc(II) (mu-Dimethylmalonato-O,O')(mu-4-tetrakis(4- pyridyl)cyclobutane-N,N',N'',N''')- zinc(II) hydrate) (2a) top
Crystal data top
0.25(C68H64N8O16Zn4)·0.25(H2O)Dx = 1.492 Mg m3
Mr = 382.69Synchrotron radiation, λ = 0.9699 Å
Orthorhombic, PnnaCell parameters from 259 reflections
a = 8.3000 (17) Åθ = 4.8–37.2°
b = 10.400 (2) ŵ = 3.32 mm1
c = 19.740 (4) ÅT = 100 K
V = 1704.0 (6) Å3Prism, colourless
Z = 40.53 × 0.49 × 0.26 mm
F(000) = 788
Data collection top
Mar CCD
diffractometer
976 reflections with I > 2σ(I)
φ scansRint = 0.087
Absorption correction: multi-scan
SCALA
θmax = 38.5°, θmin = 4.5°
Tmin = 0.645, Tmax = 0.746h = 88
10296 measured reflectionsk = 1013
1696 independent reflectionsl = 2425
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.093 w = 1/[σ2(Fo2) + (0.020P)2 + 10.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.214(Δ/σ)max = 0.009
S = 1.05Δρmax = 0.63 e Å3
1696 reflectionsΔρmin = 0.89 e Å3
117 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
30 restraintsExtinction coefficient: 0.0051 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.75000.50000.31652 (6)0.0717 (6)
O10.6078 (7)0.4026 (4)0.2549 (3)0.0662 (14)
O20.4889 (9)0.3567 (6)0.3529 (4)0.112 (2)
N10.6406 (10)0.6421 (6)0.3741 (3)0.083 (2)
C10.625 (2)0.766 (2)0.3554 (12)0.063 (3)*0.5
H10.66120.78590.31090.076*0.5
C20.5654 (19)0.8684 (16)0.3916 (8)0.055 (2)*0.5
H20.57280.95310.37390.066*0.5
C30.498 (2)0.8484 (15)0.4505 (8)0.063 (3)*0.5
C40.501 (2)0.7187 (16)0.4738 (8)0.069 (3)*0.5
H40.46940.69870.51880.083*0.5
C50.550 (2)0.6223 (17)0.4303 (8)0.067 (3)*0.5
H50.51900.53670.44050.081*0.5
C70.4990 (12)0.3427 (7)0.2913 (5)0.081 (2)
C80.3904 (18)0.25000.25000.096 (4)
O30.25000.50000.4246 (13)0.080 (10)0.25
H3A0.30210.48810.38810.120*0.25
H3B0.18160.44000.42970.120*0.25
C1A0.669 (3)0.767 (2)0.3537 (12)0.063 (3)*0.5
H1A0.71710.78550.31120.076*0.5
C5A0.622 (2)0.6133 (17)0.4430 (8)0.067 (3)*0.5
H5A0.63510.52750.45860.081*0.5
C2A0.6279 (19)0.8570 (16)0.3958 (8)0.055 (2)*0.5
H2A0.62610.94350.38030.066*0.5
C3A0.586 (2)0.8310 (15)0.4636 (7)0.063 (3)*0.5
C4A0.587 (2)0.7069 (15)0.4868 (9)0.069 (3)*0.5
H4A0.56310.68790.53280.083*0.5
C1AA0.5025 (18)0.9385 (13)0.5064 (8)0.060 (4)*0.5
C0AA0.348 (3)0.930 (3)0.4872 (14)0.067 (8)*0.25
C2AA0.661 (4)0.923 (3)0.5234 (15)0.073 (9)*0.25
C9B0.312 (3)0.327 (2)0.1861 (9)0.095 (6)*0.5
H9BA0.23990.39420.20290.143*0.5
H9BB0.25170.26680.15770.143*0.5
H9BC0.39870.36630.15930.143*0.5
C9A0.264 (2)0.3292 (17)0.2230 (9)0.085 (5)*0.5
H9AA0.24020.39920.25470.127*0.5
H9AB0.16650.27700.21640.127*0.5
H9AC0.29760.36530.17940.127*0.5
H1AA0.478 (4)0.886 (11)0.543 (4)0.25 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.1002 (13)0.0486 (8)0.0663 (9)0.0004 (7)0.0000.000
O10.072 (4)0.041 (2)0.085 (3)0.003 (2)0.007 (3)0.001 (2)
O20.133 (6)0.078 (4)0.125 (5)0.002 (4)0.050 (4)0.008 (4)
N10.114 (7)0.069 (4)0.065 (4)0.000 (4)0.019 (4)0.005 (3)
C70.077 (6)0.044 (4)0.123 (5)0.003 (4)0.024 (4)0.005 (4)
C80.094 (5)0.078 (5)0.117 (5)0.0000.0000.002 (4)
O30.08 (3)0.13 (3)0.036 (13)0.02 (3)0.0000.000
Geometric parameters (Å, º) top
Zn1—O1i1.975 (5)C1A—H1A0.9500
Zn1—O11.975 (5)C1A—C2A1.30 (3)
Zn1—N12.073 (7)C5A—H5A0.9500
Zn1—N1i2.073 (7)C5A—C4A1.33 (2)
O1—C71.311 (10)C2A—H2A0.9500
O2—C71.228 (11)C2A—C3A1.41 (2)
N1—C11.35 (2)C3A—C4A1.37 (2)
N1—C51.355 (18)C3A—C1AA1.56 (2)
N1—C1A1.38 (2)C3A—C2AA1.64 (3)
N1—C5A1.402 (17)C4A—H4A0.9500
C1—H10.9500C1AA—C1AAiii1.30 (3)
C1—C21.37 (3)C1AA—C0AAiii1.85 (3)
C2—H20.9500C1AA—C0AA1.34 (2)
C2—C31.31 (2)C1AA—C2AA1.37 (3)
C3—C41.43 (2)C1AA—H1AA0.93 (2)
C3—C1AA1.45 (2)C0AA—C1AAiii1.85 (3)
C3—C0AA1.67 (3)C0AA—C2AAiii1.55 (4)
C4—H40.9500C0AA—C2AAiv1.57 (5)
C4—C51.38 (2)C2AA—C0AAiii1.55 (4)
C5—H50.9500C2AA—C0AAv1.57 (5)
C7—C81.551 (12)C9B—H9BA0.9800
C8—C7ii1.551 (12)C9B—H9BB0.9800
C8—C9B1.628 (15)C9B—H9BC0.9800
C8—C9A1.439 (14)C9A—H9AA0.9800
O3—H3A0.8500C9A—H9AB0.9800
O3—H3B0.8498C9A—H9AC0.9800
O1i—Zn1—O1103.9 (3)C4A—C3A—C2AA107.9 (16)
O1i—Zn1—N1103.5 (2)C1AA—C3A—C2AA50.4 (10)
O1—Zn1—N1116.2 (3)C5A—C4A—C3A118.3 (16)
O1—Zn1—N1i103.5 (2)C5A—C4A—H4A120.9
O1i—Zn1—N1i116.2 (3)C3A—C4A—H4A120.9
N1—Zn1—N1i113.6 (4)C3—C1AA—C0AAiii123.2 (14)
C7—O1—Zn1108.5 (6)C3—C1AA—H1AA102 (9)
C1—N1—Zn1125.0 (11)C3A—C1AA—C0AAiii105.7 (13)
C1—N1—C5108.5 (13)C3A—C1AA—H1AA95 (9)
C5—N1—Zn1125.7 (9)C1AAiii—C1AA—C3119.1 (19)
C1A—N1—Zn1115.8 (10)C1AAiii—C1AA—C3A127.7 (19)
C1A—N1—C5A120.2 (13)C1AAiii—C1AA—C0AA89 (2)
C5A—N1—Zn1115.3 (8)C1AAiii—C1AA—C0AAiii46.3 (11)
N1—C1—H1115.4C1AAiii—C1AA—C2AA101 (2)
N1—C1—C2129.2 (19)C1AAiii—C1AA—H1AA136 (10)
C2—C1—H1115.4C0AA—C1AA—C373.6 (13)
C1—C2—H2120.2C0AA—C1AA—C3A102.9 (15)
C3—C2—C1119.7 (17)C0AA—C1AA—C0AAiii135.1 (14)
C3—C2—H2120.1C0AA—C1AA—C2AA169 (2)
C2—C3—C4115.5 (14)C0AA—C1AA—H1AA88.6 (17)
C2—C3—C1AA124.4 (15)C0AAiii—C1AA—H1AA122 (6)
C2—C3—C0AA128.6 (16)C2AA—C1AA—C397.7 (15)
C4—C3—C1AA111.5 (13)C2AA—C1AA—C3A67.8 (13)
C4—C3—C0AA110.7 (16)C2AA—C1AA—C0AAiii55.0 (17)
C1AA—C3—C0AA50.2 (9)C2AA—C1AA—H1AA86.9 (17)
C3—C4—H4120.3C3—C0AA—C1AAiii84.6 (15)
C5—C4—C3119.5 (15)C1AA—C0AA—C356.2 (13)
C5—C4—H4120.3C1AA—C0AA—C1AAiii44.9 (14)
N1—C5—C4124.2 (16)C1AA—C0AA—C2AAiii91 (2)
N1—C5—H5117.9C1AA—C0AA—C2AAiv171 (3)
C4—C5—H5117.9C2AAiv—C0AA—C3131 (2)
O1—C7—C8114.0 (8)C2AAiii—C0AA—C3119 (2)
O2—C7—O1122.3 (9)C2AAiv—C0AA—C1AAiii135.0 (19)
O2—C7—C8123.7 (8)C2AAiii—C0AA—C1AAiii46.4 (11)
C7ii—C8—C7109.0 (11)C2AAiii—C0AA—C2AAiv88.8 (17)
C7—C8—C9B109.4 (9)C1AA—C2AA—C3A61.7 (14)
C7ii—C8—C9B97.5 (8)C1AA—C2AA—C0AAv156 (3)
C9A—C8—C7105.3 (8)C1AA—C2AA—C0AAiii78.6 (18)
C9A—C8—C7ii125.9 (8)C0AAiii—C2AA—C3A117 (2)
H3A—O3—H3B109.5C0AAv—C2AA—C3A108 (2)
N1—C1A—H1A121.7C0AAiii—C2AA—C0AAv89.1 (19)
C2A—C1A—N1116.6 (19)C8—C9B—H9BA109.5
C2A—C1A—H1A121.7C8—C9B—H9BB109.5
N1—C5A—H5A120.1C8—C9B—H9BC109.5
C4A—C5A—N1119.8 (15)H9BA—C9B—H9BB109.5
C4A—C5A—H5A120.1H9BA—C9B—H9BC109.5
C1A—C2A—H2A118.9H9BB—C9B—H9BC109.5
C1A—C2A—C3A122.2 (17)C8—C9A—H9AA109.5
C3A—C2A—H2A118.9C8—C9A—H9AB109.5
C2A—C3A—C1AA119.1 (14)C8—C9A—H9AC109.5
C2A—C3A—C2AA118.3 (17)H9AA—C9A—H9AB109.5
C4A—C3A—C2A119.7 (15)H9AA—C9A—H9AC109.5
C4A—C3A—C1AA119.9 (14)H9AB—C9A—H9AC109.5
Zn1—O1—C7—O24.3 (10)C5A—N1—C1A—C2A21 (2)
Zn1—O1—C7—C8173.5 (6)C2A—C3A—C4A—C5A3 (3)
Zn1—N1—C1—C2175.0 (15)C2A—C3A—C1AA—C366.8 (19)
Zn1—N1—C5—C4168.9 (13)C2A—C3A—C1AA—C1AAiii17 (3)
Zn1—N1—C1A—C2A167.5 (14)C2A—C3A—C1AA—C0AA82 (2)
Zn1—N1—C5A—C4A165.3 (13)C2A—C3A—C1AA—C0AAiii63.5 (19)
O1—C7—C8—C7ii52.5 (5)C2A—C3A—C1AA—C2AA104 (2)
O1—C7—C8—C9B52.9 (13)C2A—C3A—C2AA—C1AA105.7 (19)
O1—C7—C8—C9A84.9 (12)C2A—C3A—C2AA—C0AAv51 (3)
O2—C7—C8—C7ii125.2 (10)C2A—C3A—C2AA—C0AAiii48 (3)
O2—C7—C8—C9B129.3 (12)C3A—C1AA—C0AA—C37.7 (12)
O2—C7—C8—C9A97.3 (12)C3A—C1AA—C0AA—C1AAiii129 (2)
N1—C1—C2—C37 (3)C3A—C1AA—C0AA—C2AAiii132.0 (18)
N1—C1A—C2A—C3A12 (3)C3A—C1AA—C2AA—C0AAiii130 (2)
N1—C5A—C4A—C3A7 (3)C3A—C1AA—C2AA—C0AAv70 (6)
C1—N1—C5—C421 (2)C4A—C3A—C1AA—C3100 (2)
C1—N1—C1A—C2A62 (6)C4A—C3A—C1AA—C1AAiii176 (2)
C1—N1—C5A—C4A2 (2)C4A—C3A—C1AA—C0AA85 (2)
C1—C2—C3—C43 (3)C4A—C3A—C1AA—C0AAiii129.8 (17)
C1—C2—C3—C1AA148.0 (17)C4A—C3A—C1AA—C2AA89 (2)
C1—C2—C3—C0AA149 (2)C4A—C3A—C2AA—C1AA114.4 (18)
C2—C3—C4—C510 (3)C4A—C3A—C2AA—C0AAv89 (2)
C2—C3—C1AA—C3A81 (2)C4A—C3A—C2AA—C0AAiii172 (2)
C2—C3—C1AA—C1AAiii35 (3)C1AA—C3—C4—C5158.7 (15)
C2—C3—C1AA—C0AA114 (2)C1AA—C3—C0AA—C1AAiii37.5 (14)
C2—C3—C1AA—C0AAiii19 (2)C1AA—C3—C0AA—C2AAiv173 (4)
C2—C3—C1AA—C2AA72 (2)C1AA—C3—C0AA—C2AAiii70 (2)
C2—C3—C0AA—C1AA106 (2)C1AA—C3A—C4A—C5A163.9 (15)
C2—C3—C0AA—C1AAiii69 (2)C1AA—C3A—C2AA—C0AAiii58 (2)
C2—C3—C0AA—C2AAiii36 (3)C1AA—C3A—C2AA—C0AAv156 (3)
C2—C3—C0AA—C2AAiv81 (3)C1AAiii—C1AA—C0AA—C3120.9 (18)
C3—C4—C5—N120 (3)C1AAiii—C1AA—C0AA—C2AAiii4 (2)
C3—C1AA—C0AA—C1AAiii120.9 (18)C1AAiii—C1AA—C2AA—C3A126.3 (19)
C3—C1AA—C0AA—C2AAiii124 (2)C1AAiii—C1AA—C2AA—C0AAv57 (6)
C3—C1AA—C2AA—C3A4.5 (13)C1AAiii—C1AA—C2AA—C0AAiii4 (2)
C3—C1AA—C2AA—C0AAiii125.4 (18)C0AA—C3—C4—C5147.2 (18)
C3—C1AA—C2AA—C0AAv65 (6)C0AA—C3—C1AA—C3A165 (2)
C4—C3—C1AA—C3A65.4 (18)C0AA—C3—C1AA—C1AAiii79 (2)
C4—C3—C1AA—C1AAiii178.7 (19)C0AA—C3—C1AA—C0AAiii133.7 (17)
C4—C3—C1AA—C0AAiii126.7 (18)C0AA—C3—C1AA—C2AA173 (2)
C4—C3—C1AA—C0AA99.6 (19)C0AAiii—C1AA—C0AA—C3120.9 (18)
C4—C3—C1AA—C2AA74 (2)C0AAiii—C1AA—C0AA—C1AAiii0.002 (3)
C4—C3—C0AA—C1AAiii138.7 (14)C0AAiii—C1AA—C0AA—C2AAiii4 (2)
C4—C3—C0AA—C1AA101.2 (17)C0AAiii—C1AA—C2AA—C3A130 (2)
C4—C3—C0AA—C2AAiv72 (3)C0AA—C1AA—C2AA—C3A31 (13)
C4—C3—C0AA—C2AAiii171.4 (19)C0AA—C1AA—C2AA—C0AAv101 (12)
C5—N1—C1—C215 (3)C0AA—C1AA—C2AA—C0AAiii161 (11)
C5—N1—C1A—C2A10 (2)C0AAiii—C1AA—C2AA—C0AAv60 (5)
C5—N1—C5A—C4A75 (3)C2AA—C3A—C4A—C5A142.0 (19)
C1A—N1—C1—C2118 (8)C2AA—C3A—C1AA—C3171 (3)
C1A—N1—C5—C48 (2)C2AA—C3A—C1AA—C1AAiii87 (3)
C1A—N1—C5A—C4A19 (2)C2AA—C3A—C1AA—C0AAiii40.7 (18)
C1A—C2A—C3A—C4A0 (3)C2AA—C3A—C1AA—C0AA174 (2)
C1A—C2A—C3A—C1AA167.0 (17)C2AA—C1AA—C0AA—C337 (12)
C1A—C2A—C3A—C2AA135 (2)C2AA—C1AA—C0AA—C1AAiii158 (13)
C5A—N1—C1—C213 (3)C2AA—C1AA—C0AA—C2AAiii162 (11)
C5A—N1—C5—C493 (3)
Symmetry codes: (i) x+3/2, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x1/2, y, z+1; (v) x+1/2, y, z+1.
Catena(Bis(hydrogen dimethylmalonato-O,O')(mu-1,2-bis(4-pyridine)ethylene)- zinc(II)) (3) top
Crystal data top
C22H24N2O8ZnF(000) = 1056
Mr = 509.80Dx = 1.609 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.0211 (8) ÅCell parameters from 3576 reflections
b = 5.8795 (2) Åθ = 2.5–28.2°
c = 21.7192 (12) ŵ = 1.22 mm1
β = 113.890 (1)°T = 150 K
V = 2104.10 (17) Å3Prismatic, colourless
Z = 40.10 × 0.10 × 0.10 mm
Data collection top
Bruker APEX-II CCD
diffractometer
2296 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 28.2°, θmin = 2.1°
φ and ω scansh = 2322
6512 measured reflectionsk = 77
2562 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
2562 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.82335 (4)0.25000.01101 (9)
N10.00568 (8)1.0352 (2)0.17759 (6)0.0123 (3)
O10.08734 (7)0.61376 (18)0.30587 (5)0.0151 (2)
O20.16496 (7)0.89240 (19)0.29766 (6)0.0181 (3)
O30.24613 (7)0.4995 (2)0.26976 (5)0.0196 (3)
H3A0.27840.46200.25370.029*
O40.34389 (7)0.3769 (2)0.36617 (6)0.0253 (3)
C10.15637 (9)0.7056 (3)0.32068 (7)0.0122 (3)
C20.23108 (9)0.5817 (3)0.37167 (7)0.0128 (3)
C30.28031 (9)0.4747 (3)0.33595 (8)0.0147 (3)
C40.20756 (11)0.3911 (3)0.40851 (8)0.0202 (4)
H4A0.17400.28220.37630.030*
H4B0.17820.45440.43280.030*
H4C0.25570.31730.43950.030*
C50.28512 (11)0.7582 (3)0.42226 (8)0.0208 (4)
H5A0.33210.68390.45480.031*
H5B0.25510.82920.44480.031*
H5C0.30190.87150.39880.031*
C60.03558 (10)0.9967 (3)0.11115 (7)0.0145 (3)
H6A0.06700.86580.09770.017*
C70.03327 (10)1.1419 (3)0.06242 (8)0.0157 (3)
H7A0.06261.10860.01710.019*
C80.01346 (9)1.3403 (3)0.08138 (7)0.0131 (3)
C90.05635 (10)1.3791 (3)0.15019 (8)0.0142 (3)
H9A0.08841.50840.16510.017*
C100.05089 (10)1.2243 (3)0.19585 (7)0.0138 (3)
H10A0.08001.25250.24150.017*
C110.01970 (9)1.5065 (3)0.03347 (7)0.0142 (3)
H11A0.05371.63080.05100.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01226 (14)0.01073 (14)0.00925 (13)0.0000.00354 (10)0.000
N10.0129 (6)0.0127 (6)0.0110 (6)0.0011 (5)0.0047 (5)0.0005 (5)
O10.0117 (6)0.0143 (6)0.0159 (5)0.0005 (4)0.0022 (5)0.0003 (4)
O20.0180 (6)0.0172 (6)0.0191 (6)0.0033 (5)0.0075 (5)0.0072 (5)
O30.0172 (6)0.0264 (7)0.0155 (6)0.0079 (5)0.0071 (5)0.0012 (5)
O40.0175 (7)0.0318 (7)0.0243 (6)0.0123 (5)0.0060 (5)0.0063 (5)
C10.0128 (8)0.0157 (8)0.0086 (7)0.0026 (6)0.0046 (6)0.0021 (6)
C20.0120 (8)0.0133 (8)0.0116 (7)0.0010 (6)0.0033 (6)0.0010 (6)
C30.0136 (8)0.0118 (8)0.0171 (8)0.0000 (6)0.0048 (7)0.0013 (6)
C40.0205 (9)0.0211 (9)0.0181 (8)0.0030 (7)0.0069 (7)0.0085 (7)
C50.0178 (9)0.0209 (9)0.0173 (8)0.0006 (7)0.0005 (7)0.0029 (7)
C60.0147 (8)0.0143 (8)0.0135 (7)0.0027 (6)0.0046 (6)0.0018 (6)
C70.0152 (8)0.0194 (9)0.0093 (7)0.0022 (6)0.0017 (6)0.0005 (6)
C80.0119 (8)0.0144 (8)0.0120 (7)0.0021 (6)0.0038 (6)0.0023 (6)
C90.0146 (8)0.0125 (8)0.0136 (7)0.0020 (6)0.0037 (6)0.0009 (6)
C100.0147 (8)0.0141 (8)0.0101 (7)0.0002 (6)0.0024 (6)0.0003 (6)
C110.0146 (8)0.0128 (8)0.0143 (7)0.0015 (6)0.0051 (7)0.0010 (6)
Geometric parameters (Å, º) top
Zn1—O1i1.9802 (11)C1—C21.537 (2)
Zn1—O11.9802 (11)C2—C41.533 (2)
Zn1—N1i2.0410 (12)C2—C31.530 (2)
Zn1—N12.0410 (12)C2—C51.538 (2)
N1—C101.340 (2)C6—C71.373 (2)
N1—C61.3481 (19)C7—C81.400 (2)
O1—C11.2722 (19)C8—C91.395 (2)
O2—C11.2422 (18)C8—C111.465 (2)
O3—C31.3230 (18)C9—C101.378 (2)
O4—C31.2104 (19)C11—C11ii1.337 (3)
O1i—Zn1—O1103.03 (6)C3—C2—C1110.36 (12)
O1i—Zn1—N1i125.21 (5)C4—C2—C5110.44 (13)
O1—Zn1—N1i100.55 (5)C3—C2—C5108.06 (13)
O1i—Zn1—N1100.55 (5)C1—C2—C5108.15 (13)
O1—Zn1—N1125.20 (5)O4—C3—O3124.30 (14)
N1i—Zn1—N1104.77 (7)O4—C3—C2122.42 (14)
C10—N1—C6117.50 (13)O3—C3—C2113.28 (12)
C10—N1—Zn1119.51 (10)N1—C6—C7123.01 (14)
C6—N1—Zn1122.97 (10)C6—C7—C8119.59 (14)
C1—O1—Zn1110.12 (10)C7—C8—C9117.22 (14)
O2—C1—O1122.82 (14)C7—C8—C11123.87 (14)
O2—C1—C2119.57 (13)C9—C8—C11118.91 (14)
O1—C1—C2117.55 (13)C10—C9—C8119.53 (14)
C4—C2—C3107.68 (13)N1—C10—C9123.15 (14)
C4—C2—C1112.08 (13)C11ii—C11—C8125.06 (18)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+3, z.
Catena((mu-Dimethylmalonato-O,O')(mu-1,2-bis(4-pyridine)ethane)- zinc(II) monohydrate) (4) top
Crystal data top
C17H18N2O4Zn·H2OF(000) = 824
Mr = 397.72Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4434 (14) ÅCell parameters from 6048 reflections
b = 10.3811 (18) Åθ = 2.2–32.5°
c = 21.551 (4) ŵ = 1.48 mm1
β = 115.928 (4)°T = 120 K
V = 1698.8 (5) Å3Prism, colourless
Z = 40.32 × 0.21 × 0.12 mm
Data collection top
Bruker APEX-II CCD
diffractometer
6155 reflections with I > 2σ(I)
φ and ω scansRint = 0.053
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.1119 before and 0.0553 after correction. The Ratio of minimum to maximum transmission is 0.6759. The λ/2 correction factor is 0.00150.
θmax = 36.6°, θmin = 2.1°
Tmin = 0.505, Tmax = 0.747h = 1413
25908 measured reflectionsk = 1717
7954 independent reflectionsl = 3530
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.015P)2 + 10.514P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
7954 reflectionsΔρmax = 3.12 e Å3
232 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.93529 (4)0.99201 (3)0.18412 (2)0.01237 (7)
O11.1408 (3)1.09609 (19)0.24444 (11)0.0159 (4)
O1W0.3397 (4)1.0421 (3)0.07546 (15)0.0359 (6)
H1WA0.41790.99270.10400.054*
H1WB0.32181.07080.10880.056 (18)*
O21.1499 (3)1.1371 (2)0.14514 (12)0.0230 (4)
O31.1298 (3)1.39758 (19)0.25125 (11)0.0153 (4)
O41.3705 (3)1.3659 (2)0.34743 (12)0.0235 (5)
N10.7723 (3)1.1293 (2)0.12343 (13)0.0147 (4)
N20.9791 (3)0.8503 (2)0.12841 (12)0.0143 (4)
C60.6759 (4)1.1088 (3)0.05607 (16)0.0185 (5)
H60.67201.02430.03850.022*
C70.5821 (4)1.2050 (3)0.01100 (15)0.0185 (5)
H70.51701.18700.03680.022*
C80.5834 (4)1.3288 (3)0.03604 (15)0.0157 (5)
C90.6829 (4)1.3497 (3)0.10608 (15)0.0174 (5)
H90.68771.43270.12530.021*
C100.7751 (4)1.2479 (3)0.14758 (15)0.0178 (5)
H100.84361.26320.19550.021*
C110.4803 (4)1.4321 (3)0.01388 (14)0.0179 (5)
H11A0.35331.41520.02920.021*
H11B0.50361.42610.05500.021*
C11.2006 (4)1.1570 (3)0.20696 (16)0.0158 (5)
C21.3448 (4)1.2562 (3)0.24496 (16)0.0158 (5)
C31.2810 (4)1.3456 (2)0.28576 (15)0.0150 (5)
C51.3826 (5)1.3372 (3)0.1941 (2)0.0268 (7)
H5A1.42141.28100.16680.040*
H5B1.47541.39980.21940.040*
H5C1.27541.38280.16320.040*
C41.5111 (4)1.1854 (3)0.2935 (2)0.0266 (7)
H4A1.48551.13270.32580.040*
H4B1.60311.24820.31940.040*
H4C1.55161.12980.26660.040*
C161.0019 (4)0.8737 (3)0.07214 (16)0.0200 (5)
H160.99690.96040.05720.024*
C151.0323 (5)0.7776 (3)0.03456 (16)0.0205 (6)
H151.04530.79810.00590.025*
C141.0439 (4)0.6511 (3)0.05628 (15)0.0165 (5)
C131.0196 (4)0.6267 (3)0.11478 (15)0.0160 (5)
H131.02660.54110.13140.019*
C120.9850 (4)0.7273 (3)0.14860 (15)0.0155 (5)
H120.96470.70910.18770.019*
C171.0795 (4)0.5439 (3)0.01764 (17)0.0198 (5)
H17A1.18060.49240.05010.024*
H17B1.11210.58080.01760.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01432 (13)0.00861 (11)0.01454 (14)0.00037 (10)0.00664 (10)0.00017 (10)
O10.0163 (9)0.0140 (8)0.0173 (9)0.0024 (7)0.0073 (7)0.0006 (7)
O1W0.0326 (14)0.0485 (17)0.0303 (14)0.0136 (12)0.0170 (12)0.0026 (12)
O20.0244 (11)0.0285 (11)0.0195 (11)0.0034 (9)0.0127 (9)0.0046 (9)
O30.0150 (9)0.0146 (8)0.0172 (9)0.0016 (7)0.0079 (7)0.0010 (7)
O40.0214 (10)0.0248 (11)0.0189 (11)0.0008 (8)0.0040 (9)0.0027 (8)
N10.0143 (10)0.0121 (9)0.0167 (11)0.0004 (7)0.0059 (8)0.0007 (7)
N20.0161 (10)0.0129 (9)0.0141 (10)0.0011 (7)0.0069 (8)0.0007 (7)
C60.0202 (13)0.0149 (11)0.0167 (13)0.0001 (9)0.0047 (10)0.0006 (9)
C70.0201 (13)0.0164 (11)0.0138 (12)0.0006 (9)0.0028 (10)0.0002 (9)
C80.0151 (11)0.0147 (10)0.0161 (12)0.0017 (9)0.0057 (9)0.0026 (9)
C90.0197 (12)0.0138 (10)0.0154 (12)0.0033 (9)0.0047 (10)0.0005 (9)
C100.0205 (12)0.0159 (11)0.0122 (12)0.0044 (9)0.0026 (10)0.0000 (9)
C110.0176 (12)0.0172 (11)0.0129 (13)0.0029 (9)0.0013 (10)0.0027 (9)
C10.0142 (11)0.0121 (10)0.0238 (14)0.0017 (8)0.0107 (10)0.0001 (9)
C20.0143 (11)0.0116 (10)0.0232 (13)0.0001 (8)0.0099 (10)0.0011 (9)
C30.0142 (11)0.0116 (10)0.0207 (13)0.0013 (8)0.0091 (10)0.0008 (9)
C50.0347 (18)0.0173 (12)0.041 (2)0.0030 (12)0.0279 (16)0.0001 (12)
C40.0151 (12)0.0206 (13)0.0381 (19)0.0030 (10)0.0060 (13)0.0022 (12)
C160.0286 (15)0.0161 (11)0.0189 (13)0.0003 (10)0.0136 (12)0.0002 (9)
C150.0298 (15)0.0178 (12)0.0179 (14)0.0025 (11)0.0142 (12)0.0019 (10)
C140.0178 (12)0.0176 (11)0.0155 (12)0.0026 (9)0.0085 (10)0.0041 (9)
C130.0187 (12)0.0122 (10)0.0183 (13)0.0003 (9)0.0093 (10)0.0014 (9)
C120.0188 (12)0.0134 (10)0.0144 (12)0.0000 (9)0.0074 (10)0.0002 (8)
C170.0212 (13)0.0196 (12)0.0228 (14)0.0026 (10)0.0137 (11)0.0075 (10)
Geometric parameters (Å, º) top
Zn1—O11.974 (2)C11—H11A0.9900
Zn1—O3i1.968 (2)C11—H11B0.9900
Zn1—N12.015 (2)C1—C21.530 (4)
Zn1—N22.032 (2)C2—C31.529 (4)
O1—C11.290 (4)C2—C51.523 (4)
O1W—H1WA0.8499C2—C41.523 (4)
O1W—H1WB0.8498C5—H5A0.9800
O2—C11.226 (4)C5—H5B0.9800
O3—Zn1ii1.968 (2)C5—H5C0.9800
O3—C31.282 (3)C4—H4A0.9800
O4—C31.226 (4)C4—H4B0.9800
N1—C61.335 (4)C4—H4C0.9800
N1—C101.333 (4)C16—H160.9500
N2—C161.330 (4)C16—C151.378 (4)
N2—C121.343 (3)C15—H150.9500
C6—H60.9500C15—C141.384 (4)
C6—C71.376 (4)C14—C131.387 (4)
C7—H70.9500C14—C171.497 (4)
C7—C81.392 (4)C13—H130.9500
C8—C91.387 (4)C13—C121.376 (4)
C8—C111.499 (4)C12—H120.9500
C9—H90.9500C17—C17iv1.523 (6)
C9—C101.383 (4)C17—H17A0.9900
C10—H100.9500C17—H17B0.9900
C11—C11iii1.511 (6)
O1—Zn1—N1101.23 (9)C5—C2—C3108.4 (2)
O1—Zn1—N2116.78 (9)C5—C2—C4109.9 (3)
O3i—Zn1—O1104.11 (9)C4—C2—C1108.8 (2)
O3i—Zn1—N1119.25 (10)C4—C2—C3110.4 (3)
O3i—Zn1—N2103.71 (9)O3—C3—C2115.7 (3)
N1—Zn1—N2112.17 (10)O4—C3—O3122.8 (3)
C1—O1—Zn1109.15 (19)O4—C3—C2121.5 (3)
H1WA—O1W—H1WB88.3C2—C5—H5A109.5
C3—O3—Zn1ii108.34 (18)C2—C5—H5B109.5
C6—N1—Zn1120.78 (19)C2—C5—H5C109.5
C10—N1—Zn1120.6 (2)H5A—C5—H5B109.5
C10—N1—C6118.0 (2)H5A—C5—H5C109.5
C16—N2—Zn1122.84 (19)H5B—C5—H5C109.5
C16—N2—C12118.0 (2)C2—C4—H4A109.5
C12—N2—Zn1119.2 (2)C2—C4—H4B109.5
N1—C6—H6118.6C2—C4—H4C109.5
N1—C6—C7122.7 (3)H4A—C4—H4B109.5
C7—C6—H6118.6H4A—C4—H4C109.5
C6—C7—H7120.3H4B—C4—H4C109.5
C6—C7—C8119.4 (3)N2—C16—H16118.6
C8—C7—H7120.3N2—C16—C15122.8 (3)
C7—C8—C11118.6 (3)C15—C16—H16118.6
C9—C8—C7117.7 (3)C16—C15—H15120.3
C9—C8—C11123.7 (3)C16—C15—C14119.5 (3)
C8—C9—H9120.4C14—C15—H15120.3
C10—C9—C8119.1 (3)C15—C14—C13117.7 (3)
C10—C9—H9120.4C15—C14—C17121.3 (3)
N1—C10—C9123.0 (3)C13—C14—C17121.1 (3)
N1—C10—H10118.5C14—C13—H13120.2
C9—C10—H10118.5C12—C13—C14119.5 (3)
C8—C11—C11iii115.2 (3)C12—C13—H13120.2
C8—C11—H11A108.5N2—C12—C13122.5 (3)
C8—C11—H11B108.5N2—C12—H12118.8
C11iii—C11—H11A108.5C13—C12—H12118.8
C11iii—C11—H11B108.5C14—C17—C17iv112.0 (3)
H11A—C11—H11B107.5C14—C17—H17A109.2
O1—C1—C2115.6 (3)C14—C17—H17B109.2
O2—C1—O1123.5 (3)C17iv—C17—H17A109.2
O2—C1—C2120.9 (3)C17iv—C17—H17B109.2
C3—C2—C1108.6 (2)H17A—C17—H17B107.9
C5—C2—C1110.8 (3)
Zn1—O1—C1—O29.1 (3)C7—C8—C11—C11iii167.1 (3)
Zn1—O1—C1—C2172.08 (18)C8—C9—C10—N10.4 (5)
Zn1ii—O3—C3—O46.5 (3)C9—C8—C11—C11iii11.9 (5)
Zn1ii—O3—C3—C2173.83 (18)C10—N1—C6—C70.8 (5)
Zn1—N1—C6—C7170.7 (2)C11—C8—C9—C10179.2 (3)
Zn1—N1—C10—C9171.5 (2)C1—C2—C3—O352.3 (3)
Zn1—N2—C16—C15179.7 (2)C1—C2—C3—O4128.1 (3)
Zn1—N2—C12—C13177.9 (2)C5—C2—C3—O368.2 (3)
O1—C1—C2—C351.4 (3)C5—C2—C3—O4111.5 (3)
O1—C1—C2—C5170.4 (2)C4—C2—C3—O3171.4 (2)
O1—C1—C2—C468.8 (3)C4—C2—C3—O48.9 (4)
O2—C1—C2—C3129.7 (3)C16—N2—C12—C132.3 (4)
O2—C1—C2—C510.7 (4)C16—C15—C14—C131.6 (5)
O2—C1—C2—C4110.1 (3)C16—C15—C14—C17179.1 (3)
N1—C6—C7—C81.3 (5)C15—C14—C13—C120.1 (4)
N2—C16—C15—C141.4 (5)C15—C14—C17—C17iv111.3 (4)
C6—N1—C10—C90.1 (5)C14—C13—C12—N22.1 (5)
C6—C7—C8—C91.0 (5)C13—C14—C17—C17iv68.0 (5)
C6—C7—C8—C11180.0 (3)C12—N2—C16—C150.5 (5)
C7—C8—C9—C100.2 (5)C17—C14—C13—C12179.3 (3)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y+3, z; (iv) x+2, y+1, z.
Catena((mu-4,4'-bipyridine-N,N')-bis(4,4'-bipyridine)-bis(mu-diethylmalonato- O,O')-dizinc(II) dihydrate) (5) top
Crystal data top
C22H22N3O4Zn·H2OF(000) = 988
Mr = 475.81Dx = 1.457 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.1832 (8) ÅCell parameters from 1045 reflections
b = 8.2422 (6) Åθ = 1.9–29.8°
c = 23.8320 (17) ŵ = 1.17 mm1
β = 99.143 (2)°T = 120 K
V = 2168.8 (3) Å3Plate, colourless
Z = 40.42 × 0.3 × 0.06 mm
Data collection top
Bruker Smart 1000 CCD area detector
diffractometer
Rint = 0.073
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0782 before and 0.0561 after correction. The Ratio of minimum to maximum transmission is 0.7883. The λ/2 correction factor is 0.00150.
θmax = 30.9°, θmin = 1.7°
Tmin = 0.266, Tmax = 0.337h = 1616
23649 measured reflectionsk = 1011
6785 independent reflectionsl = 3434
4755 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.040P)2 + 0.049P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
6785 reflectionsΔρmax = 0.44 e Å3
282 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.55981 (2)1.07828 (3)0.32295 (2)0.01347 (8)
O10.40162 (14)0.9860 (2)0.29564 (7)0.0183 (4)
O20.39039 (15)0.8722 (2)0.37964 (6)0.0191 (4)
O30.40734 (14)0.6410 (2)0.25283 (7)0.0192 (4)
O40.25504 (16)0.7449 (2)0.19360 (6)0.0216 (4)
N10.54097 (17)1.2356 (2)0.38710 (7)0.0145 (4)
N20.68235 (17)0.9047 (2)0.35533 (8)0.0152 (4)
N31.13460 (19)0.3168 (3)0.45195 (8)0.0221 (5)
C10.3570 (2)0.8853 (3)0.32768 (9)0.0151 (5)
C20.2565 (2)0.7787 (3)0.29519 (9)0.0145 (4)
C30.3072 (2)0.7194 (3)0.24272 (9)0.0150 (5)
C40.1430 (2)0.8849 (3)0.27774 (10)0.0227 (5)
H4A0.16260.97070.25160.027*
H4B0.07820.81670.25660.027*
C50.0948 (3)0.9647 (4)0.32718 (11)0.0356 (7)
H5A0.02431.03170.31260.053*
H5B0.15811.03300.34840.053*
H5C0.07110.88080.35240.053*
C60.2323 (2)0.6314 (3)0.33109 (10)0.0209 (5)
H6A0.30950.57270.34270.025*
H6B0.20440.67050.36610.025*
C70.1389 (3)0.5127 (4)0.30110 (12)0.0361 (7)
H7A0.16240.47930.26490.054*
H7B0.05930.56540.29390.054*
H7C0.13480.41720.32520.054*
C80.5393 (2)1.1797 (3)0.43963 (10)0.0248 (6)
H80.54881.06640.44620.030*
C90.5245 (3)1.2789 (3)0.48484 (10)0.0251 (6)
H90.52491.23380.52160.030*
C100.50890 (19)1.4444 (3)0.47632 (9)0.0123 (4)
C110.5118 (2)1.5022 (3)0.42168 (10)0.0202 (5)
H110.50261.61490.41390.024*
C120.5282 (2)1.3955 (3)0.37879 (10)0.0204 (5)
H120.53061.43760.34190.024*
C130.7726 (2)0.9390 (3)0.39812 (10)0.0189 (5)
H130.77511.04380.41480.023*
C140.8615 (2)0.8290 (3)0.41876 (9)0.0173 (5)
H140.92290.85810.44940.021*
C150.8614 (2)0.6751 (3)0.39468 (9)0.0141 (4)
C160.7680 (2)0.6403 (3)0.34990 (10)0.0173 (5)
H160.76420.53710.33190.021*
C170.6813 (2)0.7565 (3)0.33190 (10)0.0181 (5)
H170.61820.73040.30160.022*
C180.9562 (2)0.5515 (3)0.41538 (9)0.0153 (5)
C190.9348 (2)0.3868 (3)0.40522 (10)0.0192 (5)
H190.85880.35070.38560.023*
C201.0253 (2)0.2766 (3)0.42392 (10)0.0221 (5)
H201.00890.16490.41640.027*
C211.1532 (2)0.4748 (3)0.46210 (10)0.0213 (5)
H211.22970.50690.48230.026*
C221.0687 (2)0.5954 (3)0.44516 (9)0.0185 (5)
H221.08730.70600.45370.022*
O1W1.25043 (19)0.0116 (3)0.47018 (8)0.0402 (5)
H1WA1.25080.08950.46330.060*
H1WB1.27530.03440.43930.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01846 (14)0.01146 (14)0.01061 (12)0.00119 (11)0.00266 (9)0.00037 (10)
O10.0204 (8)0.0182 (9)0.0166 (8)0.0027 (7)0.0036 (7)0.0025 (7)
O20.0231 (9)0.0207 (9)0.0129 (8)0.0009 (7)0.0007 (7)0.0005 (6)
O30.0181 (8)0.0234 (9)0.0160 (8)0.0035 (7)0.0027 (7)0.0054 (7)
O40.0299 (10)0.0220 (10)0.0129 (8)0.0053 (8)0.0029 (7)0.0003 (7)
N10.0189 (10)0.0126 (10)0.0123 (9)0.0007 (8)0.0035 (7)0.0005 (7)
N20.0172 (9)0.0128 (10)0.0157 (9)0.0008 (8)0.0035 (7)0.0017 (8)
N30.0252 (11)0.0245 (12)0.0175 (10)0.0096 (9)0.0058 (9)0.0055 (9)
C10.0144 (11)0.0162 (12)0.0161 (10)0.0055 (9)0.0064 (9)0.0011 (9)
C20.0154 (11)0.0183 (12)0.0104 (10)0.0008 (9)0.0040 (8)0.0000 (8)
C30.0170 (11)0.0133 (12)0.0155 (10)0.0050 (9)0.0051 (9)0.0004 (9)
C40.0182 (12)0.0319 (15)0.0180 (11)0.0058 (11)0.0031 (9)0.0000 (10)
C50.0278 (14)0.058 (2)0.0225 (13)0.0183 (14)0.0071 (11)0.0029 (13)
C60.0232 (12)0.0227 (13)0.0176 (11)0.0064 (10)0.0058 (10)0.0026 (10)
C70.0407 (17)0.0390 (18)0.0288 (15)0.0207 (14)0.0062 (13)0.0025 (13)
C80.0469 (17)0.0108 (12)0.0179 (12)0.0036 (11)0.0093 (11)0.0006 (9)
C90.0474 (17)0.0167 (13)0.0131 (11)0.0015 (12)0.0109 (11)0.0007 (9)
C100.0117 (10)0.0120 (12)0.0131 (10)0.0009 (8)0.0016 (8)0.0010 (8)
C110.0352 (14)0.0094 (12)0.0166 (11)0.0037 (10)0.0059 (10)0.0016 (9)
C120.0333 (14)0.0140 (13)0.0147 (11)0.0019 (10)0.0061 (10)0.0001 (9)
C130.0252 (12)0.0150 (13)0.0163 (11)0.0016 (10)0.0028 (9)0.0013 (9)
C140.0200 (12)0.0156 (12)0.0148 (11)0.0008 (10)0.0014 (9)0.0002 (9)
C150.0164 (11)0.0129 (11)0.0133 (10)0.0018 (9)0.0035 (8)0.0013 (8)
C160.0200 (12)0.0139 (12)0.0175 (11)0.0004 (9)0.0014 (9)0.0024 (9)
C170.0195 (12)0.0173 (13)0.0166 (11)0.0021 (10)0.0001 (9)0.0012 (9)
C180.0165 (11)0.0172 (13)0.0127 (10)0.0011 (9)0.0038 (8)0.0001 (8)
C190.0210 (12)0.0186 (13)0.0175 (11)0.0031 (10)0.0020 (9)0.0015 (9)
C200.0268 (13)0.0197 (13)0.0203 (12)0.0049 (11)0.0050 (10)0.0014 (10)
C210.0157 (11)0.0305 (15)0.0179 (11)0.0014 (10)0.0034 (9)0.0055 (10)
C220.0189 (11)0.0223 (13)0.0151 (10)0.0004 (10)0.0046 (9)0.0002 (9)
O1W0.0533 (13)0.0445 (13)0.0231 (10)0.0205 (11)0.0075 (9)0.0035 (9)
Geometric parameters (Å, º) top
Zn1—O11.9407 (16)C7—H7B0.9800
Zn1—O3i1.9683 (15)C7—H7C0.9800
Zn1—N12.0407 (18)C8—H80.9500
Zn1—N22.0455 (19)C8—C91.384 (3)
Zn1—C3i2.599 (2)C9—H90.9500
O1—C11.281 (3)C9—C101.385 (3)
O2—C11.240 (3)C10—C10iii1.492 (4)
O3—Zn1ii1.9683 (15)C10—C111.392 (3)
O3—C31.282 (3)C11—H110.9500
O4—C31.240 (3)C11—C121.382 (3)
N1—C81.337 (3)C12—H120.9500
N1—C121.338 (3)C13—H130.9500
N2—C131.346 (3)C13—C141.378 (3)
N2—C171.342 (3)C14—H140.9500
N3—C201.338 (3)C14—C151.392 (3)
N3—C211.336 (3)C15—C161.399 (3)
C1—C21.535 (3)C15—C181.497 (3)
C2—C31.533 (3)C16—H160.9500
C2—C41.544 (3)C16—C171.382 (3)
C2—C61.534 (3)C17—H170.9500
C3—Zn1ii2.599 (2)C18—C191.394 (3)
C4—H4A0.9900C18—C221.390 (3)
C4—H4B0.9900C19—H190.9500
C4—C51.521 (3)C19—C201.380 (3)
C5—H5A0.9800C20—H200.9500
C5—H5B0.9800C21—H210.9500
C5—H5C0.9800C21—C221.387 (3)
C6—H6A0.9900C22—H220.9500
C6—H6B0.9900O1W—H1WA0.8495
C6—C71.524 (3)O1W—H1WB0.8496
C7—H7A0.9800
O1—Zn1—O3i95.07 (7)C6—C7—H7A109.5
O1—Zn1—N1107.65 (7)C6—C7—H7B109.5
O1—Zn1—N2111.88 (7)C6—C7—H7C109.5
O1—Zn1—C3i123.50 (7)H7A—C7—H7B109.5
O3i—Zn1—N1125.25 (7)H7A—C7—H7C109.5
O3i—Zn1—N2108.56 (7)H7B—C7—H7C109.5
O3i—Zn1—C3i28.58 (7)N1—C8—H8118.4
N1—Zn1—N2107.72 (7)N1—C8—C9123.2 (2)
N1—Zn1—C3i107.70 (7)C9—C8—H8118.4
N2—Zn1—C3i97.29 (7)C8—C9—H9120.2
C1—O1—Zn1118.33 (15)C8—C9—C10119.7 (2)
C3—O3—Zn1ii104.16 (14)C10—C9—H9120.2
C8—N1—Zn1120.09 (16)C9—C10—C10iii121.5 (2)
C8—N1—C12117.5 (2)C9—C10—C11116.9 (2)
C12—N1—Zn1122.45 (15)C11—C10—C10iii121.5 (2)
C13—N2—Zn1121.05 (16)C10—C11—H11120.0
C17—N2—Zn1121.21 (15)C12—C11—C10120.0 (2)
C17—N2—C13117.5 (2)C12—C11—H11120.0
C21—N3—C20115.8 (2)N1—C12—C11122.7 (2)
O1—C1—C2113.14 (19)N1—C12—H12118.6
O2—C1—O1124.6 (2)C11—C12—H12118.6
O2—C1—C2122.2 (2)N2—C13—H13118.5
C1—C2—C4108.43 (19)N2—C13—C14123.0 (2)
C3—C2—C1104.97 (17)C14—C13—H13118.5
C3—C2—C4110.86 (18)C13—C14—H14120.0
C3—C2—C6108.85 (19)C13—C14—C15119.9 (2)
C6—C2—C1110.59 (18)C15—C14—H14120.0
C6—C2—C4112.86 (19)C14—C15—C16116.9 (2)
O3—C3—Zn1ii47.26 (10)C14—C15—C18122.0 (2)
O3—C3—C2115.64 (19)C16—C15—C18121.1 (2)
O4—C3—Zn1ii74.68 (13)C15—C16—H16120.1
O4—C3—O3121.9 (2)C17—C16—C15119.8 (2)
O4—C3—C2122.4 (2)C17—C16—H16120.1
C2—C3—Zn1ii162.81 (16)N2—C17—C16122.8 (2)
C2—C4—H4A108.7N2—C17—H17118.6
C2—C4—H4B108.7C16—C17—H17118.6
H4A—C4—H4B107.6C19—C18—C15120.8 (2)
C5—C4—C2114.4 (2)C22—C18—C15121.8 (2)
C5—C4—H4A108.7C22—C18—C19117.3 (2)
C5—C4—H4B108.7C18—C19—H19120.4
C4—C5—H5A109.5C20—C19—C18119.2 (2)
C4—C5—H5B109.5C20—C19—H19120.4
C4—C5—H5C109.5N3—C20—C19124.3 (2)
H5A—C5—H5B109.5N3—C20—H20117.8
H5A—C5—H5C109.5C19—C20—H20117.8
H5B—C5—H5C109.5N3—C21—H21117.7
C2—C6—H6A108.6N3—C21—C22124.6 (2)
C2—C6—H6B108.6C22—C21—H21117.7
H6A—C6—H6B107.6C18—C22—H22120.6
C7—C6—C2114.5 (2)C21—C22—C18118.8 (2)
C7—C6—H6A108.6C21—C22—H22120.6
C7—C6—H6B108.6H1WA—O1W—H1WB92.1
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+3, z+1.
Catena((mu-4,4'-bipyridine-N,N')-tetraaqua-zinc(II) bis(hydrogen diethylmalonate) 4,4'-bipyridine dihydrate) (6) top
Crystal data top
C10H16N2O4Zn·2(C7H11O4)·C10H8N2·2(H2O)F(000) = 1696
Mr = 804.15Dx = 1.398 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.6008 (12) ÅCell parameters from 5437 reflections
b = 11.4154 (6) Åθ = 2.6–30.8°
c = 17.1552 (9) ŵ = 0.71 mm1
β = 120.308 (1)°T = 120 K
V = 3821.1 (4) Å3Prism, colourless
Z = 40.46 × 0.28 × 0.13 mm
Data collection top
Apex
diffractometer
7041 independent reflections
Radiation source: sealed tube5947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8 pixels mm-1θmax = 33.7°, θmin = 2.1°
ω and φ scansh = 3434
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0902 before and 0.0395 after correction. The Ratio of minimum to maximum transmission is 0.7615. The λ/2 correction factor is 0.00150.
k = 1617
Tmin = 0.569, Tmax = 0.747l = 2626
27960 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0381P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
7041 reflectionsΔρmax = 0.40 e Å3
264 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn010.50000.50576 (2)0.75000.00949 (4)
O10.39286 (4)0.50282 (6)0.69252 (5)0.01661 (13)
H1A0.38310.49780.73420.025*
O20.49360 (4)0.50676 (6)0.62313 (5)0.01307 (12)
N10.50000.69336 (9)0.75000.01285 (19)
N20.50001.31620 (9)0.75000.01197 (19)
C10.53773 (5)0.75450 (8)0.82635 (6)0.01454 (16)
H10.56480.71250.88090.017*
C20.53916 (5)0.87602 (8)0.82961 (6)0.01326 (16)
H20.56640.91550.88530.016*
C30.50000.93979 (10)0.75000.0105 (2)
C40.50001.07006 (10)0.75000.0102 (2)
C50.55048 (4)1.13361 (7)0.82320 (6)0.01220 (15)
H50.58531.09410.87470.015*
C60.54905 (5)1.25513 (8)0.81957 (6)0.01258 (15)
H6A0.58451.29720.86870.015*
O30.30082 (4)0.52454 (9)0.51908 (5)0.0315 (2)
O40.37280 (4)0.53617 (8)0.46724 (5)0.02105 (15)
O50.22393 (4)0.51049 (7)0.20547 (5)0.02523 (17)
O60.33422 (4)0.52650 (8)0.30713 (5)0.02193 (15)
C120.31291 (5)0.52573 (9)0.45617 (6)0.01627 (17)
C130.25152 (5)0.51348 (8)0.35960 (6)0.01417 (16)
C140.26932 (5)0.51707 (8)0.28417 (7)0.01620 (17)
C150.21685 (6)0.39422 (10)0.35339 (7)0.0242 (2)
H15A0.19850.39540.39500.029*
H15B0.17760.38460.29130.029*
C160.26404 (9)0.28906 (11)0.37610 (11)0.0411 (3)
H16A0.28400.28880.33700.062*
H16B0.23780.21690.36660.062*
H16C0.30080.29370.43940.062*
C170.20103 (6)0.61447 (11)0.34263 (7)0.0243 (2)
H17A0.16180.60810.28020.029*
H17B0.18300.60560.38430.029*
C180.23249 (9)0.73569 (12)0.35544 (11)0.0420 (3)
H18A0.25270.74400.31680.063*
H18B0.26820.74600.41880.063*
H18C0.19690.79520.33900.063*
N30.52216 (4)0.69808 (7)1.06187 (6)0.01772 (16)
C70.46550 (5)0.73724 (9)0.98863 (7)0.02024 (19)
H70.43080.68200.95280.024*
C80.45456 (5)0.85357 (8)0.96213 (7)0.01927 (19)
H80.41310.87650.90990.023*
C90.50467 (4)0.93690 (8)1.01258 (6)0.01306 (16)
C100.56427 (5)0.89601 (8)1.08791 (7)0.01839 (18)
H100.60040.94871.12410.022*
C110.57047 (5)0.77753 (8)1.10972 (7)0.01971 (19)
H110.61140.75171.16160.024*
O70.67465 (4)0.99993 (8)1.01633 (5)0.02724 (19)
H7A0.70920.99141.00970.041*
H7B0.68791.00301.07230.041*
H2A0.5069 (8)0.4526 (15)0.6084 (10)0.031 (4)*
H1B0.3627 (8)0.5081 (11)0.6355 (11)0.023 (4)*
H2B0.4565 (8)0.5229 (12)0.5777 (11)0.024 (4)*
H60.3583 (10)0.5308 (17)0.3669 (14)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn010.01092 (7)0.00652 (6)0.00916 (7)0.0000.00367 (5)0.000
O10.0113 (3)0.0269 (4)0.0106 (3)0.0020 (2)0.0047 (2)0.0020 (3)
O20.0150 (3)0.0118 (3)0.0102 (3)0.0026 (2)0.0047 (2)0.0006 (2)
N10.0160 (5)0.0086 (4)0.0132 (5)0.0000.0068 (4)0.000
N20.0132 (5)0.0082 (4)0.0132 (5)0.0000.0056 (4)0.000
C10.0197 (4)0.0088 (3)0.0132 (4)0.0003 (3)0.0069 (3)0.0005 (3)
C20.0169 (4)0.0092 (3)0.0121 (4)0.0008 (3)0.0061 (3)0.0002 (3)
C30.0116 (5)0.0083 (5)0.0135 (5)0.0000.0078 (4)0.000
C40.0116 (5)0.0081 (5)0.0119 (5)0.0000.0067 (4)0.000
C50.0128 (4)0.0092 (3)0.0131 (4)0.0004 (3)0.0054 (3)0.0005 (3)
C60.0132 (4)0.0095 (3)0.0122 (4)0.0003 (3)0.0043 (3)0.0000 (3)
O30.0165 (4)0.0672 (6)0.0097 (3)0.0007 (4)0.0059 (3)0.0016 (3)
O40.0115 (3)0.0356 (4)0.0132 (3)0.0010 (3)0.0042 (3)0.0007 (3)
O50.0216 (4)0.0416 (5)0.0104 (3)0.0055 (3)0.0065 (3)0.0032 (3)
O60.0163 (3)0.0370 (4)0.0148 (3)0.0020 (3)0.0096 (3)0.0023 (3)
C120.0130 (4)0.0235 (4)0.0100 (4)0.0003 (3)0.0041 (3)0.0006 (3)
C130.0113 (4)0.0219 (4)0.0083 (4)0.0004 (3)0.0042 (3)0.0004 (3)
C140.0165 (4)0.0205 (4)0.0126 (4)0.0014 (3)0.0081 (3)0.0018 (3)
C150.0252 (5)0.0296 (5)0.0179 (5)0.0105 (4)0.0110 (4)0.0029 (4)
C160.0606 (9)0.0232 (6)0.0446 (8)0.0035 (6)0.0303 (7)0.0002 (5)
C170.0209 (5)0.0365 (6)0.0159 (4)0.0114 (4)0.0095 (4)0.0046 (4)
C180.0587 (9)0.0269 (6)0.0474 (8)0.0156 (6)0.0319 (7)0.0043 (6)
N30.0200 (4)0.0139 (3)0.0214 (4)0.0004 (3)0.0121 (3)0.0020 (3)
C70.0221 (5)0.0140 (4)0.0204 (5)0.0041 (3)0.0076 (4)0.0001 (3)
C80.0205 (5)0.0145 (4)0.0161 (4)0.0032 (3)0.0043 (4)0.0018 (3)
C90.0147 (4)0.0126 (4)0.0139 (4)0.0013 (3)0.0086 (3)0.0009 (3)
C100.0145 (4)0.0152 (4)0.0210 (5)0.0018 (3)0.0056 (4)0.0019 (3)
C110.0169 (4)0.0153 (4)0.0229 (5)0.0009 (3)0.0071 (4)0.0045 (3)
O70.0190 (4)0.0495 (6)0.0127 (3)0.0028 (3)0.0077 (3)0.0005 (3)
Geometric parameters (Å, º) top
Zn01—O1i2.1040 (7)O6—H60.89 (2)
Zn01—O12.1040 (7)C12—C131.5392 (13)
Zn01—O2i2.1072 (7)C13—C141.5374 (14)
Zn01—O22.1072 (7)C13—C151.5474 (14)
Zn01—N12.1416 (11)C13—C171.5430 (14)
Zn01—N2ii2.1639 (10)C15—H15A0.9900
O1—H1A0.8501C15—H15B0.9900
O1—H1B0.867 (16)C15—C161.5203 (19)
O2—H2A0.783 (16)C16—H16A0.9800
O2—H2B0.828 (16)C16—H16B0.9800
N1—C1i1.3425 (10)C16—H16C0.9800
N1—C11.3425 (10)C17—H17A0.9900
N2—Zn01iii2.1639 (10)C17—H17B0.9900
N2—C6i1.3431 (10)C17—C181.5202 (19)
N2—C61.3431 (10)C18—H18A0.9800
C1—H10.9500C18—H18B0.9800
C1—C21.3881 (12)C18—H18C0.9800
C2—H20.9500N3—C71.3395 (13)
C2—C31.3994 (10)N3—C111.3355 (13)
C3—C2i1.3994 (11)C7—H70.9500
C3—C41.4872 (17)C7—C81.3848 (13)
C4—C51.3995 (10)C8—H80.9500
C4—C5i1.3995 (10)C8—C91.3955 (13)
C5—H50.9500C9—C9iv1.4880 (18)
C5—C61.3882 (12)C9—C101.3948 (13)
C6—H6A0.9500C10—H100.9500
O3—C121.2398 (12)C10—C111.3914 (13)
O4—C121.2740 (12)C11—H110.9500
O5—C141.2177 (12)O7—H7A0.8494
O6—C141.3171 (12)O7—H7B0.8500
O1i—Zn01—O1178.18 (4)C12—C13—C17108.32 (8)
O1i—Zn01—O2i93.04 (3)C14—C13—C12115.28 (8)
O1—Zn01—O2i86.97 (3)C14—C13—C15107.70 (8)
O1i—Zn01—O286.97 (3)C14—C13—C17107.71 (8)
O1—Zn01—O293.04 (3)C17—C13—C15110.11 (9)
O1—Zn01—N190.913 (19)O5—C14—O6121.64 (9)
O1i—Zn01—N190.912 (19)O5—C14—C13119.98 (9)
O1i—Zn01—N2ii89.088 (19)O6—C14—C13118.38 (8)
O1—Zn01—N2ii89.087 (19)C13—C15—H15A108.7
O2i—Zn01—O2179.38 (4)C13—C15—H15B108.7
O2i—Zn01—N189.689 (18)H15A—C15—H15B107.6
O2—Zn01—N189.688 (18)C16—C15—C13114.31 (10)
O2i—Zn01—N2ii90.311 (18)C16—C15—H15A108.7
O2—Zn01—N2ii90.312 (18)C16—C15—H15B108.7
N1—Zn01—N2ii180.0C15—C16—H16A109.5
Zn01—O1—H1A109.5C15—C16—H16B109.5
Zn01—O1—H1B126.3 (11)C15—C16—H16C109.5
H1A—O1—H1B124.2H16A—C16—H16B109.5
Zn01—O2—H2A119.5 (11)H16A—C16—H16C109.5
Zn01—O2—H2B118.9 (10)H16B—C16—H16C109.5
H2A—O2—H2B104.1 (14)C13—C17—H17A108.8
C1—N1—Zn01121.32 (5)C13—C17—H17B108.8
C1i—N1—Zn01121.32 (5)H17A—C17—H17B107.7
C1i—N1—C1117.36 (11)C18—C17—C13113.91 (10)
C6—N2—Zn01iii121.27 (5)C18—C17—H17A108.8
C6i—N2—Zn01iii121.27 (5)C18—C17—H17B108.8
C6—N2—C6i117.46 (10)C17—C18—H18A109.5
N1—C1—H1118.3C17—C18—H18B109.5
N1—C1—C2123.31 (9)C17—C18—H18C109.5
C2—C1—H1118.3H18A—C18—H18B109.5
C1—C2—H2120.3H18A—C18—H18C109.5
C1—C2—C3119.35 (8)H18B—C18—H18C109.5
C3—C2—H2120.3C11—N3—C7116.61 (8)
C2—C3—C2i117.31 (11)N3—C7—H7118.1
C2i—C3—C4121.34 (5)N3—C7—C8123.76 (9)
C2—C3—C4121.34 (5)C8—C7—H7118.1
C5i—C4—C3121.22 (5)C7—C8—H8120.1
C5—C4—C3121.22 (5)C7—C8—C9119.70 (9)
C5i—C4—C5117.56 (11)C9—C8—H8120.1
C4—C5—H5120.4C8—C9—C9iv121.88 (10)
C6—C5—C4119.19 (8)C10—C9—C8116.65 (9)
C6—C5—H5120.4C10—C9—C9iv121.47 (10)
N2—C6—C5123.27 (8)C9—C10—H10120.2
N2—C6—H6A118.4C11—C10—C9119.57 (9)
C5—C6—H6A118.4C11—C10—H10120.2
C14—O6—H6106.9 (13)N3—C11—C10123.69 (9)
O3—C12—O4123.75 (9)N3—C11—H11118.2
O3—C12—C13117.46 (9)C10—C11—H11118.2
O4—C12—C13118.79 (8)H7A—O7—H7B109.5
C12—C13—C15107.70 (8)
Zn01—N1—C1—C2179.79 (7)C12—C13—C14—O5178.47 (9)
Zn01iii—N2—C6—C5178.87 (7)C12—C13—C14—O61.98 (13)
N1—C1—C2—C30.41 (13)C12—C13—C15—C1657.70 (12)
C1i—N1—C1—C20.21 (7)C12—C13—C17—C1857.41 (12)
C1—C2—C3—C2i0.19 (6)C14—C13—C15—C1667.21 (12)
C1—C2—C3—C4179.81 (6)C14—C13—C17—C1867.88 (12)
C2i—C3—C4—C5i15.64 (6)C15—C13—C14—O561.29 (12)
C2—C3—C4—C5i164.36 (6)C15—C13—C14—O6118.25 (10)
C2—C3—C4—C515.65 (6)C15—C13—C17—C18174.94 (9)
C2i—C3—C4—C5164.35 (6)C17—C13—C14—O557.44 (12)
C3—C4—C5—C6178.96 (6)C17—C13—C14—O6123.02 (10)
C4—C5—C6—N22.22 (13)C17—C13—C15—C16175.61 (10)
C5i—C4—C5—C61.03 (6)N3—C7—C8—C90.68 (17)
C6i—N2—C6—C51.13 (7)C7—N3—C11—C100.73 (16)
O3—C12—C13—C14179.26 (9)C7—C8—C9—C9iv179.61 (11)
O3—C12—C13—C1560.50 (12)C7—C8—C9—C100.54 (14)
O3—C12—C13—C1758.56 (12)C8—C9—C10—C111.07 (14)
O4—C12—C13—C140.89 (13)C9iv—C9—C10—C11179.08 (11)
O4—C12—C13—C15119.34 (10)C9—C10—C11—N30.45 (17)
O4—C12—C13—C17121.60 (10)C11—N3—C7—C81.30 (16)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y+2, z+2.
Catena((mu-1,2-bis(4-pyridine)ethylene-N,N')- (mu-diethylmalonato-O,O')-zinc(II) 1,2-bis(4-pyridine)ethylene solvate) (7) top
Crystal data top
C19H20N2O4Zn·0.25(C12H10N2)Dx = 1.247 Mg m3
Mr = 451.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 3505 reflections
a = 9.8266 (5) Åθ = 2.3–25.9°
b = 22.0654 (12) ŵ = 1.05 mm1
c = 22.1641 (11) ÅT = 120 K
V = 4805.8 (4) Å3Prism, colourless
Z = 80.43 × 0.29 × 0.21 mm
F(000) = 1872
Data collection top
Bruker Smart 1000 CCD area detector
diffractometer
2496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
phi and ω scansθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan
SADABS
h = 1312
Tmin = 0.786, Tmax = 0.903k = 3030
22224 measured reflectionsl = 3030
3498 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.060P)2 + 15.P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.008
3498 reflectionsΔρmax = 0.97 e Å3
209 parametersΔρmin = 1.03 e Å3
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.20100 (2)0.45562 (2)0.01418 (14)
C12A0.4323 (9)0.1899 (4)0.25000.0235 (12)0.5
H12A0.37870.19090.21540.028*0.25
C12B0.50000.1899 (4)0.2785 (4)0.0235 (12)0.5
H12B0.58840.19070.29350.028*0.25
C60.4331 (5)0.00000.50000.0297 (6)
H60.36990.03010.50880.036*0.5
N10.1477 (5)0.1936 (2)0.3925 (2)0.0240 (11)0.5
N20.1398 (5)0.1346 (2)0.4648 (2)0.0202 (10)0.5
C10.2696 (6)0.1493 (2)0.4768 (3)0.0221 (12)0.5
H10.29390.19100.47750.027*0.5
C20.3685 (7)0.1071 (3)0.4882 (3)0.0297 (6)0.5
H20.45880.11960.49700.036*0.5
C30.3360 (7)0.0455 (3)0.4867 (3)0.0297 (6)0.5
C40.2009 (7)0.0298 (3)0.4741 (3)0.0297 (6)0.5
H40.17410.01150.47290.036*0.5
C50.1068 (6)0.0752 (2)0.4633 (3)0.0256 (13)0.5
H50.01550.06420.45450.031*0.5
C70.1175 (8)0.1961 (3)0.3331 (3)0.0394 (18)0.5
H70.02440.19870.32180.047*0.5
C80.2122 (11)0.1953 (4)0.2890 (4)0.063 (3)0.5
H80.18570.19750.24780.075*0.5
C90.3522 (11)0.1909 (3)0.3049 (5)0.065 (3)0.5
C100.3813 (8)0.1894 (4)0.3652 (5)0.063 (3)0.5
H100.47350.18680.37780.075*0.5
C110.2792 (7)0.1917 (3)0.4082 (4)0.0404 (18)0.5
H110.30300.19180.44970.048*0.5
O10.1012 (4)0.27557 (17)0.44104 (17)0.0191 (8)0.5
O20.1908 (5)0.23148 (19)0.35935 (19)0.0294 (10)0.5
O30.4079 (4)0.28894 (16)0.46641 (17)0.0189 (8)0.5
O40.3348 (4)0.38364 (17)0.48120 (19)0.0236 (9)0.5
C130.1817 (6)0.2745 (3)0.3956 (2)0.0198 (11)0.5
C140.2702 (6)0.3316 (3)0.3891 (2)0.0211 (12)0.5
C150.3426 (6)0.3373 (2)0.4505 (2)0.0185 (11)0.5
C160.3819 (7)0.3236 (3)0.3404 (3)0.0312 (15)0.5
H16A0.43180.28550.34850.037*0.5
H16B0.33750.31950.30050.037*0.5
C170.4826 (11)0.3747 (3)0.3373 (3)0.0574 (17)0.5
H17A0.54950.36640.30560.086*0.5
H17B0.43470.41260.32810.086*0.5
H17C0.52920.37860.37620.086*0.5
C180.1772 (7)0.3859 (3)0.3770 (3)0.0317 (15)0.5
H18A0.23340.42300.37460.038*0.5
H18B0.11380.39060.41140.038*0.5
C190.0945 (9)0.3796 (4)0.3188 (4)0.0574 (17)0.5
H19A0.03710.41560.31350.086*0.5
H19B0.15650.37590.28440.086*0.5
H19C0.03690.34350.32120.086*0.5
N30.0595 (12)0.5320 (8)0.1540 (8)0.060*0.125
C120.0692 (11)0.5361 (9)0.2140 (8)0.060*0.125
H120.01220.53600.23720.072*0.125
C1A0.1929 (10)0.5406 (9)0.2441 (7)0.060*0.125
H1A0.19500.54430.28670.072*0.125
C1B0.3142 (11)0.5396 (4)0.2112 (5)0.060*0.125
C1C0.3030 (13)0.5369 (8)0.1482 (5)0.060*0.125
H1C0.38230.53780.12370.072*0.125
C1D0.1755 (14)0.5330 (10)0.1221 (7)0.060*0.125
H1D0.16980.53100.07930.072*0.125
C1E0.4442 (10)0.5412 (4)0.2436 (4)0.060*0.125
H1E0.44090.54720.28600.072*0.125
N90.9521 (12)0.5441 (7)0.3081 (8)0.060*0.125
C1F0.9424 (10)0.5399 (10)0.2480 (8)0.060*0.125
C1G0.8187 (11)0.5355 (10)0.2180 (7)0.060*0.125
H1G0.81660.53180.17530.072*0.125
C1H0.6974 (11)0.5364 (4)0.2508 (5)0.060*0.125
C1I0.7086 (12)0.5391 (7)0.3138 (5)0.060*0.125
H1I0.62930.53820.33830.072*0.125
C1J0.8361 (13)0.5430 (9)0.3400 (7)0.060*0.125
H1J0.84190.54510.38270.072*0.125
C1K0.5675 (11)0.5349 (4)0.2184 (4)0.060*0.125
H1K0.57080.52880.17600.072*0.125
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0111 (2)0.0144 (2)0.0171 (2)0.0000.0000.00118 (18)
C12A0.016 (4)0.029 (3)0.026 (4)0.000 (3)0.0000.000
C12B0.016 (4)0.029 (3)0.026 (4)0.000 (3)0.0000.000
C60.0224 (14)0.0169 (12)0.0500 (16)0.0000.0000.0026 (12)
N10.020 (3)0.026 (2)0.026 (2)0.003 (2)0.012 (2)0.001 (2)
N20.015 (2)0.014 (2)0.032 (3)0.0019 (18)0.000 (2)0.0032 (18)
C10.016 (3)0.012 (2)0.038 (3)0.001 (2)0.004 (2)0.002 (2)
C20.0224 (14)0.0169 (12)0.0500 (16)0.0000.0000.0026 (12)
C30.0224 (14)0.0169 (12)0.0500 (16)0.0000.0000.0026 (12)
C40.0224 (14)0.0169 (12)0.0500 (16)0.0000.0000.0026 (12)
C50.014 (3)0.017 (3)0.046 (4)0.001 (2)0.001 (3)0.006 (2)
C70.045 (5)0.051 (4)0.022 (3)0.000 (4)0.013 (3)0.003 (3)
C80.092 (8)0.059 (5)0.037 (4)0.001 (5)0.044 (5)0.006 (4)
C90.090 (8)0.031 (4)0.073 (6)0.005 (4)0.069 (6)0.006 (4)
C100.029 (4)0.043 (5)0.116 (9)0.009 (3)0.043 (5)0.020 (5)
C110.017 (3)0.049 (4)0.054 (4)0.006 (3)0.019 (3)0.015 (3)
O10.017 (2)0.0172 (17)0.024 (2)0.0010 (16)0.0008 (16)0.0006 (15)
O20.041 (3)0.024 (2)0.023 (2)0.007 (2)0.001 (2)0.0047 (18)
O30.019 (2)0.0174 (18)0.0202 (19)0.0006 (15)0.0029 (15)0.0004 (14)
O40.026 (2)0.0156 (18)0.029 (2)0.0019 (16)0.0026 (18)0.0026 (16)
C130.019 (3)0.020 (3)0.020 (3)0.001 (2)0.005 (2)0.001 (2)
C140.023 (3)0.021 (3)0.019 (3)0.005 (2)0.003 (2)0.003 (2)
C150.017 (3)0.017 (2)0.021 (3)0.002 (2)0.001 (2)0.005 (2)
C160.036 (4)0.041 (4)0.016 (3)0.008 (3)0.005 (3)0.002 (2)
C170.064 (5)0.057 (3)0.050 (3)0.002 (4)0.017 (4)0.009 (2)
C180.038 (4)0.022 (3)0.035 (3)0.002 (3)0.012 (3)0.006 (3)
C190.064 (5)0.057 (3)0.050 (3)0.002 (4)0.017 (4)0.009 (2)
Geometric parameters (Å, º) top
Zn1—N12.023 (5)C14—C161.549 (8)
Zn1—N22.018 (5)C14—C181.531 (8)
Zn1—O11.949 (4)C16—H16A0.9900
C12A—C12Ai1.331 (18)C16—H16B0.9900
C12A—H12A0.9301C16—C171.501 (3)
C12A—C12B0.918 (8)C17—H17A0.9800
C12A—C12Bii0.918 (8)C17—H17B0.9800
C12B—C12Ai0.918 (8)C17—H17C0.9800
C12B—C12Bii1.264 (18)C18—H18A0.9900
C12B—H12B0.9300C18—H18B0.9900
C6—C6iii1.314 (9)C18—C191.532 (10)
C6—H60.9300C19—H19A0.9800
C6—C31.417 (7)C19—H19B0.9800
N1—C71.349 (8)C19—H19C0.9800
N1—C111.340 (9)N3—C121.3376
N2—C11.343 (7)N3—C1D1.3418
N2—C51.351 (7)C12—H120.9500
C1—H10.9500C12—C1A1.3895
C1—C21.370 (8)C1A—H1A0.9500
C2—H20.9500C1A—C1B1.3963
C2—C31.396 (8)C1B—C1C1.4015
C3—C41.400 (9)C1B—C1E1.4661
C4—H40.9500C1C—H1C0.9500
C4—C51.384 (8)C1C—C1D1.3840
C5—H50.9500C1D—H1D0.9500
C7—H70.9500C1E—H1E0.9500
C7—C81.351 (10)C1E—C1K1.3413
C8—H80.9500N9—C1F1.3376
C8—C91.423 (15)N9—C1J1.3415
C9—C101.368 (15)C1F—C1G1.3894
C10—H100.9500C1G—H1G0.9500
C10—C111.384 (10)C1G—C1H1.3963
C11—H110.9500C1H—C1I1.4019
O1—C131.280 (7)C1H—C1K1.4657
O2—C131.248 (7)C1I—H1I0.9500
O3—C151.295 (6)C1I—C1J1.3840
O4—C151.230 (7)C1J—H1J0.9500
C13—C141.537 (8)C1K—H1K0.9500
C14—C151.542 (8)
N2—Zn1—N1120.0 (2)O4—C15—C14121.9 (5)
C12Ai—C12A—H12A124.5C14—C16—H16A108.7
C12B—C12A—C12Ai43.5 (6)C14—C16—H16B108.7
C12Bii—C12A—C12Ai43.5 (6)H16A—C16—H16B107.6
C12Bii—C12A—H12A81.0C17—C16—C14114.4 (6)
C12B—C12A—H12A168.0C17—C16—H16A108.7
C12B—C12A—C12Bii87.0 (12)C17—C16—H16B108.7
C12A—C12B—C12Ai93.0 (12)C16—C17—H17A109.5
C12A—C12B—C12Bii46.5 (6)C16—C17—H17B109.5
C12Ai—C12B—C12Bii46.5 (6)C16—C17—H17C109.5
C12Ai—C12B—H12B64.4H17A—C17—H17B109.5
C12A—C12B—H12B157.4H17A—C17—H17C109.5
C12Bii—C12B—H12B110.9H17B—C17—H17C109.5
C6iii—C6—H6131.9C14—C18—H18A108.9
C6iii—C6—C3132.4 (3)C14—C18—H18B108.9
C3—C6—H695.7C14—C18—C19113.1 (6)
C7—N1—Zn1120.9 (5)H18A—C18—H18B107.8
C11—N1—Zn1121.0 (5)C19—C18—H18A108.9
C11—N1—C7117.8 (6)C19—C18—H18B108.9
C1—N2—Zn1119.4 (4)C18—C19—H19A109.5
C1—N2—C5117.8 (5)C18—C19—H19B109.5
C5—N2—Zn1122.6 (4)C18—C19—H19C109.5
N2—C1—H1118.4H19A—C19—H19B109.5
N2—C1—C2123.2 (5)H19A—C19—H19C109.5
C2—C1—H1118.4H19B—C19—H19C109.5
C1—C2—H2120.2C12—N3—C1D117.6
C1—C2—C3119.6 (6)N3—C12—H12118.5
C3—C2—H2120.2N3—C12—C1A122.9
C2—C3—C6122.0 (5)C1A—C12—H12118.5
C2—C3—C4117.6 (6)C12—C1A—H1A120.1
C4—C3—C6120.4 (5)C12—C1A—C1B119.7
C3—C4—H4120.4C1B—C1A—H1A120.1
C5—C4—C3119.3 (6)C1A—C1B—C1C116.9
C5—C4—H4120.4C1A—C1B—C1E119.2
N2—C5—C4122.5 (6)C1C—C1B—C1E123.9
N2—C5—H5118.7C1B—C1C—H1C120.3
C4—C5—H5118.7C1D—C1C—C1B119.4
N1—C7—H7118.2C1D—C1C—H1C120.3
N1—C7—C8123.6 (8)N3—C1D—C1C123.3
C8—C7—H7118.2N3—C1D—H1D118.3
C7—C8—H8120.4C1C—C1D—H1D118.3
C7—C8—C9119.2 (8)C1B—C1E—H1E117.3
C9—C8—H8120.4C1K—C1E—C1B125.5
C10—C9—C8116.5 (7)C1K—C1E—H1E117.3
C9—C10—H10119.3C1F—N9—C1J117.6
C9—C10—C11121.4 (9)N9—C1F—C1G122.9
C11—C10—H10119.3C1F—C1G—H1G120.1
N1—C11—C10121.4 (8)C1F—C1G—C1H119.7
N1—C11—H11119.3C1H—C1G—H1G120.1
C10—C11—H11119.3C1G—C1H—C1I116.9
C13—O1—Zn1115.5 (3)C1G—C1H—C1K119.2
O1—C13—C14114.2 (5)C1I—C1H—C1K123.9
O2—C13—O1124.4 (5)C1H—C1I—H1I120.3
O2—C13—C14121.4 (5)C1J—C1I—C1H119.4
C13—C14—C15104.2 (4)C1J—C1I—H1I120.3
C13—C14—C16112.0 (5)N9—C1J—C1I123.3
C15—C14—C16107.3 (5)N9—C1J—H1J118.4
C18—C14—C13108.6 (5)C1I—C1J—H1J118.4
C18—C14—C15111.4 (5)C1E—C1K—C1H125.5
C18—C14—C16113.0 (5)C1E—C1K—H1K117.3
O3—C15—C14113.7 (5)C1H—C1K—H1K117.3
O4—C15—O3124.4 (5)
Zn1—N1—C7—C8175.7 (6)C13—C14—C16—C17172.7 (6)
Zn1—N1—C11—C10177.0 (5)C13—C14—C18—C1961.2 (7)
Zn1—N2—C1—C2174.9 (5)C15—C14—C16—C1758.9 (7)
Zn1—N2—C5—C4175.0 (5)C15—C14—C18—C19175.4 (6)
Zn1—O1—C13—O25.1 (7)C16—C14—C15—O364.7 (6)
Zn1—O1—C13—C14174.2 (3)C16—C14—C15—O4116.9 (6)
C12Ai—C12A—C12B—C12Bii0.1 (16)C16—C14—C18—C1963.7 (7)
C12Bii—C12A—C12B—C12Ai0.1 (16)C18—C14—C15—O3171.2 (5)
C6iii—C6—C3—C220.6 (9)C18—C14—C15—O47.3 (8)
C6iii—C6—C3—C4162.4 (4)C18—C14—C16—C1764.3 (7)
C6—C3—C4—C5177.7 (6)N3—C12—C1A—C1B1.3
N1—C7—C8—C90.6 (13)C12—N3—C1D—C1C1.4
N2—C1—C2—C30.8 (10)C12—C1A—C1B—C1C3.0
C1—N2—C5—C40.5 (9)C12—C1A—C1B—C1E176.9
C1—C2—C3—C6177.9 (6)C1A—C1B—C1C—C1D2.5
C1—C2—C3—C40.7 (10)C1A—C1B—C1E—C1K173.4
C2—C3—C4—C50.6 (10)C1B—C1C—C1D—N30.4
C3—C4—C5—N20.4 (10)C1B—C1E—C1K—C1H180.0
C5—N2—C1—C20.7 (9)C1C—C1B—C1E—C1K6.4
C7—N1—C11—C103.0 (10)C1D—N3—C12—C1A0.9
C7—C8—C9—C101.6 (12)C1E—C1B—C1C—C1D177.3
C8—C9—C10—C110.4 (12)N9—C1F—C1G—C1H1.2
C9—C10—C11—N12.0 (12)C1F—N9—C1J—C1I1.4
C11—N1—C7—C81.7 (11)C1F—C1G—C1H—C1I2.9
O1—C13—C14—C1554.7 (6)C1F—C1G—C1H—C1K176.9
O1—C13—C14—C16170.4 (5)C1G—C1H—C1I—C1J2.5
O1—C13—C14—C1864.1 (6)C1G—C1H—C1K—C1E173.4
O2—C13—C14—C15124.7 (6)C1H—C1I—C1J—N90.4
O2—C13—C14—C169.0 (8)C1I—C1H—C1K—C1E6.4
O2—C13—C14—C18116.5 (6)C1J—N9—C1F—C1G1.0
C13—C14—C15—O354.3 (6)C1K—C1H—C1I—C1J177.3
C13—C14—C15—O4124.2 (6)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x1, y, z+1.
Catena(tris(mu-1,2-bis(4-pyridine)ethylene-N,N')-(mu-tetrakis(4-pyridyl) cyclobutane-N,N')-tetrakis(mu-diethylmalonato-O,O')-tetrazinc(II) (7a) top
Crystal data top
C22H22.5N2.5O4ZnDx = 1.259 Mg m3
Mr = 451.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 3429 reflections
a = 9.845 (8) Åθ = 2.1–25.0°
b = 22.082 (17) ŵ = 1.06 mm1
c = 21.905 (17) ÅT = 120 K
V = 4762 (6) Å3Prism, yellow
Z = 80.43 × 0.29 × 0.21 mm
F(000) = 1872
Data collection top
Bruker Apex II CCD area detector
diffractometer
Rint = 0.202
Absorption correction: multi-scan
SADABS
θmax = 30.7°, θmin = 1.9°
Tmin = 0.786, Tmax = 0.903h = 1413
40353 measured reflectionsk = 3131
7285 independent reflectionsl = 3131
3089 reflections with I > 2σ(I)
Refinement top
Refinement on F221 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.114H-atom parameters constrained
wR(F2) = 0.237 w = 1/[σ2(Fo2) + (0.030P)2 + 41.9P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
7285 reflectionsΔρmax = 1.29 e Å3
252 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.49767 (10)0.29677 (3)0.45425 (3)0.0378 (2)
O10.5885 (5)0.2874 (2)0.53270 (18)0.0413 (12)
O20.6572 (6)0.3834 (2)0.5198 (2)0.0488 (13)
O30.8978 (5)0.2784 (2)0.55856 (18)0.0412 (12)
O40.8130 (6)0.2327 (2)0.6410 (2)0.0540 (14)
N10.3596 (6)0.3641 (3)0.4636 (2)0.0392 (14)
N20.6445 (7)0.3064 (3)0.3905 (3)0.0484 (16)
N30.577 (2)0.4977 (10)0.2855 (13)0.194 (7)0.5
C240.691 (3)0.4994 (10)0.3231 (9)0.194 (7)0.5
H240.68630.51900.36070.233*0.5
C250.811 (2)0.4719 (12)0.3046 (13)0.194 (7)0.5
H250.88690.47310.32970.233*0.5
C210.817 (2)0.4427 (11)0.2484 (14)0.194 (7)0.5
C220.704 (3)0.4410 (10)0.2108 (9)0.194 (7)0.5
H220.70790.42140.17330.233*0.5
C230.583 (2)0.4684 (11)0.2294 (12)0.194 (7)0.5
H230.50740.46730.20420.233*0.5
C10.6503 (8)0.3360 (3)0.5494 (3)0.0418 (17)
C20.7220 (8)0.3305 (3)0.6122 (3)0.0446 (19)
C30.8173 (8)0.2764 (3)0.6052 (3)0.0420 (18)
C40.6097 (9)0.3187 (4)0.6597 (3)0.064 (3)
H4A0.56710.28020.65040.077*
H4B0.65150.31520.69960.077*
C50.4995 (13)0.3671 (5)0.6628 (4)0.099 (4)
H5A0.46000.37240.62310.148*
H5B0.53870.40470.67610.148*
H5C0.43040.35470.69110.148*
C60.8068 (10)0.3867 (4)0.6267 (4)0.065 (3)
H6A0.86880.39390.59310.078*
H6B0.74650.42130.62940.078*
C70.8882 (13)0.3826 (5)0.6853 (4)0.100 (4)
H7A0.94420.34700.68430.150*
H7B0.82740.38040.71940.150*
H7C0.94460.41790.68920.150*
C80.2304 (8)0.3495 (3)0.4769 (3)0.0446 (18)
H80.20640.30880.47830.054*
C90.1312 (8)0.3927 (3)0.4886 (3)0.0495 (19)
H90.04330.38070.49840.059*
C100.1639 (8)0.4544 (3)0.4856 (3)0.0476 (19)
C110.2969 (8)0.4689 (3)0.4711 (4)0.0489 (19)
H110.32320.50920.46770.059*
C120.3900 (8)0.4235 (3)0.4615 (3)0.0451 (18)
H120.47920.43450.45310.054*
C130.0661 (8)0.5031 (4)0.4966 (4)0.0546 (19)
H130.10060.54230.49900.066*
C140.7735 (9)0.3125 (4)0.4048 (4)0.062 (2)
H140.79770.31280.44580.074*
C150.8750 (10)0.3185 (4)0.3611 (4)0.072 (3)
H150.96550.32250.37260.086*
C160.8372 (11)0.3185 (4)0.2992 (4)0.071 (2)
C170.7072 (11)0.3089 (6)0.2858 (4)0.100 (4)
H170.68080.30530.24520.121*
C180.6134 (11)0.3044 (5)0.3304 (4)0.084 (3)
H180.52280.29970.31930.100*
C190.9383 (11)0.3272 (5)0.2426 (6)0.098 (4)
H190.91600.30320.20640.117*
C200.936 (4)0.4026 (16)0.2324 (18)0.194 (7)0.5
H200.95920.41040.18960.233*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0446 (4)0.0454 (4)0.0233 (3)0.0029 (5)0.0033 (4)0.0033 (3)
O10.062 (3)0.041 (3)0.021 (2)0.001 (3)0.001 (2)0.0019 (19)
O20.065 (4)0.041 (3)0.040 (3)0.001 (3)0.004 (3)0.001 (2)
O30.056 (3)0.054 (3)0.0137 (19)0.003 (3)0.003 (2)0.0005 (19)
O40.074 (4)0.063 (3)0.025 (2)0.006 (3)0.003 (3)0.004 (2)
N10.060 (4)0.049 (3)0.009 (2)0.000 (3)0.008 (2)0.005 (2)
N20.050 (4)0.067 (4)0.028 (3)0.003 (4)0.010 (3)0.002 (3)
N30.199 (17)0.207 (15)0.177 (15)0.078 (13)0.025 (13)0.031 (12)
C240.199 (17)0.207 (15)0.177 (15)0.078 (13)0.025 (13)0.031 (12)
C250.199 (17)0.207 (15)0.177 (15)0.078 (13)0.025 (13)0.031 (12)
C210.199 (17)0.207 (15)0.177 (15)0.078 (13)0.025 (13)0.031 (12)
C220.199 (17)0.207 (15)0.177 (15)0.078 (13)0.025 (13)0.031 (12)
C230.199 (17)0.207 (15)0.177 (15)0.078 (13)0.025 (13)0.031 (12)
C10.062 (5)0.037 (4)0.027 (3)0.005 (4)0.003 (3)0.005 (3)
C20.063 (5)0.049 (4)0.021 (3)0.002 (4)0.008 (3)0.005 (3)
C30.055 (5)0.043 (4)0.028 (3)0.001 (4)0.016 (3)0.003 (3)
C40.071 (6)0.102 (7)0.019 (3)0.015 (6)0.004 (4)0.005 (4)
C50.104 (8)0.146 (10)0.045 (5)0.051 (9)0.010 (6)0.000 (6)
C60.092 (7)0.056 (5)0.048 (5)0.007 (5)0.018 (5)0.009 (4)
C70.143 (11)0.090 (8)0.066 (6)0.005 (8)0.058 (7)0.018 (6)
C80.054 (5)0.033 (4)0.047 (4)0.001 (4)0.007 (4)0.005 (3)
C90.043 (5)0.050 (5)0.055 (5)0.008 (4)0.010 (4)0.003 (4)
C100.056 (5)0.041 (4)0.046 (4)0.009 (4)0.004 (4)0.007 (3)
C110.052 (5)0.039 (4)0.056 (5)0.001 (4)0.005 (4)0.011 (4)
C120.044 (4)0.044 (4)0.047 (4)0.002 (4)0.001 (4)0.014 (3)
C130.062 (5)0.037 (4)0.064 (5)0.001 (5)0.002 (6)0.001 (3)
C140.050 (5)0.084 (7)0.050 (4)0.002 (5)0.014 (4)0.005 (4)
C150.058 (5)0.084 (7)0.074 (5)0.001 (5)0.026 (4)0.008 (5)
C160.087 (5)0.070 (6)0.055 (4)0.000 (5)0.036 (4)0.005 (4)
C170.084 (5)0.180 (13)0.038 (4)0.014 (6)0.027 (4)0.000 (5)
C180.069 (6)0.151 (10)0.031 (4)0.010 (6)0.012 (4)0.001 (5)
C190.115 (10)0.094 (7)0.085 (8)0.012 (7)0.061 (7)0.007 (7)
C200.199 (17)0.207 (15)0.177 (15)0.078 (13)0.025 (13)0.031 (12)
Geometric parameters (Å, º) top
Zn1—O11.948 (4)C5—H5C0.9600
Zn1—O3i1.950 (5)C6—H6A0.9700
Zn1—N12.025 (6)C6—H6B0.9700
Zn1—N22.022 (6)C6—C71.515 (11)
O1—C11.285 (8)C7—H7A0.9600
O2—C11.234 (8)C7—H7B0.9600
O3—Zn1ii1.950 (5)C7—H7C0.9600
O3—C31.294 (8)C8—H80.9300
O4—C31.244 (8)C8—C91.389 (10)
N1—C81.344 (9)C9—H90.9300
N1—C121.346 (9)C9—C101.402 (10)
N2—C141.314 (10)C10—C111.386 (11)
N2—C181.353 (10)C10—C131.463 (11)
N3—C241.3900C11—H110.9300
N3—C231.3900C11—C121.374 (10)
C24—H240.9300C12—H120.9300
C24—C251.3900C13—C13iii1.317 (15)
C25—H250.9300C13—H130.9300
C25—C211.3900C14—H140.9300
C21—C221.3900C14—C151.390 (11)
C21—C201.51 (4)C15—H150.9300
C22—H220.9300C15—C161.406 (13)
C22—C231.3900C16—C171.330 (14)
C23—H230.9300C16—C191.601 (15)
C1—C21.551 (9)C17—H170.9300
C2—C31.527 (10)C17—C181.347 (12)
C2—C41.540 (11)C18—H180.9300
C2—C61.529 (11)C19—C19iv1.26 (2)
C4—H4A0.9700C19—H190.9800
C4—H4B0.9700C19—C201.68 (3)
C4—C51.524 (13)C20—C20iv1.48 (7)
C5—H5A0.9600C20—H200.9800
C5—H5B0.9600
O1—Zn1—O3i105.57 (19)H6A—C6—H6B107.6
O1—Zn1—N1107.3 (2)C7—C6—C2114.6 (8)
O1—Zn1—N2107.0 (2)C7—C6—H6A108.6
O3i—Zn1—N1107.5 (2)C7—C6—H6B108.6
O3i—Zn1—N2110.5 (2)C6—C7—H7A109.5
N2—Zn1—N1118.2 (2)C6—C7—H7B109.5
C1—O1—Zn1112.3 (4)C6—C7—H7C109.5
C3—O3—Zn1ii113.1 (4)H7A—C7—H7B109.5
C8—N1—Zn1118.8 (5)H7A—C7—H7C109.5
C8—N1—C12116.8 (7)H7B—C7—H7C109.5
C12—N1—Zn1124.3 (5)N1—C8—H8118.6
C14—N2—Zn1122.4 (5)N1—C8—C9122.8 (7)
C14—N2—C18117.0 (7)C9—C8—H8118.6
C18—N2—Zn1120.5 (6)C8—C9—H9120.1
C24—N3—C23120.0C8—C9—C10119.8 (7)
N3—C24—H24120.0C10—C9—H9120.1
C25—C24—N3120.0C9—C10—C13123.8 (8)
C25—C24—H24120.0C11—C10—C9116.9 (7)
C24—C25—H25120.0C11—C10—C13119.4 (7)
C24—C25—C21120.0C10—C11—H11120.1
C21—C25—H25120.0C12—C11—C10119.8 (7)
C25—C21—C20121 (3)C12—C11—H11120.1
C22—C21—C25120.0N1—C12—C11123.9 (7)
C22—C21—C20118 (3)N1—C12—H12118.0
C21—C22—H22120.0C11—C12—H12118.0
C21—C22—C23120.0C10—C13—H13116.9
C23—C22—H22120.0C13iii—C13—C10126.3 (11)
N3—C23—H23120.0C13iii—C13—H13116.9
C22—C23—N3120.0N2—C14—H14118.7
C22—C23—H23120.0N2—C14—C15122.7 (8)
O1—C1—C2113.7 (6)C15—C14—H14118.7
O2—C1—O1125.7 (6)C14—C15—H15120.9
O2—C1—C2120.6 (7)C14—C15—C16118.2 (9)
C3—C2—C1104.6 (5)C16—C15—H15120.9
C3—C2—C4112.2 (7)C15—C16—C19125.6 (9)
C3—C2—C6108.7 (7)C17—C16—C15117.9 (8)
C4—C2—C1106.6 (6)C17—C16—C19116.5 (9)
C6—C2—C1111.6 (6)C16—C17—H17119.6
C6—C2—C4112.9 (7)C16—C17—C18120.7 (10)
O3—C3—C2115.3 (6)C18—C17—H17119.6
O4—C3—O3123.1 (7)N2—C18—H18118.4
O4—C3—C2121.5 (7)C17—C18—N2123.2 (10)
C2—C4—H4A108.5C17—C18—H18118.4
C2—C4—H4B108.5C16—C19—H19115.1
H4A—C4—H4B107.5C16—C19—C20102.4 (17)
C5—C4—C2115.0 (8)C19iv—C19—C16113.7 (14)
C5—C4—H4A108.5C19iv—C19—H19115.1
C5—C4—H4B108.5C19iv—C19—C2092.7 (13)
C4—C5—H5A109.5C20—C19—H19115.1
C4—C5—H5B109.5C21—C20—C19124 (3)
C4—C5—H5C109.5C21—C20—H20107.4
H5A—C5—H5B109.5C19—C20—H20107.4
H5A—C5—H5C109.5C20iv—C20—C21123 (4)
H5B—C5—H5C109.5C20iv—C20—C1985.3 (13)
C2—C6—H6A108.6C20iv—C20—H20107.4
C2—C6—H6B108.6
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y+1, z+1; (iv) x+2, y, z+1/2.
(1,2-Bis(4-pyridine)ethylene-N)-tetraaqua-zinc(II) bis(hydrogen diethylmalonate) (8) top
Crystal data top
C24H28N4O4Zn·2(C7H10O4)F(000) = 860
Mr = 818.17Dx = 1.371 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 22.881 (2) ÅCell parameters from 1056 reflections
b = 6.8976 (6) Åθ = 2.0–34.0°
c = 14.1573 (12) ŵ = 0.69 mm1
β = 117.532 (2)°T = 120 K
V = 1981.3 (3) Å3Prism, colourless
Z = 20.7 × 0.52 × 0.23 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
4490 independent reflections
Radiation source: sealed tube3929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8 pixels mm-1θmax = 34.6°, θmin = 1.9°
ω and φ scansh = 3635
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.1120 before and 0.0465 after correction. The Ratio of minimum to maximum transmission is 0.8858. The λ/2 correction factor is 0.00150.
k = 1011
Tmin = 0.662, Tmax = 0.747l = 2222
17312 measured reflections
Refinement top
Refinement on F219 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.062P)2 + 3.868P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4490 reflectionsΔρmax = 2.14 e Å3
182 parametersΔρmin = 1.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.50000.50000.01227 (9)
O10.45049 (5)0.27783 (16)0.53642 (8)0.01614 (19)
H1A0.47360.18090.57020.024*
H1B0.42590.29760.56580.024*
N10.41966 (8)0.50000.34231 (13)0.0140 (3)
N20.03474 (9)0.50000.31163 (14)0.0180 (3)
C90.13980 (10)0.50000.10457 (15)0.0140 (3)
C20.30291 (10)0.50000.22963 (15)0.0149 (3)
H20.25990.50000.22390.018*
C0070.42808 (10)0.50000.25486 (16)0.0155 (3)
H0070.47170.50000.26320.019*
C100.07443 (10)0.50000.12304 (17)0.0190 (4)
H100.06450.50000.06490.023*
C60.19314 (10)0.50000.00450 (15)0.0158 (3)
H60.18160.50000.06090.019*
C40.37599 (10)0.50000.15287 (16)0.0169 (3)
H40.38420.50000.09300.020*
C30.31128 (10)0.50000.13812 (15)0.0143 (3)
C10.35734 (10)0.50000.32830 (16)0.0153 (3)
H10.35060.50000.38960.018*
C80.15071 (10)0.50000.19365 (16)0.0178 (4)
H80.19440.50000.18530.021*
O20.11947 (12)0.1572 (3)0.3637 (2)0.0661 (6)
C50.25706 (10)0.50000.03022 (16)0.0183 (4)
H50.26820.50000.02670.022*
C70.09753 (11)0.50000.29392 (17)0.0202 (4)
H70.10590.50000.35370.024*
C110.02424 (10)0.50000.22623 (17)0.0194 (4)
H110.02000.50000.23720.023*
C120.13389 (16)0.00000.3397 (3)0.0423 (8)
C150.2804 (2)0.0368 (7)0.4335 (4)0.0432 (15)0.5
H15A0.31980.11820.46840.065*0.5
H15B0.25900.02660.47930.065*0.5
H15C0.29310.09270.42110.065*0.5
O40.19689 (15)0.1340 (4)0.1532 (2)0.0309 (6)0.5
C130.1708 (2)0.00000.2724 (3)0.0660 (12)
O30.15242 (19)0.2993 (5)0.2354 (3)0.0448 (8)0.5
C140.2421 (2)0.1099 (6)0.3480 (4)0.0341 (9)0.5
H14A0.26580.12380.30500.041*0.5
H14B0.23190.24250.36290.041*0.5
C160.17333 (18)0.1370 (5)0.2144 (3)0.0245 (6)0.5
C170.1360 (3)0.2053 (7)0.1868 (4)0.0399 (10)0.5
H17A0.13720.32060.22930.048*0.5
H17B0.16160.23440.14790.048*0.5
C180.0658 (3)0.1561 (9)0.1091 (5)0.0553 (14)0.5
H18A0.04560.26620.06120.083*0.5
H18B0.06520.04220.06730.083*0.5
H18C0.04100.12800.14840.083*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01073 (14)0.01526 (15)0.01057 (14)0.0000.00473 (11)0.000
O10.0133 (4)0.0188 (5)0.0172 (4)0.0012 (3)0.0078 (4)0.0046 (4)
N10.0130 (7)0.0162 (7)0.0125 (7)0.0000.0055 (6)0.000
N20.0145 (7)0.0213 (8)0.0151 (7)0.0000.0043 (6)0.000
C90.0135 (8)0.0137 (8)0.0130 (7)0.0000.0046 (6)0.000
C20.0121 (7)0.0184 (8)0.0134 (7)0.0000.0053 (6)0.000
C0070.0134 (8)0.0191 (8)0.0137 (8)0.0000.0059 (6)0.000
C100.0157 (8)0.0268 (10)0.0154 (8)0.0000.0081 (7)0.000
C60.0159 (8)0.0178 (8)0.0120 (7)0.0000.0051 (6)0.000
C40.0156 (8)0.0226 (9)0.0127 (8)0.0000.0068 (7)0.000
C30.0137 (8)0.0155 (8)0.0118 (7)0.0000.0044 (6)0.000
C10.0131 (8)0.0198 (9)0.0126 (7)0.0000.0055 (6)0.000
C80.0137 (8)0.0267 (10)0.0123 (8)0.0000.0053 (7)0.000
O20.0781 (12)0.0570 (11)0.1101 (15)0.0156 (10)0.0834 (12)0.0184 (11)
C50.0159 (8)0.0249 (10)0.0125 (8)0.0000.0053 (7)0.000
C70.0158 (8)0.0307 (11)0.0129 (8)0.0000.0057 (7)0.000
C110.0137 (8)0.0247 (10)0.0183 (9)0.0000.0062 (7)0.000
C120.0302 (13)0.071 (2)0.0407 (15)0.0000.0292 (13)0.000
C150.0364 (19)0.041 (4)0.055 (2)0.0050 (17)0.0241 (18)0.0089 (19)
O40.0389 (14)0.0317 (13)0.0357 (14)0.0011 (11)0.0288 (12)0.0064 (11)
C130.0405 (16)0.127 (3)0.0504 (17)0.0000.0377 (15)0.000
O30.0614 (18)0.0302 (14)0.0658 (19)0.0119 (13)0.0488 (16)0.0119 (14)
C140.038 (2)0.0290 (17)0.053 (2)0.0132 (15)0.0364 (19)0.0143 (17)
C160.0311 (16)0.0179 (13)0.0366 (17)0.0041 (12)0.0259 (15)0.0082 (12)
C170.051 (3)0.029 (2)0.057 (3)0.001 (2)0.039 (2)0.010 (2)
C180.057 (3)0.056 (3)0.064 (3)0.023 (3)0.038 (3)0.026 (3)
Geometric parameters (Å, º) top
Zn1—O1i2.1066 (10)C8—H80.9500
Zn1—O12.1066 (10)C8—C71.378 (3)
Zn1—O1ii2.1066 (10)O2—C121.226 (2)
Zn1—O1iii2.1066 (10)C5—H50.9500
Zn1—N1i2.1376 (17)C7—H70.9500
Zn1—N12.1376 (17)C11—H110.9500
O1—H1A0.8494C12—O2iv1.226 (2)
O1—H1B0.8509C12—C131.538 (4)
N1—C0071.338 (3)C15—H15A0.9800
N1—C11.346 (3)C15—H15B0.9800
N2—C71.339 (3)C15—H15C0.9800
N2—C111.337 (3)C15—C141.228 (7)
C9—C101.394 (3)O4—C161.214 (4)
C9—C61.460 (3)C13—C141.663 (6)
C9—C81.394 (3)C13—C161.271 (4)
C2—H20.9500C13—C16iv1.271 (4)
C2—C31.394 (3)C13—C171.794 (5)
C2—C11.376 (3)O3—C161.305 (5)
C007—H0070.9500C14—H14A0.9900
C007—C41.384 (3)C14—H14B0.9900
C10—H100.9500C16—C16iv1.890 (7)
C10—C111.379 (3)C17—H17A0.9900
C6—H60.9500C17—H17B0.9900
C6—C51.334 (3)C17—C181.507 (8)
C4—H40.9500C18—H18A0.9800
C4—C31.397 (3)C18—H18B0.9800
C3—C51.456 (3)C18—H18C0.9800
C1—H10.9500
O1i—Zn1—O1ii86.65 (6)C6—C5—C3125.55 (19)
O1i—Zn1—O1iii93.35 (6)C6—C5—H5117.2
O1ii—Zn1—O1iii180.00 (5)C3—C5—H5117.2
O1i—Zn1—O1180.0N2—C7—C8123.6 (2)
O1ii—Zn1—O193.35 (6)N2—C7—H7118.2
O1iii—Zn1—O186.65 (6)C8—C7—H7118.2
O1—Zn1—N1i92.55 (4)N2—C11—C10123.3 (2)
O1—Zn1—N187.45 (4)N2—C11—H11118.4
O1iii—Zn1—N192.55 (4)C10—C11—H11118.4
O1i—Zn1—N1i87.45 (4)O2—C12—O2iv124.3 (3)
O1ii—Zn1—N187.45 (4)O2iv—C12—C13117.85 (14)
O1i—Zn1—N192.55 (4)O2—C12—C13117.85 (14)
O1iii—Zn1—N1i87.45 (4)H15A—C15—H15B109.5
O1ii—Zn1—N1i92.55 (4)H15A—C15—H15C109.5
N1i—Zn1—N1180.0H15B—C15—H15C109.5
Zn1—O1—H1A116.4C14—C15—H15A109.5
Zn1—O1—H1B123.7C14—C15—H15B109.5
H1A—O1—H1B103.4C14—C15—H15C109.5
C007—N1—Zn1122.97 (13)C12—C13—C14104.9 (3)
C007—N1—C1117.37 (17)C12—C13—C17102.7 (2)
C1—N1—Zn1119.67 (13)C14—C13—C1794.1 (2)
C11—N2—C7117.14 (18)C16—C13—C12127.0 (2)
C10—C9—C6119.88 (18)C16iv—C13—C12127.0 (2)
C8—C9—C10117.10 (18)C16iv—C13—C1696.1 (4)
C8—C9—C6123.02 (18)C15—C14—C13119.2 (4)
C3—C2—H2120.2C15—C14—H14A107.5
C1—C2—H2120.2C15—C14—H14B107.5
C1—C2—C3119.65 (18)C13—C14—H14A107.5
N1—C007—H007118.6C13—C14—H14B107.5
N1—C007—C4122.85 (18)H14A—C14—H14B107.0
C4—C007—H007118.6O4—C16—C13128.0 (3)
C9—C10—H10120.2O4—C16—O3120.5 (3)
C11—C10—C9119.63 (19)O4—C16—C16iv89.0 (2)
C11—C10—H10120.2C13—C16—O3111.1 (3)
C9—C6—H6117.8C13—C16—C16iv42.0 (2)
C5—C6—C9124.32 (19)O3—C16—C16iv149.1 (2)
C5—C6—H6117.8C13—C17—H17A110.1
C007—C4—H4120.1C13—C17—H17B110.1
C007—C4—C3119.89 (18)H17A—C17—H17B108.5
C3—C4—H4120.1C18—C17—C13107.8 (4)
C2—C3—C4116.90 (18)C18—C17—H17A110.1
C2—C3—C5123.94 (18)C18—C17—H17B110.1
C4—C3—C5119.15 (18)C17—C18—H18A109.5
N1—C1—C2123.34 (18)C17—C18—H18B109.5
N1—C1—H1118.3C17—C18—H18C109.5
C2—C1—H1118.3H18A—C18—H18B109.5
C9—C8—H8120.3H18A—C18—H18C109.5
C7—C8—C9119.33 (19)H18B—C18—H18C109.5
C7—C8—H8120.3
Zn1—N1—C007—C4180.000 (1)O2—C12—C13—C1620.5 (6)
Zn1—N1—C1—C2180.000 (1)O2—C12—C13—C16iv157.9 (4)
N1—C007—C4—C30.000 (1)O2—C12—C13—C1735.2 (4)
C9—C10—C11—N20.000 (1)O2iv—C12—C13—C17143.2 (3)
C9—C6—C5—C3180.000 (1)C7—N2—C11—C100.000 (1)
C9—C8—C7—N20.000 (1)C11—N2—C7—C80.000 (1)
C2—C3—C5—C60.000 (1)C12—C13—C14—C1562.5 (4)
C007—N1—C1—C20.000 (1)C12—C13—C16—O4172.5 (4)
C007—C4—C3—C20.000 (1)C12—C13—C16—O314.1 (6)
C007—C4—C3—C5180.000 (1)C12—C13—C16—C16iv147.0 (7)
C10—C9—C6—C5180.000 (1)C12—C13—C17—C1869.8 (4)
C10—C9—C8—C70.000 (1)C14—C13—C16—O489.5 (5)
C6—C9—C10—C11180.000 (1)C14—C13—C16—O383.9 (4)
C6—C9—C8—C7180.000 (1)C14—C13—C16—C16iv114.9 (3)
C4—C3—C5—C6180.000 (1)C14—C13—C17—C18176.0 (4)
C3—C2—C1—N10.000 (1)C16—C13—C14—C15172.3 (4)
C1—N1—C007—C40.000 (1)C16iv—C13—C14—C1582.4 (5)
C1—C2—C3—C40.000 (1)C16iv—C13—C16—O425.4 (7)
C1—C2—C3—C5180.000 (1)C16iv—C13—C16—O3161.2 (3)
C8—C9—C10—C110.000 (1)C16—C13—C17—C18136.0 (7)
C8—C9—C6—C50.000 (1)C16iv—C13—C17—C1865.7 (5)
O2—C12—C13—C1462.6 (4)C17—C13—C14—C15166.8 (4)
O2iv—C12—C13—C14119.0 (3)C17—C13—C16—O4140.3 (9)
O2iv—C12—C13—C16157.9 (4)C17—C13—C16—O346.3 (5)
O2iv—C12—C13—C16iv20.5 (6)C17—C13—C16—C16iv114.9 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x, y, z.
Catena(1,2-Bis(4-pyridine)ethylene-N)-tetraaqua-zinc(II) (mu-tetrakis(4-pyridyl) cyclobutane-N,N')-tetraaqua-zinc(II) tetrakis(hydrogen diethylmalonate) (8a) top
Crystal data top
C24H28N4O4Zn·2(C7H10O4)F(000) = 1720
Mr = 818.17Dx = 1.357 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.8028 (19) ÅCell parameters from 3655 reflections
b = 6.8933 (5) Åθ = 2.9–30.4°
c = 23.0690 (17) ŵ = 0.68 mm1
β = 110.021 (1)°T = 120 K
V = 4004.6 (5) Å3Prism, colourless
Z = 40.68 × 0.35 × 0.19 mm
Data collection top
Bruker APEX-II CCD
diffractometer
3847 reflections with I > 2σ(I)
φ and ω scansRint = 0.050
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0672 before and 0.0464 after correction. The Ratio of minimum to maximum transmission is 0.8717. The λ/2 correction factor is 0.00150.
θmax = 30.6°, θmin = 1.6°
Tmin = 0.294, Tmax = 0.337h = 3838
25740 measured reflectionsk = 99
6154 independent reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.004
6154 reflectionsΔρmax = 0.67 e Å3
314 parametersΔρmin = 0.36 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.23830 (6)0.75000.02879 (14)
O10.51742 (6)0.4635 (2)0.81741 (7)0.0307 (4)
H1A0.53710.55790.81520.046*
H2A0.47220.04190.64540.046*
O20.48368 (6)0.0135 (2)0.68364 (7)0.0297 (3)
H1B0.53120.42810.85470.045*
H2B0.46230.07580.68490.045*
N10.90202 (9)0.2388 (3)0.69058 (11)0.0379 (5)
N20.57948 (8)0.2402 (3)0.75156 (10)0.0337 (5)
C30.68433 (10)0.2406 (4)0.75657 (15)0.0483 (8)
C40.64288 (9)0.2442 (3)0.70038 (12)0.0309 (5)
H40.65010.24730.66280.037*
C50.59137 (9)0.2433 (3)0.69966 (11)0.0248 (4)
H50.56320.24490.66100.030*
C60.67224 (9)0.2380 (3)0.81005 (12)0.0282 (5)
H60.69970.23600.84920.034*
C70.62015 (9)0.2382 (4)0.80567 (12)0.0369 (6)
H70.61210.23680.84270.044*
C90.84809 (9)0.2369 (4)0.75403 (13)0.0393 (6)
H9A0.84410.19070.79100.047*0.5
H9B0.84440.27750.79170.047*0.5
C100.89589 (9)0.2362 (3)0.74590 (11)0.0286 (5)
H100.92690.23360.78160.034*
C120.85795 (10)0.2422 (3)0.64121 (12)0.0337 (5)
H120.85960.20770.60200.040*0.5
H12A0.86050.27790.60260.040*0.5
C10.7357 (6)0.229 (2)0.7377 (7)0.028 (3)0.15
H10.76500.19250.77130.034*0.15
C20.7490 (5)0.255 (2)0.6882 (6)0.021 (3)0.15
H20.72550.24220.64790.025*0.15
C80.80423 (17)0.3102 (7)0.7046 (2)0.0291 (10)0.5
C110.8102 (3)0.2947 (9)0.6462 (3)0.0374 (16)0.5
H110.78080.32100.60990.045*0.5
C1A0.73825 (16)0.1287 (7)0.7659 (2)0.0180 (9)0.425
C2A0.75346 (17)0.0784 (7)0.7086 (2)0.0205 (9)0.425
C1B0.74020 (17)0.3549 (7)0.7705 (2)0.0184 (9)0.425
C2B0.75539 (17)0.4041 (7)0.7128 (2)0.0196 (9)0.425
C8A0.80292 (17)0.1723 (8)0.7020 (2)0.0314 (10)0.5
C11A0.8078 (2)0.1950 (9)0.6438 (3)0.0343 (13)0.5
H11A0.77800.17900.60720.041*0.5
O30.44581 (12)0.0755 (4)0.56611 (9)0.0843 (9)
O40.42720 (10)0.3866 (3)0.56501 (9)0.0619 (6)
O50.36894 (12)0.5459 (3)0.47242 (11)0.0877 (10)
O60.33078 (8)0.3856 (3)0.38680 (9)0.0548 (5)
C130.46833 (15)0.2919 (5)0.43629 (17)0.0596 (9)
H13A0.48970.24400.41230.089*
H13B0.49140.31550.47890.089*
H13C0.45080.41310.41810.089*
C140.42708 (13)0.1430 (4)0.43556 (12)0.0489 (7)
H14A0.44530.02120.45380.059*
H14B0.40530.11540.39210.059*
C150.38980 (13)0.2027 (4)0.47064 (12)0.0401 (6)
C160.34843 (16)0.0433 (5)0.46342 (16)0.0711 (11)
H16A0.36690.07940.48040.085*
H16B0.32870.02280.41900.085*
C170.30851 (17)0.0915 (7)0.49628 (19)0.0997 (16)
H17A0.28690.20340.47620.150*
H17B0.32790.12220.53970.150*
H17C0.28540.02060.49380.150*
C180.42391 (14)0.2234 (4)0.53964 (13)0.0447 (7)
C190.36029 (11)0.3871 (4)0.44027 (13)0.0439 (6)
H1AA0.7573 (11)0.2369 (9)0.7908 (11)0.053*0.85
H2BA0.7254 (18)0.390 (11)0.6748 (17)0.053*0.425
H2AA0.7257 (19)0.094 (10)0.6688 (15)0.053*0.425
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01270 (18)0.0517 (3)0.0239 (2)0.0000.00879 (13)0.000
O10.0253 (8)0.0408 (9)0.0278 (8)0.0026 (7)0.0114 (6)0.0014 (7)
O20.0220 (7)0.0403 (9)0.0271 (8)0.0043 (6)0.0088 (6)0.0012 (7)
N10.0259 (10)0.0548 (14)0.0332 (11)0.0017 (9)0.0104 (9)0.0027 (9)
N20.0145 (8)0.0597 (14)0.0278 (10)0.0028 (8)0.0083 (7)0.0051 (9)
C30.0144 (10)0.084 (2)0.0488 (17)0.0070 (12)0.0134 (11)0.0134 (14)
C40.0214 (10)0.0374 (13)0.0386 (13)0.0048 (9)0.0165 (9)0.0037 (10)
C50.0185 (9)0.0288 (11)0.0287 (11)0.0024 (8)0.0102 (8)0.0025 (8)
C60.0159 (9)0.0273 (11)0.0379 (12)0.0006 (8)0.0049 (9)0.0026 (9)
C70.0183 (10)0.0637 (17)0.0283 (12)0.0018 (10)0.0075 (9)0.0043 (11)
C90.0168 (10)0.0690 (19)0.0312 (13)0.0015 (11)0.0071 (9)0.0080 (12)
C100.0194 (10)0.0342 (12)0.0298 (11)0.0007 (8)0.0054 (8)0.0021 (9)
C120.0342 (13)0.0366 (13)0.0289 (12)0.0009 (10)0.0091 (10)0.0014 (9)
C10.014 (6)0.039 (9)0.024 (7)0.010 (6)0.005 (5)0.005 (7)
C20.011 (5)0.032 (7)0.019 (6)0.009 (5)0.004 (4)0.002 (6)
C80.014 (2)0.035 (2)0.036 (3)0.0003 (17)0.0051 (18)0.018 (2)
C110.029 (3)0.042 (3)0.031 (3)0.011 (3)0.003 (2)0.012 (3)
C1A0.0095 (19)0.022 (2)0.022 (2)0.0003 (16)0.0045 (17)0.002 (2)
C2A0.010 (2)0.025 (2)0.025 (2)0.0011 (17)0.0041 (17)0.0012 (18)
C1B0.011 (2)0.022 (2)0.021 (2)0.0033 (16)0.0054 (17)0.0020 (18)
C2B0.013 (2)0.025 (2)0.022 (2)0.0004 (17)0.0075 (17)0.0021 (19)
C8A0.018 (2)0.040 (3)0.034 (3)0.002 (2)0.0071 (19)0.012 (2)
C11A0.022 (3)0.050 (4)0.028 (3)0.004 (3)0.005 (2)0.001 (3)
O30.142 (3)0.0678 (16)0.0306 (11)0.0345 (16)0.0127 (13)0.0077 (11)
O40.0854 (17)0.0611 (14)0.0339 (11)0.0042 (12)0.0136 (11)0.0144 (10)
O50.135 (2)0.0511 (14)0.0605 (15)0.0369 (15)0.0120 (15)0.0186 (11)
O60.0552 (12)0.0633 (14)0.0436 (11)0.0087 (10)0.0139 (10)0.0036 (10)
C130.067 (2)0.071 (2)0.054 (2)0.0111 (17)0.0373 (18)0.0003 (16)
C140.075 (2)0.0419 (15)0.0282 (13)0.0210 (14)0.0155 (13)0.0027 (11)
C150.0587 (18)0.0339 (13)0.0278 (13)0.0009 (12)0.0148 (12)0.0002 (10)
C160.097 (3)0.063 (2)0.053 (2)0.035 (2)0.0253 (19)0.0045 (16)
C170.084 (3)0.136 (4)0.085 (3)0.047 (3)0.037 (2)0.009 (3)
C180.0581 (19)0.0520 (17)0.0263 (13)0.0043 (13)0.0172 (13)0.0007 (11)
C190.0454 (16)0.0509 (16)0.0384 (14)0.0108 (13)0.0182 (12)0.0007 (12)
Geometric parameters (Å, º) top
Zn1—O1i2.1330 (17)C1—C21.32 (2)
Zn1—O12.1330 (17)C2—H20.9301
Zn1—O22.1160 (16)C2—H2BA1.11 (7)
Zn1—O2i2.1160 (16)C2—H2AA1.28 (7)
Zn1—N22.1183 (19)C8—C111.416 (9)
Zn1—N2i2.1183 (19)C8—C2B1.528 (6)
O1—H1A0.8493C11—H110.9500
O1—H1B0.8479C1A—C2A1.551 (7)
O2—H2A0.8515C1A—H1AA0.972 (5)
O2—H2B0.8495C2A—C8A1.529 (7)
N1—C101.341 (3)C2A—H2AA0.969 (5)
N1—C121.331 (3)C1B—C2B1.556 (6)
N2—C51.340 (3)C2B—H2BA0.970 (5)
N2—C71.347 (3)C8A—C11A1.401 (8)
C3—C41.389 (4)C11A—H11A0.9500
C3—C61.379 (4)O3—C181.230 (4)
C3—C11.581 (17)O4—C181.257 (3)
C3—C1A1.586 (5)O5—C191.298 (4)
C3—C1B1.624 (5)O6—C191.216 (3)
C4—H40.9500C13—H13A0.9800
C4—C51.375 (3)C13—H13B0.9800
C5—H50.9500C13—H13C0.9800
C6—H60.9500C13—C141.504 (5)
C6—C71.365 (3)C14—H14A0.9900
C7—H70.9500C14—H14B0.9900
C9—H9A0.9500C14—C151.541 (4)
C9—H9B0.9500C15—C161.529 (4)
C9—C101.357 (3)C15—C181.547 (4)
C9—C81.421 (5)C15—C191.534 (4)
C9—C8A1.452 (5)C16—H16A0.9900
C10—H100.9500C16—H16B0.9900
C12—H120.9500C16—C171.545 (5)
C12—H12A0.9500C17—H17A0.9800
C12—C111.372 (8)C17—H17B0.9800
C12—C11A1.405 (7)C17—H17C0.9800
C1—H10.9302
O1—Zn1—O1i86.59 (9)C1—C2—H2BA93 (4)
O2—Zn1—O1i93.79 (6)C1—C2—H2AA87 (3)
O2i—Zn1—O1i179.29 (5)H2—C2—H2BA71.1
O2—Zn1—O1179.29 (5)H2—C2—H2AA59.0
O2i—Zn1—O193.79 (6)H2BA—C2—H2AA118 (3)
O2—Zn1—O2i85.84 (9)C9—C8—C2B124.1 (4)
O2—Zn1—N2i91.99 (7)C11—C8—C9113.9 (4)
O2i—Zn1—N291.99 (7)C11—C8—C2B122.0 (4)
O2i—Zn1—N2i88.53 (7)C12—C11—C8120.8 (5)
O2—Zn1—N288.53 (7)C12—C11—H11119.6
N2i—Zn1—O1i90.88 (7)C8—C11—H11119.6
N2i—Zn1—O188.60 (7)C3—C1A—H1AA88.7 (18)
N2—Zn1—O190.88 (7)C2A—C1A—C3119.1 (4)
N2—Zn1—O1i88.60 (7)C2A—C1A—H1AA116 (3)
N2—Zn1—N2i179.29 (11)C1A—C2A—H2AA116 (4)
Zn1—O1—H1A120.0C8A—C2A—C1A118.7 (4)
Zn1—O1—H1B116.2C8A—C2A—H2AA106 (4)
H1A—O1—H1B102.5C2B—C1B—C3115.5 (4)
Zn1—O2—H2A119.5C8—C2B—C1B119.9 (4)
Zn1—O2—H2B118.7C8—C2B—H2BA109 (4)
H2A—O2—H2B101.2C1B—C2B—H2BA112 (4)
C12—N1—C10116.9 (2)C9—C8A—C2A123.6 (4)
C5—N2—Zn1122.02 (16)C11A—C8A—C9115.6 (4)
C5—N2—C7117.6 (2)C11A—C8A—C2A120.7 (4)
C7—N2—Zn1120.37 (16)C12—C11A—H11A120.9
C4—C3—C1103.7 (6)C8A—C11A—C12118.1 (5)
C4—C3—C1A122.4 (3)C8A—C11A—H11A120.9
C4—C3—C1B124.4 (3)H13A—C13—H13B109.5
C6—C3—C4118.5 (2)H13A—C13—H13C109.5
C6—C3—C1137.7 (6)H13B—C13—H13C109.5
C6—C3—C1A110.7 (3)C14—C13—H13A109.5
C6—C3—C1B108.3 (3)C14—C13—H13B109.5
C3—C4—H4120.3C14—C13—H13C109.5
C5—C4—C3119.4 (2)C13—C14—H14A108.6
C5—C4—H4120.3C13—C14—H14B108.6
N2—C5—C4122.3 (2)C13—C14—C15114.7 (2)
N2—C5—H5118.9H14A—C14—H14B107.6
C4—C5—H5118.9C15—C14—H14A108.6
C3—C6—H6120.6C15—C14—H14B108.6
C7—C6—C3118.8 (2)C14—C15—C18107.7 (3)
C7—C6—H6120.6C16—C15—C14109.1 (2)
N2—C7—C6123.5 (2)C16—C15—C18109.2 (2)
N2—C7—H7118.3C16—C15—C19107.7 (3)
C6—C7—H7118.3C19—C15—C14107.9 (2)
C10—C9—H9A121.6C19—C15—C18115.1 (2)
C10—C9—H9B121.8C15—C16—H16A109.0
C10—C9—C8116.9 (3)C15—C16—H16B109.0
C10—C9—C8A116.4 (3)C15—C16—C17113.0 (3)
C8—C9—H9A121.6H16A—C16—H16B107.8
C8A—C9—H9B121.8C17—C16—H16A109.0
N1—C10—C9124.1 (2)C17—C16—H16B109.0
N1—C10—H10118.0C16—C17—H17A109.5
C9—C10—H10118.0C16—C17—H17B109.5
N1—C12—H12119.6C16—C17—H17C109.5
N1—C12—H12A118.6H17A—C17—H17B109.5
N1—C12—C11120.9 (4)H17A—C17—H17C109.5
N1—C12—C11A122.8 (3)H17B—C17—H17C109.5
C11—C12—H12119.6O3—C18—O4124.4 (3)
C11A—C12—H12A118.6O3—C18—C15116.6 (2)
C3—C1—H1110.4O4—C18—C15119.0 (3)
C2—C1—C3138.6 (12)O5—C19—C15118.3 (3)
C2—C1—H1111.0O6—C19—O5120.9 (3)
C1—C2—H2124.0O6—C19—C15120.7 (3)
Zn1—N2—C5—C4179.89 (16)C11—C8—C2B—C1B158.1 (5)
Zn1—N2—C7—C6179.56 (18)C1A—C3—C4—C5144.7 (3)
N1—C12—C11—C812.3 (7)C1A—C3—C6—C7148.8 (3)
N1—C12—C11A—C8A9.9 (7)C1A—C3—C1—C2143 (3)
C3—C4—C5—N20.4 (3)C1A—C3—C1B—C2B86.7 (4)
C3—C6—C7—N20.2 (4)C1A—C2A—C8A—C927.0 (7)
C3—C1A—C2A—C8A115.3 (4)C1A—C2A—C8A—C11A155.2 (5)
C3—C1B—C2B—C8114.7 (4)C2A—C8A—C11A—C12166.4 (4)
C4—C3—C6—C70.3 (4)C1B—C3—C4—C5144.0 (3)
C4—C3—C1—C215 (2)C1B—C3—C6—C7149.1 (3)
C4—C3—C1A—C2A20.2 (5)C1B—C3—C1—C2112 (2)
C4—C3—C1B—C2B23.2 (5)C1B—C3—C1A—C2A93.0 (5)
C5—N2—C7—C60.4 (4)C2B—C8—C11—C12168.3 (4)
C6—C3—C4—C50.6 (4)C8A—C9—C10—N121.2 (4)
C6—C3—C1—C2169.2 (14)C8A—C9—C8—C1173.7 (6)
C6—C3—C1A—C2A167.8 (3)C8A—C9—C8—C2B108.2 (6)
C6—C3—C1B—C2B169.7 (3)C11A—C12—C11—C890.5 (10)
C7—N2—C5—C40.1 (3)C13—C14—C15—C16177.2 (3)
C9—C8—C11—C129.8 (7)C13—C14—C15—C1864.4 (3)
C9—C8—C2B—C1B24.0 (7)C13—C14—C15—C1960.4 (3)
C9—C8A—C11A—C1211.6 (7)C14—C15—C16—C17179.1 (3)
C10—N1—C12—C1117.7 (4)C14—C15—C18—O363.4 (4)
C10—N1—C12—C11A16.3 (4)C14—C15—C18—O4117.2 (3)
C10—C9—C8—C1125.7 (5)C14—C15—C19—O5115.3 (3)
C10—C9—C8—C2B152.3 (4)C14—C15—C19—O662.5 (4)
C10—C9—C8A—C2A151.9 (4)C16—C15—C18—O355.0 (4)
C10—C9—C8A—C11A26.0 (6)C16—C15—C18—O4124.4 (3)
C12—N1—C10—C90.1 (3)C16—C15—C19—O5127.0 (3)
C1—C3—C4—C5176.4 (6)C16—C15—C19—O655.2 (4)
C1—C3—C6—C7175.4 (9)C18—C15—C16—C1763.4 (4)
C1—C3—C1A—C2A44.4 (10)C18—C15—C19—O54.9 (4)
C1—C3—C1B—C2B46.7 (10)C18—C15—C19—O6177.3 (3)
C8—C9—C10—N122.3 (4)C19—C15—C16—C1762.2 (4)
C8—C9—C8A—C2A107.3 (6)C19—C15—C18—O3176.3 (3)
C8—C9—C8A—C11A74.8 (6)C19—C15—C18—O43.1 (4)
C11—C12—C11A—C8A85.6 (10)
Symmetry code: (i) x+1, y, z+3/2.
