Download citation
Download citation
link to html
Hodgesmithite, ideally (Cu,Zn)6Zn(SO4)2(OH)10·3H2O, is a new copper zinc sulfate mineral from the Block 14 Opencut, Broken Hill, New South Wales, Australia. Electron microprobe analysis provided the empirical formula Cu4.84,Zn2.16,Cd0.04[(SO4)1.89,(SiO4)0.12]2.01(OH)9.82·3.15H2O based on 21 oxygen atoms per formula unit. Hodgesmithite is trigonal, space group P3, with a = 8.1905 (12), c = 7.0990 (14) Å, V = 412.43 (12) Å3 and Z = 1. The crystal structure of hodgesmithite, R1 = 0.0272 for 5145 reflections with Fo > 4σ(Fo) measured with synchrotron X-ray radiation (λ = 0.71080 Å), contains interrupted sheets of edge-sharing Cu(O,OH)6 octahedra in the (001) plane. Every seventh octahedral site is vacant and capped by a ZnO4 tetrahedron and an SO4 tetrahedron which are attached to the sheet above and below this position. The sheets are additionally decorated on one side by SO4 tetrahedra that share a vertex incident to three Cu—O(apical) bonds. Interstitial H2O groups lie between the sheets. ZnO4 tetrahedra share vertices with SO4 tetrahedra from the adjacent sheet to provide linkage between the sheets in the c direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205252061901343X/lo5053sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061901343X/lo5053Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205252061901343X/lo5053sup3.pdf
Powder XRD data for hodgesmithite

CCDC reference: 1956842

Computing details top

Program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2018).