(9) top
Crystal data top
C19H22N2O4Zn·0.38(H2O)Dx = 1.368 Mg m3
Mr = 414.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221Cell parameters from 4172 reflections
a = 24.662 (3) Åθ = 2.5–25.7°
b = 37.180 (5) ŵ = 1.25 mm1
c = 8.7826 (12) ÅT = 120 K
V = 8053.0 (19) Å3Prism, colourless
Z = 160.53 × 0.15 × 0.14 mm
F(000) = 3452
Data collection top
Bruker APEX-II CCD
diffractometer
7821 reflections with I > 2σ(I)
φ and ω scansRint = 0.103
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.1078 before and 0.0719 after correction. The Ratio of minimum to maximum transmission is 0.7779. The λ/2 correction factor is 0.00150.
θmax = 30.7°, θmin = 2.2°
Tmin = 0.262, Tmax = 0.337h = 3535
41027 measured reflectionsk = 5352
12430 independent reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.048P)2 + 17.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.01Δρmax = 1.26 e Å3
12430 reflectionsΔρmin = 1.12 e Å3
461 parametersAbsolute structure: Refined as an inversion twin.
14 restraintsAbsolute structure parameter: 0.01 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.43029 (4)0.50001.50000.0198 (2)
Zn20.24034 (3)0.29141 (2)0.40389 (8)0.02010 (17)
Zn30.00000.45663 (3)0.75000.0318 (3)
O10.40948 (19)0.56008 (12)1.3003 (5)0.0246 (10)
O20.48008 (18)0.53367 (12)1.4095 (6)0.0258 (10)
O30.0937 (3)0.44142 (13)0.9269 (7)0.0454 (15)
O40.0524 (2)0.48994 (13)0.8352 (6)0.0378 (14)
O50.1350 (2)0.28996 (14)0.5611 (6)0.0389 (13)
O60.19739 (18)0.25184 (12)0.4812 (5)0.0227 (10)
O70.1970 (2)0.23265 (12)0.8134 (5)0.0247 (10)
O80.1823 (2)0.17826 (12)0.7204 (5)0.0278 (11)
N10.3857 (2)0.47416 (15)1.3405 (6)0.0211 (12)
N20.2641 (2)0.32361 (14)0.5766 (6)0.0239 (12)
N30.1946 (2)0.31490 (15)0.2403 (6)0.0240 (12)
N40.0349 (3)0.42720 (16)0.5861 (7)0.0318 (14)
C10.4018 (3)0.47491 (19)1.1948 (8)0.0258 (15)
H10.43050.48631.17230.031*
C20.3735 (3)0.45780 (18)1.0795 (8)0.0289 (16)
H20.38480.45890.98820.035*
C30.3270 (3)0.43899 (18)1.1132 (9)0.0288 (16)
C40.3110 (3)0.4375 (2)1.2647 (9)0.0323 (17)
H40.28270.42581.28990.039*
C50.3415 (3)0.45506 (19)1.3745 (7)0.0274 (15)
H50.33170.45361.46710.033*
C60.2974 (3)0.41908 (19)0.9913 (9)0.0348 (17)
H6A0.29510.43220.91230.042*
H6B0.26540.41431.02130.042*
C70.3263 (3)0.38462 (18)0.9523 (8)0.0292 (16)
H7A0.35920.38950.93240.035*
H7B0.32610.37111.03040.035*
C80.2968 (3)0.35223 (19)0.5536 (8)0.0287 (16)
H80.30580.35770.46310.034*
C90.3162 (3)0.37281 (18)0.6716 (8)0.0267 (15)
H90.33620.39090.65300.032*
C100.3033 (3)0.36415 (19)0.8218 (8)0.0259 (15)
C110.2695 (3)0.33485 (18)0.8438 (8)0.0279 (16)
H110.26030.32880.93340.033*
C120.2508 (3)0.31545 (17)0.7197 (7)0.0267 (15)
H120.23000.29760.73540.032*
C130.1888 (3)0.3499 (2)0.2248 (9)0.0378 (19)
H130.20590.36370.28540.045*
C140.1565 (3)0.3651 (2)0.1156 (9)0.039 (2)
H140.15400.38780.11030.047*
C150.1285 (5)0.3444 (3)0.0157 (12)0.0634 (14)
C160.1373 (5)0.3084 (3)0.0294 (11)0.0634 (14)
H160.12190.29410.03220.076*
C170.1704 (4)0.2949 (3)0.1396 (10)0.0634 (14)
H170.17540.27230.14290.076*
C180.0941 (4)0.3604 (3)0.1073 (11)0.0634 (14)
H18A0.07130.34480.13720.076*
H18B0.07650.37810.07110.076*
C190.1264 (4)0.3727 (3)0.2388 (11)0.0634 (14)
H19A0.14190.35470.27920.076*
H19B0.15100.38690.20740.076*
C200.0373 (3)0.4399 (2)0.4429 (8)0.0336 (18)
H200.02100.45940.42220.040*
C210.0647 (3)0.4228 (2)0.3297 (8)0.040 (2)
H210.06420.43130.24000.048*
C220.0931 (4)0.3918 (2)0.3593 (9)0.044 (2)
C230.0895 (4)0.3784 (2)0.5069 (10)0.053 (3)
H230.10540.35890.53060.064*
C240.0605 (4)0.3969 (2)0.6129 (9)0.053 (3)
H240.05870.38820.70230.063*
C250.4588 (3)0.55774 (17)1.3230 (7)0.0217 (14)
C260.50000.5827 (2)1.25000.024 (2)
C270.5252 (3)0.60542 (19)1.3765 (9)0.0332 (17)
H27A0.54150.59151.43810.040*
H27B0.54870.61931.33720.040*
C280.4849 (3)0.6281 (2)1.4657 (10)0.049 (2)
H28A0.46950.64291.40600.074*
H28B0.50150.63951.53530.074*
H28C0.46110.61451.50570.074*
C290.0894 (3)0.4739 (2)0.9141 (10)0.0378 (18)
C300.1277 (5)0.50001.00000.047 (3)
C310.1669 (7)0.5223 (4)0.921 (2)0.038 (3)*0.5
H31A0.15110.53430.85110.046*0.5
H31B0.18120.53710.98260.046*0.5
C320.2111 (8)0.4983 (6)0.850 (3)0.067 (4)*0.5
H32A0.23490.49350.91700.100*0.5
H32B0.19690.47890.81820.100*0.5
H32C0.22590.50930.77600.100*0.5
C330.1537 (3)0.25975 (18)0.5528 (8)0.0236 (14)
C340.1274 (3)0.22746 (19)0.6306 (8)0.0248 (15)
C350.1719 (2)0.21020 (18)0.7251 (7)0.0208 (13)
C360.0819 (3)0.2380 (2)0.7366 (9)0.042 (2)
H36A0.05430.24360.68370.050*
H36B0.09140.25660.78620.050*
C370.0658 (4)0.2085 (3)0.8494 (11)0.072 (3)
H37A0.05970.18910.80130.108*
H37B0.03740.21480.89700.108*
H37C0.09150.20520.91250.108*
C380.1078 (3)0.20186 (18)0.5053 (9)0.0326 (16)
H38A0.13540.19300.46140.039*
H38B0.09070.18460.54720.039*
C390.0717 (3)0.2182 (2)0.3858 (9)0.043 (2)
H39A0.06090.20180.32520.064*
H39B0.08930.23390.33620.064*
H39C0.04440.22790.42820.064*
O1W0.0190 (5)0.3067 (3)0.5654 (19)0.069 (4)0.5
H1WA0.00560.30560.63310.104*0.5
H1WB0.00610.31600.48460.104*0.5
O2W0.0014 (15)0.3165 (6)0.300 (3)0.069 (4)0.25
H2W0.02240.30400.24440.104*0.5
C31A0.1567 (7)0.5181 (4)0.8547 (18)0.038 (3)*0.5
H31C0.17760.53470.88670.046*0.5
H31D0.13240.52800.80070.046*0.5
C32A0.1902 (8)0.4931 (6)0.751 (3)0.067 (4)*0.5
H32D0.17020.48870.65630.100*0.5
H32E0.22500.50450.72720.100*0.5
H32F0.19660.47020.80320.100*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0225 (5)0.0238 (5)0.0129 (5)0.0000.0000.0020 (4)
Zn20.0252 (4)0.0205 (3)0.0146 (3)0.0010 (3)0.0019 (3)0.0003 (3)
Zn30.0529 (8)0.0266 (6)0.0160 (5)0.0000.0115 (5)0.000
O10.024 (3)0.026 (2)0.024 (2)0.001 (2)0.003 (2)0.002 (2)
O20.029 (3)0.030 (2)0.019 (2)0.001 (2)0.001 (2)0.003 (2)
O30.061 (4)0.025 (3)0.050 (4)0.011 (3)0.012 (3)0.001 (3)
O40.056 (4)0.030 (3)0.028 (3)0.003 (3)0.007 (3)0.000 (2)
O50.041 (3)0.022 (2)0.053 (4)0.006 (2)0.010 (2)0.001 (3)
O60.021 (2)0.026 (2)0.021 (2)0.0012 (19)0.000 (2)0.004 (2)
O70.029 (3)0.027 (2)0.018 (2)0.001 (2)0.000 (2)0.0015 (19)
O80.037 (3)0.021 (2)0.026 (3)0.001 (2)0.001 (2)0.0010 (19)
N10.023 (3)0.026 (3)0.014 (3)0.002 (2)0.001 (2)0.003 (2)
N20.031 (3)0.025 (3)0.016 (3)0.005 (3)0.002 (2)0.000 (2)
N30.028 (3)0.028 (3)0.016 (3)0.000 (2)0.004 (2)0.001 (2)
N40.049 (4)0.027 (3)0.020 (3)0.001 (3)0.008 (3)0.004 (3)
C10.032 (4)0.027 (3)0.018 (3)0.001 (3)0.001 (3)0.001 (3)
C20.048 (5)0.026 (3)0.012 (3)0.001 (3)0.002 (3)0.005 (3)
C30.032 (4)0.025 (3)0.029 (4)0.005 (3)0.010 (3)0.008 (3)
C40.023 (4)0.043 (4)0.032 (4)0.009 (3)0.005 (3)0.006 (3)
C50.034 (4)0.031 (4)0.017 (3)0.002 (3)0.003 (3)0.000 (3)
C60.035 (4)0.037 (4)0.032 (4)0.002 (3)0.012 (4)0.009 (4)
C70.031 (4)0.030 (4)0.026 (3)0.001 (3)0.005 (3)0.002 (3)
C80.038 (4)0.032 (4)0.017 (3)0.007 (3)0.001 (3)0.003 (3)
C90.033 (4)0.019 (3)0.027 (4)0.010 (3)0.002 (3)0.004 (3)
C100.027 (4)0.029 (4)0.022 (3)0.005 (3)0.007 (3)0.003 (3)
C110.038 (4)0.029 (4)0.016 (3)0.004 (3)0.003 (3)0.002 (3)
C120.033 (4)0.027 (3)0.020 (3)0.006 (3)0.004 (3)0.004 (3)
C130.047 (5)0.029 (4)0.037 (4)0.003 (4)0.022 (4)0.007 (3)
C140.049 (5)0.031 (4)0.037 (5)0.014 (4)0.014 (4)0.001 (3)
C150.093 (4)0.049 (2)0.048 (3)0.001 (2)0.044 (3)0.008 (2)
C160.093 (4)0.049 (2)0.048 (3)0.001 (2)0.044 (3)0.008 (2)
C170.093 (4)0.049 (2)0.048 (3)0.001 (2)0.044 (3)0.008 (2)
C180.093 (4)0.049 (2)0.048 (3)0.001 (2)0.044 (3)0.008 (2)
C190.093 (4)0.049 (2)0.048 (3)0.001 (2)0.044 (3)0.008 (2)
C200.043 (5)0.041 (4)0.017 (3)0.011 (4)0.005 (3)0.002 (3)
C210.050 (5)0.051 (5)0.017 (3)0.022 (4)0.005 (3)0.003 (3)
C220.051 (5)0.060 (6)0.021 (4)0.024 (5)0.003 (4)0.006 (4)
C230.089 (8)0.043 (5)0.027 (4)0.026 (5)0.008 (5)0.003 (4)
C240.097 (8)0.046 (5)0.016 (4)0.015 (5)0.018 (4)0.005 (3)
C250.028 (4)0.020 (3)0.017 (3)0.001 (3)0.002 (3)0.003 (3)
C260.030 (5)0.020 (4)0.023 (5)0.0000.000 (4)0.000
C270.033 (4)0.025 (3)0.041 (5)0.003 (3)0.003 (3)0.010 (3)
C280.045 (5)0.051 (5)0.050 (6)0.004 (4)0.007 (4)0.026 (4)
C290.042 (5)0.030 (4)0.041 (5)0.003 (3)0.017 (4)0.001 (4)
C300.031 (6)0.028 (5)0.084 (10)0.0000.0000.004 (7)
C330.024 (4)0.026 (3)0.021 (3)0.001 (3)0.003 (3)0.000 (3)
C340.018 (3)0.029 (3)0.027 (4)0.001 (3)0.003 (3)0.001 (3)
C350.021 (3)0.026 (3)0.015 (3)0.006 (3)0.005 (2)0.001 (3)
C360.026 (4)0.070 (6)0.030 (4)0.006 (4)0.005 (3)0.000 (4)
C370.049 (5)0.098 (7)0.069 (6)0.011 (6)0.028 (5)0.027 (6)
C380.036 (4)0.029 (4)0.033 (4)0.005 (3)0.006 (4)0.002 (3)
C390.037 (4)0.056 (5)0.035 (4)0.006 (4)0.010 (4)0.002 (4)
O1W0.057 (6)0.052 (5)0.098 (7)0.002 (5)0.015 (5)0.008 (5)
O2W0.057 (6)0.052 (5)0.098 (7)0.002 (5)0.015 (5)0.008 (5)
Geometric parameters (Å, º) top
Zn1—O2i1.925 (5)C18—H18B0.8500
Zn1—O21.925 (5)C18—C191.476 (14)
Zn1—N1i2.024 (5)C19—H19A0.8500
Zn1—N12.024 (5)C19—H19B0.8500
Zn2—O61.936 (4)C19—C221.517 (11)
Zn2—O7ii1.955 (5)C20—H200.8500
Zn2—N22.019 (5)C20—C211.360 (10)
Zn2—N32.025 (6)C21—H210.8500
Zn3—O41.941 (6)C21—C221.371 (11)
Zn3—O4iii1.940 (6)C22—C231.392 (11)
Zn3—N4iii2.003 (6)C23—H230.8500
Zn3—N42.003 (6)C23—C241.361 (11)
O1—C251.235 (8)C24—H240.8500
O2—C251.286 (8)C25—C261.517 (9)
O3—C291.219 (9)C26—C25v1.517 (9)
O4—C291.290 (10)C26—C27v1.528 (8)
O5—C331.216 (8)C26—C271.528 (8)
O6—C331.282 (8)C27—H27A0.8500
O7—Zn2iv1.955 (5)C27—H27B0.8500
O7—C351.296 (8)C27—C281.520 (10)
O8—C351.216 (8)C28—H28A0.8501
N1—C11.340 (8)C28—H28B0.8501
N1—C51.333 (9)C28—H28C0.8501
N2—C81.351 (9)C29—C301.550 (11)
N2—C121.334 (8)C30—C29vi1.550 (11)
N3—C131.316 (9)C30—C311.452 (18)
N3—C171.301 (10)C30—C31vi1.452 (18)
N4—C201.345 (9)C30—C31A1.610 (15)
N4—C241.312 (10)C30—C31Avi1.610 (15)
C1—H10.8500C31—H31A0.8500
C1—C21.384 (9)C31—H31B0.8500
C2—H20.8500C31—C321.54 (3)
C2—C31.375 (10)C32—H32A0.8501
C3—C41.389 (11)C32—H32B0.8501
C3—C61.493 (10)C32—H32C0.8501
C4—H40.8500C33—C341.526 (10)
C4—C51.388 (10)C34—C351.519 (9)
C5—H50.8500C34—C361.510 (10)
C6—H6A0.8500C34—C381.533 (10)
C6—H6B0.8500C36—H36A0.8500
C6—C71.506 (10)C36—H36B0.8500
C7—H7A0.8500C36—C371.532 (12)
C7—H7B0.8500C37—H37A0.8501
C7—C101.489 (9)C37—H37B0.8501
C8—H80.8500C37—H37C0.8501
C8—C91.374 (9)C38—H38A0.8500
C9—H90.8500C38—H38B0.8500
C9—C101.395 (10)C38—C391.504 (10)
C10—C111.385 (9)C39—H39A0.8501
C11—H110.8500C39—H39B0.8501
C11—C121.386 (9)C39—H39C0.8501
C12—H120.8500O1W—H1WA0.8505
C13—H130.8500O1W—H1WB0.8502
C13—C141.368 (10)O2W—O2Wvii0.88 (6)
C14—H140.8500O2W—H2W0.8502
C14—C151.356 (12)C31A—H31C0.8500
C15—C161.361 (13)C31A—H31D0.8500
C15—C181.496 (11)C31A—C32A1.542 (19)
C16—H160.8500C32A—H32D0.9800
C16—C171.362 (11)C32A—H32E0.9800
C17—H170.8500C32A—H32F0.9800
C18—H18A0.8500
O2i—Zn1—O2100.7 (3)C22—C21—H21119.7
O2—Zn1—N1i108.9 (2)C21—C22—C19122.5 (8)
O2i—Zn1—N1108.9 (2)C21—C22—C23116.5 (7)
O2—Zn1—N1111.7 (2)C23—C22—C19121.0 (8)
O2i—Zn1—N1i111.7 (2)C22—C23—H23120.4
N1—Zn1—N1i114.1 (3)C24—C23—C22119.3 (8)
O6—Zn2—O7ii103.15 (19)C24—C23—H23120.4
O6—Zn2—N2110.2 (2)N4—C24—C23124.3 (8)
O6—Zn2—N3105.8 (2)N4—C24—H24117.8
O7ii—Zn2—N2110.3 (2)C23—C24—H24117.8
O7ii—Zn2—N3110.5 (2)O1—C25—O2123.1 (6)
N2—Zn2—N3116.0 (2)O1—C25—C26123.2 (6)
O4iii—Zn3—O4100.7 (3)O2—C25—C26113.6 (6)
O4iii—Zn3—N4iii109.9 (2)C25—C26—C25v104.7 (7)
O4—Zn3—N4iii111.0 (2)C25—C26—C27107.6 (4)
O4—Zn3—N4109.9 (2)C25—C26—C27v111.9 (4)
O4iii—Zn3—N4111.0 (2)C25v—C26—C27111.9 (4)
N4—Zn3—N4iii113.7 (3)C25v—C26—C27v107.6 (4)
C25—O2—Zn1115.9 (4)C27—C26—C27v112.7 (8)
C29—O4—Zn3112.5 (5)C26—C27—H27A108.6
C33—O6—Zn2117.2 (4)C26—C27—H27B108.6
C35—O7—Zn2iv109.0 (4)H27A—C27—H27B107.6
C1—N1—Zn1119.3 (5)C28—C27—C26114.6 (6)
C5—N1—Zn1122.8 (4)C28—C27—H27A108.6
C5—N1—C1117.9 (6)C28—C27—H27B108.6
C8—N2—Zn2121.9 (4)C27—C28—H28A109.5
C12—N2—Zn2120.1 (4)C27—C28—H28B109.5
C12—N2—C8117.8 (6)C27—C28—H28C109.5
C13—N3—Zn2124.1 (5)H28A—C28—H28B109.5
C17—N3—Zn2119.4 (5)H28A—C28—H28C109.5
C17—N3—C13116.4 (7)H28B—C28—H28C109.5
C20—N4—Zn3119.9 (5)O3—C29—O4124.7 (8)
C24—N4—Zn3123.1 (5)O3—C29—C30121.4 (8)
C24—N4—C20116.6 (7)O4—C29—C30113.8 (6)
N1—C1—H1118.7C29—C30—C29vi104.8 (9)
N1—C1—C2122.6 (7)C29—C30—C31A98.4 (7)
C2—C1—H1118.7C29vi—C30—C31Avi98.4 (7)
C1—C2—H2120.1C29vi—C30—C31A113.3 (7)
C3—C2—C1119.8 (7)C29—C30—C31Avi113.3 (7)
C3—C2—H2120.1C31—C30—C29vi106.4 (7)
C2—C3—C4117.7 (6)C31vi—C30—C29vi122.0 (8)
C2—C3—C6120.4 (7)C31—C30—C29122.0 (8)
C4—C3—C6121.8 (7)C31vi—C30—C29106.4 (7)
C3—C4—H4120.3C31vi—C30—C3196.6 (16)
C5—C4—C3119.5 (7)C31Avi—C30—C31A127.3 (15)
C5—C4—H4120.3C30—C31—H31A109.8
N1—C5—C4122.6 (6)C30—C31—H31B109.8
N1—C5—H5118.7C30—C31—C32109.4 (14)
C4—C5—H5118.7H31A—C31—H31B108.2
C3—C6—H6A109.5C32—C31—H31A109.8
C3—C6—H6B109.5C32—C31—H31B109.8
C3—C6—C7110.7 (6)C31—C32—H32A109.5
H6A—C6—H6B108.1C31—C32—H32B109.5
C7—C6—H6A109.5C31—C32—H32C109.5
C7—C6—H6B109.5H32A—C32—H32B109.5
C6—C7—H7A108.4H32A—C32—H32C109.5
C6—C7—H7B108.4H32B—C32—H32C109.5
H7A—C7—H7B107.5O5—C33—O6124.0 (7)
C10—C7—C6115.4 (6)O5—C33—C34122.6 (6)
C10—C7—H7A108.4O6—C33—C34113.4 (6)
C10—C7—H7B108.4C33—C34—C38107.5 (6)
N2—C8—H8118.9C35—C34—C33105.6 (5)
N2—C8—C9122.3 (6)C35—C34—C38111.0 (6)
C9—C8—H8118.9C36—C34—C33112.8 (6)
C8—C9—H9119.8C36—C34—C35108.1 (6)
C8—C9—C10120.3 (6)C36—C34—C38111.7 (6)
C10—C9—H9119.8O7—C35—C34113.6 (6)
C9—C10—C7121.5 (6)O8—C35—O7123.3 (6)
C11—C10—C7121.6 (6)O8—C35—C34123.1 (6)
C11—C10—C9116.8 (6)C34—C36—H36A108.8
C10—C11—H11120.0C34—C36—H36B108.8
C12—C11—C10120.0 (6)C34—C36—C37113.8 (7)
C12—C11—H11120.0H36A—C36—H36B107.7
N2—C12—C11122.7 (6)C37—C36—H36A108.8
N2—C12—H12118.6C37—C36—H36B108.8
C11—C12—H12118.6C36—C37—H37A109.5
N3—C13—H13118.5C36—C37—H37B109.5
N3—C13—C14122.9 (7)C36—C37—H37C109.5
C14—C13—H13118.5H37A—C37—H37B109.5
C13—C14—H14119.5H37A—C37—H37C109.5
C15—C14—C13121.1 (8)H37B—C37—H37C109.5
C15—C14—H14119.5C34—C38—H38A108.3
C14—C15—C16114.7 (8)C34—C38—H38B108.3
C14—C15—C18122.0 (8)H38A—C38—H38B107.4
C16—C15—C18123.1 (9)C39—C38—C34115.9 (6)
C15—C16—H16119.3C39—C38—H38A108.3
C17—C16—C15121.5 (9)C39—C38—H38B108.3
C17—C16—H16119.3C38—C39—H39A109.5
N3—C17—C16123.2 (9)C38—C39—H39B109.5
N3—C17—H17118.4C38—C39—H39C109.5
C16—C17—H17118.4H39A—C39—H39B109.5
C15—C18—H18A109.1H39A—C39—H39C109.5
C15—C18—H18B109.1H39B—C39—H39C109.5
H18A—C18—H18B107.8H1WA—O1W—H1WB109.7
C19—C18—C15112.5 (9)O2Wvii—O2W—H2W58.5
C19—C18—H18A109.1C30—C31A—H31C108.1
C19—C18—H18B109.1C30—C31A—H31D108.1
C18—C19—H19A108.9H31C—C31A—H31D107.3
C18—C19—H19B108.9C32A—C31A—C30117.0 (13)
C18—C19—C22113.5 (9)C32A—C31A—H31C108.1
H19A—C19—H19B107.7C32A—C31A—H31D108.1
C22—C19—H19A108.9C31A—C32A—H32D109.5
C22—C19—H19B108.9C31A—C32A—H32E109.5
N4—C20—H20118.6C31A—C32A—H32F109.5
N4—C20—C21122.7 (7)H32D—C32A—H32E109.5
C21—C20—H20118.6H32D—C32A—H32F109.5
C20—C21—H21119.7H32E—C32A—H32F109.5
C20—C21—C22120.5 (7)
Zn1—O2—C25—O11.5 (8)C6—C7—C10—C1199.6 (9)
Zn1—O2—C25—C26177.8 (4)C7—C10—C11—C12177.1 (7)
Zn1—N1—C1—C2179.8 (5)C8—N2—C12—C110.6 (10)
Zn1—N1—C5—C4179.8 (5)C8—C9—C10—C7176.3 (7)
Zn2—O6—C33—O57.9 (9)C8—C9—C10—C111.5 (11)
Zn2—O6—C33—C34170.9 (4)C9—C10—C11—C120.7 (11)
Zn2iv—O7—C35—O89.9 (7)C10—C11—C12—N20.3 (11)
Zn2iv—O7—C35—C34171.5 (4)C12—N2—C8—C90.2 (11)
Zn2—N2—C8—C9175.4 (6)C13—N3—C17—C164.6 (15)
Zn2—N2—C12—C11174.7 (6)C13—C14—C15—C162.9 (16)
Zn2—N3—C13—C14178.3 (6)C13—C14—C15—C18178.4 (10)
Zn2—N3—C17—C16177.5 (9)C14—C15—C16—C172.4 (18)
Zn3—O4—C29—O34.6 (10)C14—C15—C18—C1979.1 (13)
Zn3—O4—C29—C30172.9 (5)C15—C16—C17—N31.5 (19)
Zn3—N4—C20—C21173.9 (7)C15—C18—C19—C22175.2 (8)
Zn3—N4—C24—C23172.5 (8)C16—C15—C18—C1995.9 (14)
O1—C25—C26—C25v127.7 (7)C17—N3—C13—C144.0 (13)
O1—C25—C26—C27v11.4 (9)C18—C15—C16—C17177.7 (11)
O1—C25—C26—C27113.0 (7)C18—C19—C22—C2160.7 (13)
O2—C25—C26—C25v51.6 (4)C18—C19—C22—C23118.8 (11)
O2—C25—C26—C27v167.9 (6)C19—C22—C23—C24178.2 (10)
O2—C25—C26—C2767.7 (7)C20—N4—C24—C231.5 (15)
O3—C29—C30—C29vi126.9 (9)C20—C21—C22—C19177.0 (9)
O3—C29—C30—C31112.5 (11)C20—C21—C22—C233.4 (14)
O3—C29—C30—C31vi3.5 (12)C21—C22—C23—C242.3 (15)
O3—C29—C30—C31Avi20.7 (13)C22—C23—C24—N40.1 (17)
O3—C29—C30—C31A116.2 (10)C24—N4—C20—C210.3 (13)
O4—C29—C30—C29vi50.6 (5)C25v—C26—C27—C28173.8 (6)
O4—C29—C30—C3170.0 (12)C25—C26—C27—C2859.2 (8)
O4—C29—C30—C31vi179.0 (9)C27v—C26—C27—C2864.7 (6)
O4—C29—C30—C31Avi156.8 (9)C29—C30—C31—C3267.8 (17)
O4—C29—C30—C31A66.3 (10)C29vi—C30—C31—C32172.4 (12)
O5—C33—C34—C35126.8 (7)C29vi—C30—C31A—C32A172.8 (13)
O5—C33—C34—C369.0 (10)C29—C30—C31A—C32A62.6 (16)
O5—C33—C34—C38114.6 (7)C31vi—C30—C31—C3246.3 (11)
O6—C33—C34—C3552.1 (7)C31—C30—C31A—C32A110 (3)
O6—C33—C34—C36169.9 (6)C31vi—C30—C31A—C32A48.0 (17)
O6—C33—C34—C3866.5 (7)C33—C34—C35—O751.5 (7)
N1—C1—C2—C30.3 (11)C33—C34—C35—O8129.8 (6)
N2—C8—C9—C101.3 (11)C33—C34—C36—C37163.2 (7)
N3—C13—C14—C150.2 (15)C33—C34—C38—C3953.5 (8)
N4—C20—C21—C222.2 (14)C35—C34—C36—C3746.8 (9)
C1—N1—C5—C42.7 (10)C35—C34—C38—C39168.6 (6)
C1—C2—C3—C41.3 (10)C36—C34—C35—O769.4 (7)
C1—C2—C3—C6177.3 (6)C36—C34—C35—O8109.3 (7)
C2—C3—C4—C50.8 (11)C36—C34—C38—C3970.7 (9)
C2—C3—C6—C776.4 (9)C38—C34—C35—O7167.8 (5)
C3—C4—C5—N11.2 (11)C38—C34—C35—O813.5 (9)
C3—C6—C7—C10174.5 (7)C38—C34—C36—C3775.6 (9)
C4—C3—C6—C799.5 (8)C31A—C30—C31—C3277 (3)
C5—N1—C1—C22.3 (10)C31Avi—C30—C31—C3267.2 (15)
C6—C3—C4—C5176.8 (7)C31Avi—C30—C31A—C32A65.3 (14)
C6—C7—C10—C982.8 (9)
Symmetry codes: (i) x, y+1, z+3; (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z+5/2; (vi) x, y+1, z2; (vii) x, y, z+1/2.
 

Acknowledgements

Topological analysis, XRD experiments and the investigation of solid-state reactions were all financially supported by the Russian Science Foundation. The syntheses of all complexes were supported by the Russian Foundation for Basic Research. Synchrotron measurements of irradiated sample (2) were performed at the unique scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation. We are grateful to D. Yu. Antonov (INEOS RAS) for discussion of 1H NMR spectra.

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 17-13-01442 to Anna V. Vologzhanina); Russian Foundation for Basic Research (grant No. 16-33-60179 to Ekaterina N. Zorina-Tikhonova); Ministry of Education and Science of the Russian Federation (contract No. RFMEFI61917X0007).

References

First citationAlexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947–3958.  Web of Science CrossRef CAS Google Scholar
First citationAlexandrov, E. V., Shevchenko, A. P., Asiri, A. A. & Blatov, V. A. (2015a). CrystEngComm, 17, 2913–2924.  Web of Science CrossRef CAS Google Scholar
First citationAlexandrov, E. V., Virovets, A. V., Blatov, V. A. & Peresypkina, E. V. (2015b). Chem. Rev. 115, 12286–12319.  Web of Science CrossRef CAS Google Scholar
First citationBlatov, V. A., O'Keeffe, M. & Proserpio, D. M. (2010). CrystEngComm, 12, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationChanthapally, A., Oh, W. T. & Vittal, J. J. (2014). Chem. Commun. 50, 451–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationChu, Q., Swenson, D. C. & MacGillivray, L. R. (2005). Angew. Chem. Int. Ed. 44, 3569–3572.  Web of Science CSD CrossRef CAS Google Scholar
First citationDéniz, M., Pasán, J., Fabelo, O., Cañadillas-Delgado, L., Lorenzo-Luis, P., Lahoz, F., López, D., Yuste, C., Julve, M. & Ruiz-Pérez, C. (2012). C. R. Chim. 15, 911–923.  Google Scholar
First citationDias de Souza, N. L. G., Garcia, H. C., de Souza, M. C., Fernandes, A. L., do, A., Pereira, G. C., Diniz, R. & de Oliveira, L. F. C. (2015). J. Mol. Struct. 1085, 21–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationFurukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.  Web of Science CrossRef PubMed Google Scholar
First citationGao, E. J., Wang, R. S., Lin, L., Liu, S. H., Sun, T. D. & Zhu, M. C. (2012). Russ. J. Coord. Chem. 38, 386–391.  Web of Science CrossRef CAS Google Scholar
First citationGeorgiev, I. G., Bučar, D.-K. & MacGillivray, L. R. (2010). Chem. Commun. 46, 4956–4958.  Web of Science CSD CrossRef CAS Google Scholar
First citationGogoleva, N. V., Zorina-Tikhonova, E. N., Bogomyakov, A. S., Efimov, N. N., Alexandrov, E. V., Ugolkova, E. A., Kiskin, M. A., Minin, V. V., Sidorov, A. A. & Eremenko, I. L. (2017). Eur. J. Inorg. Chem. 2017, 547–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, F., Shi, Y.-X., Chen, H.-H. & Lang, J.-P. (2015). Dalton Trans. 44, 18795–18803.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-L., Hor, T. S. A. & Jin, G.-X. (2017). Coord. Chem. Rev. 346, 112–122.  Web of Science CrossRef CAS Google Scholar
First citationKim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, 19, 99–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, G.-L., Liu, G.-Z., Ma, L.-F., Xin, L.-Y., Li, X.-L. & Wang, L.-Y. (2014). Chem. Commun. 50, 2615–2617.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, D., Ren, Z.-G., Li, H.-X., Lang, J.-P., Li, N.-Y. & Abrahams, B. F. (2010). Angew. Chem. Int. Ed. 49, 4767–4770.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichaelides, A., Skoulika, S. & Siskos, M. G. (2011). Chem. Commun. 47, 7140–7142.  Web of Science CSD CrossRef CAS Google Scholar
First citationMir, M. H., Koh, L. L., Tan, G. K. & Vittal, J. J. (2010). Angew. Chem. Int. Ed. 49, 390–393.  Web of Science CSD CrossRef CAS Google Scholar
First citationMitina, T. G. & Blatov, V. A. (2013). Cryst. Growth Des. 13, 1655–1664.  Web of Science CrossRef CAS Google Scholar
First citationMulijanto, C. E., Quah, H. S., Tan, G. K., Donnadieu, B. & Vittal, J. J. (2017). IUCrJ, 4, 65–71.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationNagarathinam, M. & Vittal, J. J. (2006). Angew. Chem. Int. Ed. 45, 4337–4341.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782–1789.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOu, Y.-C., Liu, W.-T., Li, J.-Y., Zhang, G.-G., Wang, J. & Tong, M.-L. (2011). Chem. Commun. 47, 9384–9386.  Web of Science CSD CrossRef CAS Google Scholar
First citationOu, Y.-C., Zhi, D.-S., Liu, W.-T., Ni, Z.-P. & Tong, M.-L. (2012). Chem. Eur. J. 18, 7357–7361.  Web of Science CSD CrossRef CAS Google Scholar
First citationPapaefstathiou, S., Georgiev, G. G., Friščić, I. & MacGillivray, T. (2005). Chem. Commun. pp. 3974.  Google Scholar
First citationPapaefstathiou, G. S., Zhong, Z., Geng, L. & MacGillivray, L. R. (2004). J. Am. Chem. Soc. 126, 9158–9159.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeedikakkal, A. M. P. & Vittal, J. J. (2008). Chem. Eur. J. 14, 5329–5334.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSato, H., Matsuda, R., Mir, M. H. & Kitagawa, S. (2012). Chem. Commun. 48, 7919–7921.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370–412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchoedel, A. & Zaworotko, M. J. (2014). Chem. Sci. 5, 1269–1282.  Web of Science CrossRef CAS Google Scholar
First citationSerezhkin, V. N., Vologzhanina, A. V., Serezhkina, L. B., Smirnova, E. S., Grachova, E. V., Ostrova, P. V. & Antipin, M. Y. (2009). Acta Cryst. B65, 45–53.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShevchenko, A. P., Blatov, I. A., Kitaeva, E. V. & Blatov, V. A. (2017). Cryst. Growth Des. 17, 774–785.  Web of Science CrossRef CAS Google Scholar
First citationToh, N. L., Nagarathinam, M. & Vittal, J. J. (2005). Angew. Chem. 117, 2277–2281.  CrossRef Google Scholar
First citationVittal, J. J. (2007). Coord. Chem. Rev. 251, 1781–1795.  Web of Science CrossRef CAS Google Scholar
First citationVittal, J. J. & Quah, H. S. (2017). Coord. Chem. Rev. 342, 1–18.  Web of Science CrossRef CAS Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, M.-L., Wang, J.-J. & Chen, X.-L. (2014). J. Inorg. Organomet. Polym. 24, 879–883.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 5| Part 3| May 2018| Pages 293-303
ISSN: 2052-2525