(I) top
Crystal data top
Cu6H16O21S2ZnDx = 3.474 Mg m3
Dm = 3.48 Mg m3
Dm measured by ?
Mr = 862.86Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 7472 reflections
a = 8.1905 (12) Åθ = 5.7–15.6°
c = 7.0990 (14) ŵ = 9.38 mm1
V = 412.43 (15) Å3T = 100 K
Z = 1Plate, blue
F(000) = 4200.03 × 0.02 × 0.004 mm
Data collection top
ADSC Quantum 210r
diffractometer
1522 reflections with I > 2σ(I)
φ scansRint = 0.052
Absorption correction: multi-scan
Multi-scan SADABS
θmax = 29.6°, θmin = 2.9°
Tmin = 0.509, Tmax = 0.746h = 1010
7949 measured reflectionsk = 1111
1545 independent reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.7665P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 0.76Δρmax = 1.74 e Å3
1545 reflectionsΔρmin = 0.98 e Å3
108 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.034 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.37307 (9)0.46800 (9)0.21533 (9)0.0123 (3)0.968 (10)
Cu20.24679 (8)0.05639 (9)0.21189 (8)0.0118 (3)0.952 (10)
ZN0.6666670.3333330.97881 (16)0.0116 (4)
S10.6666670.3333330.4807 (4)0.0169 (7)
S20.0000000.0000000.7911 (4)0.0128 (8)
O10.5184 (8)0.1423 (9)0.4149 (8)0.0287 (11)
O20.6666670.3333330.6953 (15)0.027 (2)
O30.1797 (6)0.1608 (6)0.7238 (6)0.0201 (9)
O40.0000000.0000000.0006 (10)0.0153 (14)
OH10.4134 (6)0.2817 (6)0.0521 (8)0.0159 (11)
OH20.1119 (6)0.4249 (5)0.0872 (8)0.0167 (9)
OH30.1772 (5)0.2276 (5)0.3403 (8)0.0155 (10)
OH40.3333330.6666670.3540 (12)0.0180 (15)
OW10.1111 (7)0.5056 (8)0.7158 (8)0.0345 (12)
H10.349 (17)0.256 (16)0.062 (12)0.050*
H20.123 (16)0.443 (17)0.039 (10)0.050*
H30.183 (17)0.201 (19)0.458 (11)0.050*
H40.3333330.6666670.488 (10)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0095 (4)0.0088 (4)0.0182 (4)0.0043 (2)0.0001 (2)0.00019 (19)
Cu20.0101 (3)0.0084 (3)0.0163 (4)0.0042 (2)0.0001 (2)0.0005 (2)
ZN0.0091 (4)0.0091 (4)0.0166 (5)0.0046 (2)0.0000.000
S10.0149 (8)0.0149 (8)0.0207 (12)0.0075 (4)0.0000.000
S20.0123 (9)0.0123 (9)0.0138 (11)0.0062 (4)0.0000.000
O10.026 (2)0.031 (3)0.032 (3)0.016 (2)0.000 (2)0.003 (2)
O20.028 (2)0.028 (2)0.025 (5)0.0140 (12)0.0000.000
O30.0172 (17)0.0183 (19)0.0211 (17)0.0061 (15)0.0013 (14)0.0019 (13)
O40.018 (2)0.018 (2)0.010 (3)0.0089 (10)0.0000.000
OH10.0111 (16)0.0135 (18)0.023 (3)0.0060 (13)0.0020 (13)0.0027 (12)
OH20.0166 (17)0.0137 (19)0.020 (2)0.0079 (14)0.0013 (15)0.0009 (12)
OH30.0110 (16)0.018 (2)0.018 (2)0.0074 (14)0.0004 (13)0.0010 (13)
OH40.017 (2)0.017 (2)0.020 (4)0.0086 (10)0.0000.000
OW10.022 (2)0.037 (3)0.028 (2)0.003 (2)0.0011 (17)0.002 (2)
Geometric parameters (Å, º) top
Cu1—OH2i1.953 (5)ZN—OH1v1.968 (4)
Cu1—OH32.019 (4)ZN—O22.013 (11)
Cu1—OH42.062 (4)S1—O1vi1.497 (6)
Cu1—OH12.070 (5)S1—O1vii1.497 (6)
Cu1—OH22.185 (5)S1—O11.497 (6)
Cu1—O12.455 (5)S1—O21.523 (13)
Cu1—Cu22.9915 (10)S2—O3ii1.480 (4)
Cu2—OH2ii1.930 (4)S2—O31.480 (4)
Cu2—OH31.980 (4)S2—O3viii1.480 (4)
Cu2—OH3ii2.001 (4)S2—O4v1.487 (7)
Cu2—OH12.009 (4)OH1—H10.93 (6)
Cu2—O42.370 (5)OH2—H20.90 (7)
Cu2—O12.442 (5)OH3—H30.87 (7)
ZN—OH1iii1.968 (4)OH4—H40.95 (7)
ZN—OH1iv1.968 (4)
OH2i—Cu1—OH3174.35 (18)O1vii—S1—O2108.2 (2)
OH2i—Cu1—OH483.88 (18)O1—S1—O2108.2 (2)
OH3—Cu1—OH4101.4 (2)O3ii—S2—O3110.12 (18)
OH2i—Cu1—OH192.4 (2)O3ii—S2—O3viii110.11 (18)
OH3—Cu1—OH182.47 (16)O3—S2—O3viii110.11 (18)
OH4—Cu1—OH1174.4 (3)O3ii—S2—O4v108.82 (18)
OH2i—Cu1—OH2105.4 (3)O3—S2—O4v108.82 (18)
OH3—Cu1—OH277.83 (15)O3viii—S2—O4v108.82 (18)
OH4—Cu1—OH278.35 (16)S1—O2—ZN180.0
OH1—Cu1—OH298.75 (17)S2ix—O4—Cu2129.27 (14)
OH2i—Cu1—Cu2133.46 (14)S2ix—O4—Cu2viii129.27 (14)
OH3—Cu1—Cu241.09 (12)Cu2—O4—Cu2viii84.2 (2)
OH4—Cu1—Cu2142.29 (15)S2ix—O4—Cu2ii129.27 (14)
OH1—Cu1—Cu242.04 (13)Cu2—O4—Cu2ii84.2 (2)
OH2—Cu1—Cu293.19 (10)Cu2viii—O4—Cu2ii84.2 (2)
OH2ii—Cu2—OH3179.6 (2)ZNix—OH1—Cu2120.4 (2)
OH2ii—Cu2—OH3ii84.53 (17)ZNix—OH1—Cu1121.9 (2)
OH3—Cu2—OH3ii95.1 (2)Cu2—OH1—Cu194.3 (2)
OH2ii—Cu2—OH195.3 (2)ZNix—OH1—H1104 (8)
OH3—Cu2—OH185.03 (18)Cu2—OH1—H1104 (8)
OH3ii—Cu2—OH1171.1 (2)Cu1—OH1—H1112 (7)
OH2ii—Cu2—O495.02 (16)Cu2viii—OH2—Cu1x108.2 (3)
OH3—Cu2—O484.84 (18)Cu2viii—OH2—Cu197.1 (2)
OH3ii—Cu2—O484.40 (18)Cu1x—OH2—Cu198.5 (2)
OH1—Cu2—O486.74 (18)Cu2viii—OH2—H2126 (7)
OH2ii—Cu2—Cu1138.26 (15)Cu1x—OH2—H2111 (9)
OH3—Cu2—Cu142.09 (12)Cu1—OH2—H2112 (8)
OH3ii—Cu2—Cu1137.20 (12)Cu2—OH3—Cu2viii105.9 (2)
OH1—Cu2—Cu143.64 (14)Cu2—OH3—Cu196.8 (2)
O4—Cu2—Cu190.31 (2)Cu2viii—OH3—Cu1100.4 (2)
OH1iii—ZN—OH1iv113.28 (14)Cu2—OH3—H3101 (9)
OH1iii—ZN—OH1v113.28 (14)Cu2viii—OH3—H3124 (8)
OH1iv—ZN—OH1v113.28 (14)Cu1—OH3—H3123 (8)
OH1iii—ZN—O2105.32 (17)Cu1—OH4—Cu1i99.1 (3)
OH1iv—ZN—O2105.32 (17)Cu1—OH4—Cu1x99.1 (3)
OH1v—ZN—O2105.32 (17)Cu1i—OH4—Cu1x99.1 (3)
O1vi—S1—O1vii110.7 (2)Cu1—OH4—H4118.5 (2)
O1vi—S1—O1110.7 (2)Cu1i—OH4—H4118.5 (2)
O1vii—S1—O1110.7 (2)Cu1x—OH4—H4118.5 (2)
O1vi—S1—O2108.2 (2)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x, z; (iii) y+1, xy, z+1; (iv) x+y+1, x+1, z+1; (v) x, y, z+1; (vi) y+1, xy, z; (vii) x+y+1, x+1, z; (viii) y, xy, z; (ix) x, y, z1; (x) x+y, x+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds