Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, 3K+·C6H3B3F93−, crystallizes as discrete anions and cations which are connected by K...F and K...π inter­actions. Two of the –BF3 residues attached to the aromatic ring adopt a conformation with all F atoms out of the plane of the aromatic ring, whereas the third residue has an almost synperiplanar conformation for one of the F—B—C—C torsion angles. It is remarkable that only one of the K+ cations inter­acts with the arene ring and that only one side of the aromatic ring coordinates to a K+ cation. As a result, a sandwich structure does not occur. All K+ ions show a coordination mode that cannot be conveniently described with a polyhedron. The anions are located in the (102) planes with the K+ cations located between these planes. The investigated crystal was a nonmerohedral twin with the fractional con­tribution of the minor twin component being 0.405 (4). The title compound is the first example of a structure containing a benzene ring substituted with three –BF3 groups. Only eight other structures have been reported in which a benzene ring carries at least one –BF3 group. Just five of these contain a K+ ion, but in none of these is the K+ ion coordinated to the aromatic ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110015787/ln3143sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110015787/ln3143Isup2.hkl
Contains datablock I

CCDC reference: 782522

Comment top

For oligoanionic arene rings we expect minimization of Coulomb repulsion to be realized by the location of a cation between the centres of two arene rings. We suppose that arenes bearing multiple borate moieties are compounds with a high tendency to form a multi-decker sandwich structure motif in the solid state. Multi-decker sandwich complexes are promising candidates for nanoscale applications as one-dimensional wires and spin-chains.

Our research focuses on the synthesis of aromatic systems with multiple boron substituents. Potassium organotrifluoroborates attracted our attention, because they were reported to be highly stable towards air and moisture (Molander & Ellis, 2007). In their pioneering work, Vedejs et al. (1995) described the synthesis of potassium organotrifluoroborates by treating organoboronic acids with excess potassium hydrogen fluoride (KHF2) in an aqueous medium. Corresponding organodifluoroboranes were obtained by subsequent fluoride abstraction. This work was followed by the report of Genêt & Darses (1997), who employed organotrifluoroborates in transition-metal-catalysed C—C-bond-forming reactions with arenediazonium tetrafluoroborates. The scope of applications in organic synthesis was expanded by Molander et al., who implemented organotrifluoroborates in Suzuki–Miyaura-type cross-coupling reactions with a variety of carbon electrophiles, notably aryltriflates (Molander & Bernardi, 2002) and arylhalides (Molander & Biolatto, 2003).

The key aspect of organotrifluoroborate chemistry is the tetracoordination of the B atom. In contrast to most trivalent organoboranes, the trifluoroborates do not suffer from protodeboronation or oxidative cleavage of the C—B bond. This stability provides access to a variety of chemical reactions that have been conducted in the presence of the trifluoroborate moiety, like, for example, halogen–metal exchange (Molander & Ellis, 2006), Wittig reactions (Molander et al., 2007) and ozonolysis of unsaturated C—C bonds (Molander & Cooper, 2007).

Our motivation to synthesize K+3[1,3,5-(F3B)3C6H3]3-, (I), lies in its potential application as an oligotopic aryl nucleophile for Suzuki–Miyaura-type cross-coupling reactions and in the development of borate salts with novel structural motives.

The asymmetric unit of the structure of the title compound (Fig. 1) is composed of one 1,3,5-tris(trifluoroborato)benzene trianion and three potassium cations. All three C—B bond lengths are essentially equal [C1—B1 1.603 (5), C3—B2 1.604 (5), C5—B3 1.604 (5) Å]. The B—F bond lengths range from 1.413 (5) for B2—F4 to 1.434 (5) Å for B1—F3 and B2—F5. The C—C bond lengths show typical values for aromatic compounds. Two BF3 groups adopt a conformation with all three F atoms out of the plane of the aromatic ring [torsion angles C2—C1—B1—F3 33.8 (6) and C6—C5—B3—F8 37.5 (5)°], whereas the third one has one F atom almost in the ring plane [torsion angle C4—C3—B2—F6 5.8 (6)°].

The anions are located in the (1 0 2) planes with the potassium cations situated between these planes (Fig. 2). Anions and cations are connected by K···F and K···π interactions. Cation K1 is located 2.917 Å from the centre of the aromatic ring (Fig. 3). The K···C distances range from 3.179 (4) for K1···C2 to 3.314 (4) Å for K1···C4. In addition, there are five short contacts less than 3.0 Å between K1 and F atoms [a sixth contact amounts to 3.022 (3) Å] (Table 1). It is remarkable to note that only one side of the aromatic ring shows a close K···π contact, whereas the centre of the other side has no close contact less than 4.0 Å to any symmetry-equivalent K atom. This side of the aromatic ring is shielded by another anion which is oriented in a parallel fashion with an interplanar distance of 4.07 Å. However, the two rings are not exactly stacked over one another and their centres show a displacement of 2.96 Å (Fig. 4). Nevertheless, there is no possibility for a K cation to approach this side of the ring. Cation K2 has six short contacts to F atoms of less than 3.0 Å and two slightly longer ones (Table 1 and Fig. 5). For cation K3, four short contacts to F atoms (less than 2.8 Å), three of approximately 3.0 Å and two slightly longer ones can be found (Table 1 and Fig. 6). The coordination geometry around all three K atoms is rather irregular and cannot be described conveniently by any polyhedron. This is a typical feature of K cations.

The solid-state structural motif of the title compound shows realization of an η6-coordination of one K cation. Currently there is no example in the literature with a main group metal cation coordinated to an arene ring with multiple borate residues in an η6 fashion. A recent search in the Cambridge Structural Database (CSD, Version 5.31 of November 2009, plus two updates, Allen, 2002) showed that a phenyl ring substituted with at least one BF3 group is a very rare structural element, because only eight structures containing this fragment were found. The first two of these do not contain a metal ion and, as a result of that, no structural motif similar to the title compound is possible.

In 1-(diisopropylaminomethyl)-2-(trifluoroboryl)benzene (CSD refcode DECSAG; Coghlan et al., 2005), there is a diisopropylaminomethyl residue ortho to the BF3 substituent of the phenyl ring. However, this molecule is neutral and there is no cation at all available for possible coordination.

Tetra-n-butylammonium phenyltrifluoroborate (CSD refcode NELRIF; Quach et al., 2001) crystallizes as discrete tetra-n-butylammoniun ions and phenyltrifluoroborate ions without any close contacts between anions and cations. The positively charged N atom is surrounded by the bulky n-butyl groups and cannot form any close contact to other atoms.

(1-3.5,6-η-Cyclo-octadienyl)ruthenium phenyltrifluoroborate (CSD refcode OCRUBF; Ashworth et al., 1977) is the first example of these eight structures containing a metal ion. In this case, a Ru atom is bonded in an η6 fashion to the aromatic ring and to the double bonds of a cyclo-octadienyl ring. Although there are F atoms available for potential coordination, no short Ru···F interactions are observed. For this structure, it can be concluded that Ru prefers the coordination to π electrons instead of to F atoms.

In (trifluoro(2-((trifluoroacetyl)amino)phenyl)borate)- (dibenzo-18-crown-6)-potassium chloroform solvate (CSD refcode XONFIQ; Hudnall et al., 2006), a K cation is coordinated by two F atoms of the BF3 group with K···F distances of 2.774 and 2.940 Å, and by the six O atoms of a crown ether fragment. The K cation is not coordinated by the aromatic ring. The K···O interactions are by far stronger than any potential K···π interaction.

In aqua-(18-crown-6)-((5-t-butyl-4-hydroxy-3- ((2,6-di-isopropylphenyl)iminomethyl)phenyl)trifluoroborate-F)-potassium perdeuterobenzene solvate (CSD refcode FIMLIX) and (µ2-2-t-butyl-4-(trifluoroborato)-6- ((2,6-di-isopropylphenyl)iminomethyl)phenolato-F,F',N,O)-(18-crown-6)-methyl- (trimethylphosphine)-palladium(ii)-potassium acetonitrile solvate (CSD refcode FIMMAQ; Groux et al., 2005) there is an aromatic ring substituted with one BF3 group and three other residues. However, the K ion in these two structures is only coordinated by F atoms and O atoms with K···F distances ranging from 2.657 to 3.153 Å in the first, and from 2.654 to 3.125 Å in the second structure, respectively. Thus, these two structures are two further examples demonstrating that a K···O or K···F interaction is stronger than a K···π contact and the former contacts are preferred to the latter.

The crystal structure of catena-((µ4-1,2-bis(trifluoroboryl)-tetrafluorobenzene)-di-potassium) (CSD refcode ECUFUE; Chase et al., 2006) is, in principle, comparable with that of the title compound because it lacks strong donor groups, e.g. O atoms. It features an aromatic ring with two BF3 groups in an ortho relationship and four fluoro ligands on the remaining aromatic C atoms. The electron-withdrawing character of these fluoro substituents removes negative charge from the π-system of the ring and prevents the K+ cation coordinating to the aromatic ring. Both K+ cations only show contacts to F atoms displaying an irregular coordination mode. This example shows that a certain π electron density is required for a the coordination of an aromatic ring to a K ion. Incidentally, there is no example in the CSD where a phenyl ring substituted with at least one F atom coordinates to a K ion.

Of the eight structures revealed by the CSD search, potassium trifluorophenylborate (CSD refcode YUHJUG; Conole et al., 1995) is the structure which is the most similar to that of the title compound. The aromatic ring is substituted with only one BF3 group and, as a result, there is just one K counter-ion. However, no K···π interaction occurs. The K+ ion has seven short contacts to F atoms ranging from 2.640 (5) to 2.951 (5) Å and one slightly longer one of 3.422 (6) Å. The phenyl ring, on the other hand, acts as an acceptor of two C—H hydrogen bonds each from either side of the ring [C—H 1.18 Å, H···Cgi 2.80 Å, C—H···Cgi 153° and C—H 1.11 Å, H···Cgii 2.97 Å, C—H···Cgii 144°; Cg is the centre of gravity of the phenyl ring; symmetry operators: (i) -1/2-x, y, -1/2+z, (ii) 1/2-x, y, 1/2+z]. In the title compound, on the other hand, C—H···π contacts are impossible because the H atoms are shielded by the BF3 substituents in the ortho-position to them. The C—H···π interactions may be the reason for the absence of K···π contacts in potassium trifluorophenylborate, but from just one example, it cannot be deduced without a doubt that the C—H···π interactions are the decisive reason that the K+ ions do not coordinate to the aromatic ring.

Summarizing, it can be said that the molecular geometry of the anion has no unusual features. The coordination to the K cations, on the other hand, shows K···π contacts, a feature which has not been observed previously for aromatic rings bearing a BF3 group. Since only one of two possible K···arene contacts is observed in the title structure, it can be concluded that this interaction is rather weak. The structures retrieved from the CSD show that other interactions (e.g. K···O) are stronger than K···π interactions and therefore the former are more often observed than the latter.

Related literature top

For related literature, see: Allen (2002); Ashworth et al. (1977); Bolte (2004); Chase et al. (2006); Coghlan et al. (2005); Conole et al. (1995); Genêt & Darses (1997); Groux et al. (2005); Hudnall et al. (2006); Molander & Bernardi (2002); Molander & Biolatto (2003); Molander & Cooper (2007); Molander & Ellis (2006, 2007); Molander, Ham & Canturk (2007); Morgan et al. (2000); Quach et al. (2001); Vedejs et al. (1995); Yuen & Hutton (2005).

Experimental top

The synthesis of aryltrifluoroborates from arylboronic acid pinacol esters was reported previously (Yuen & Hutton, 2005). To ensure complete conversion to the trianion we applied a larger excess of the fluoride source per boron functionality than described in the literature.

In a glas tube (1.5 cm in diameter, 16 cm length), a solution of potassium hydrogen fluoride (0.78 g, 10.0 mmol) in water (3.0 ml) was carefully layered with water (3.0 ml). 1,3,5-Tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (0.22 g, 0.5 mmol) synthesized according to a literature procedure (Morgan et al., 2000) was dissolved in a mixture of hexane (8.0 ml) and diethylether (5.0 ml) and this solution was placed on top of the water layer. After 5 d, a colourless solid deposited on the inner surface of the glas vessel within the aqueous phase. One week later, crystals were discovered floating in the lower phase close to the interface between the two layers.

To our knowledge there are no other synthetic routes described in the literature which lead to aromatic compounds with more than one trifluoroborate substituent attached to the central ring when starting out from the corresponding arylboronic acid pinacolesters. Our method has not been tested on a large preparative scale yet. Attempts to obtain the title compound via typical procedures that have been reported for various mono-trifluoroborate-substituted aromatic compounds failed. We assume that the tendency of aromatic trifluoroborate compounds to undergo hydrolysis increases with the number of BF3 residues connected to the central aromatic ring. Consequently, this will complicate the isolation of pure material from aqueous media.

Refinement top

Having encountered problems during the determination of the unit-cell parameters of several crystals of (I), all of which looked to be of good quality, the unit cell was eventually determined using approximately two-thirds of the inital reflections. The same unit cell in a different orientation was obtained for the remaining third of the reflections, indicating that the crystals were twinned. The structure could be solved, but anisotropic refinement converged with wR2 = 0.442 and R1 = 0.134 using all data. At this point, the anisotropic displacement parameters appeared strange and high residual peaks showed up in difference electron-density maps (highest peak 2.06 e Å-3 and deepest hole -0.96 e Å-3). The twin law (-1 0 0/-0.587 1 -0.477/0 0 -1) corresponding to a rotation of 2.17° about [0 1 0] was obtained using the program TWINLAW (Bolte, 2004). The file containing the reflection data was then modified using the program HKLF5 (Bolte, 2004), using a distance of 0.017 Å-1 as the maximum distance for overlap of two reflections of the different domains. With this treatment R1 dropped below 0.1 and all H atoms could now be located in a difference Fourier map. They were refined using a riding model with isotropic displacement parameters Uiso(H) set to 1.2Ueq(C) and with C—H = 0.95 Å. The fractional contribution of the minor twin component refined to 0.405 (4).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit of the title compound with the atom-numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound. Short K···F contacts are drawn as dashed lines, the K···π contacts are drawn as dashed solid bonds. Colour codes: C (grey), B (light brown), F (green), K (blue).
[Figure 3] Fig. 3. Environment of cation K1. H atoms have been omitted. Symmetry operators for generating equivalent atoms: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z; (iii)-x+1, -y+1, -z+1.
[Figure 4] Fig. 4. Shielding of the aromatic ring. The second asymmetric unit was generated by the symmetry operation -x+1, -y+1, -z+2.
[Figure 5] Fig. 5. Environment of cation K2. Symmetry operators for generating equivalent atoms: (iv) -x, -y+1, -z+2; (v) -x+1, -y, -z+2; (vi) x, y-1, z; (vii) -x+1, -y+1, -z+2.
[Figure 6] Fig. 6. Environment of cation K3. Symmetry operators for generating equivalent atoms: (i) -x+1, -y+2, -z+1; (viii) -x, -y+2, -z+2; (ix) x, y+1, z; (x) x-1, y+1, z.
tripotassium benzene-1,3,5-tris(trifluoroborate) top
Crystal data top
3K+·C6H3B3F93Z = 2
Mr = 395.81F(000) = 384
Triclinic, P1Dx = 2.052 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4025 (15) ÅCell parameters from 6084 reflections
b = 8.9349 (18) Åθ = 3.7–25.9°
c = 11.160 (2) ŵ = 1.16 mm1
α = 68.66 (3)°T = 173 K
β = 74.28 (3)°Block, colourless
γ = 71.14 (3)°0.35 × 0.30 × 0.28 mm
V = 640.7 (2) Å3
Data collection top
Stoe IPDS II two-circle
diffractometer
2378 independent reflections
Radiation source: fine-focus sealed tube2185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω scansθmax = 25.8°, θmin = 3.7°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 88
Tmin = 0.688, Tmax = 0.738k = 1010
6291 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1361P)2 + 0.1647P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2378 reflectionsΔρmax = 0.70 e Å3
192 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.118 (16)
Crystal data top
3K+·C6H3B3F93γ = 71.14 (3)°
Mr = 395.81V = 640.7 (2) Å3
Triclinic, P1Z = 2
a = 7.4025 (15) ÅMo Kα radiation
b = 8.9349 (18) ŵ = 1.16 mm1
c = 11.160 (2) ÅT = 173 K
α = 68.66 (3)°0.35 × 0.30 × 0.28 mm
β = 74.28 (3)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2378 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
2185 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.738Rint = 0.093
6291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.12Δρmax = 0.70 e Å3
2378 reflectionsΔρmin = 0.57 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.28437 (12)0.79541 (10)0.54544 (8)0.0183 (3)
K20.25948 (13)0.10448 (10)1.09899 (8)0.0194 (3)
K30.04284 (13)1.26591 (11)0.73201 (9)0.0207 (3)
C10.6578 (5)0.6954 (5)0.6746 (4)0.0141 (8)
C20.5114 (6)0.7711 (5)0.7589 (4)0.0143 (8)
H20.51270.87720.75870.017*
C30.3620 (6)0.6993 (5)0.8442 (4)0.0137 (8)
C40.3626 (5)0.5433 (4)0.8394 (4)0.0139 (8)
H40.26510.49050.89670.017*
C50.5009 (5)0.4627 (4)0.7539 (3)0.0131 (7)
C60.6475 (5)0.5419 (5)0.6723 (4)0.0130 (7)
H60.74270.48950.61370.016*
B10.8286 (7)0.7783 (6)0.5806 (4)0.0171 (9)
B20.2005 (6)0.8011 (5)0.9341 (4)0.0148 (9)
B30.4964 (6)0.2935 (5)0.7367 (4)0.0141 (8)
F10.7749 (4)0.8906 (3)0.4599 (2)0.0327 (7)
F20.9985 (4)0.6580 (3)0.5482 (3)0.0325 (7)
F30.8840 (4)0.8726 (3)0.6384 (2)0.0249 (6)
F40.2817 (4)0.8523 (4)1.0089 (3)0.0319 (7)
F50.0893 (3)0.9489 (3)0.8540 (2)0.0247 (6)
F60.0623 (4)0.7121 (3)1.0212 (2)0.0243 (6)
F70.4053 (3)0.3239 (3)0.6303 (2)0.0218 (6)
F80.6877 (3)0.1924 (3)0.7095 (2)0.0181 (5)
F90.3941 (4)0.1926 (3)0.8477 (2)0.0225 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0143 (5)0.0245 (5)0.0184 (5)0.0050 (4)0.0025 (3)0.0094 (4)
K20.0214 (5)0.0211 (5)0.0159 (5)0.0048 (4)0.0028 (3)0.0067 (4)
K30.0180 (5)0.0242 (5)0.0194 (5)0.0034 (4)0.0027 (4)0.0082 (4)
C10.0099 (17)0.0164 (18)0.0171 (18)0.0034 (14)0.0031 (14)0.0056 (14)
C20.0151 (19)0.0152 (18)0.0161 (18)0.0027 (15)0.0051 (14)0.0078 (14)
C30.0115 (17)0.0164 (18)0.0147 (18)0.0004 (14)0.0021 (14)0.0094 (14)
C40.0109 (17)0.0142 (17)0.0147 (18)0.0041 (14)0.0002 (14)0.0029 (14)
C50.0108 (17)0.0150 (17)0.0127 (17)0.0035 (14)0.0001 (13)0.0044 (14)
C60.0101 (17)0.0153 (17)0.0127 (16)0.0009 (14)0.0002 (13)0.0067 (13)
B10.014 (2)0.021 (2)0.021 (2)0.0085 (18)0.0047 (17)0.0132 (17)
B20.015 (2)0.018 (2)0.013 (2)0.0047 (17)0.0020 (16)0.0098 (17)
B30.014 (2)0.0156 (19)0.013 (2)0.0067 (16)0.0043 (15)0.0080 (16)
F10.0486 (18)0.0324 (15)0.0204 (13)0.0238 (13)0.0034 (12)0.0066 (11)
F20.0166 (13)0.0344 (15)0.0536 (17)0.0120 (11)0.0151 (12)0.0317 (13)
F30.0206 (13)0.0322 (14)0.0333 (14)0.0161 (11)0.0036 (10)0.0207 (11)
F40.0343 (16)0.0372 (15)0.0354 (15)0.0019 (12)0.0082 (12)0.0286 (12)
F50.0178 (13)0.0206 (12)0.0262 (13)0.0016 (10)0.0006 (10)0.0051 (10)
F60.0234 (13)0.0234 (12)0.0175 (12)0.0058 (10)0.0097 (10)0.0061 (10)
F70.0216 (13)0.0291 (13)0.0202 (12)0.0075 (10)0.0055 (9)0.0112 (10)
F80.0165 (12)0.0152 (11)0.0202 (12)0.0013 (9)0.0010 (9)0.0080 (9)
F90.0275 (14)0.0211 (12)0.0189 (12)0.0154 (10)0.0080 (10)0.0065 (10)
Geometric parameters (Å, º) top
K1—F1i2.677 (3)C2—H20.9500
K1—F2ii2.758 (3)C3—C41.413 (5)
K1—F8iii2.761 (2)C3—B21.604 (5)
K1—F7iii2.785 (3)C4—C51.404 (5)
K1—F3ii2.805 (3)C4—H40.9500
K1—F3i3.022 (3)C5—C61.414 (5)
K1—C23.179 (4)C5—B31.604 (5)
K1—C13.185 (4)C6—K3xi3.207 (4)
K1—C63.187 (4)C6—H60.9500
K1—C53.275 (4)B1—F21.425 (5)
K1—C33.289 (4)B1—F31.434 (5)
K1—C43.314 (4)B1—K1xii3.337 (4)
K2—F92.620 (2)B1—K1i3.445 (5)
K2—F5iv2.655 (3)B1—K3i3.492 (5)
K2—F8v2.723 (3)B2—F41.413 (5)
K2—F4vi2.727 (3)B2—F61.431 (4)
K2—F6iv2.787 (3)B2—F51.434 (5)
K2—F3vii2.893 (3)B2—K2iv3.322 (5)
K2—F9v3.042 (3)B3—F71.421 (5)
K2—C2vii3.254 (4)B3—F91.429 (4)
K2—B2iv3.322 (5)B3—F81.432 (5)
K2—F4vii3.380 (3)B3—K1iii3.376 (4)
K2—B3v3.488 (5)B3—K3vi3.461 (4)
K3—F52.610 (3)B3—K2v3.488 (5)
K3—F6viii2.713 (3)F2—K1xii2.758 (3)
K3—F7ix2.753 (3)F2—K3i3.029 (3)
K3—F1i2.785 (3)F2—K3xi3.314 (3)
K3—F9ix2.993 (3)F3—K1xii2.805 (3)
K3—F8x3.000 (3)F3—K2vii2.893 (3)
K3—F2i3.029 (3)F3—K1i3.022 (3)
K3—C6x3.207 (4)F4—K2ix2.727 (3)
K3—F4viii3.302 (3)F4—K3viii3.302 (3)
K3—F2x3.314 (3)F4—K2vii3.380 (3)
K3—B3ix3.461 (4)F5—K2iv2.655 (3)
K3—B1i3.492 (5)F6—K3viii2.713 (3)
F1—B11.424 (6)F6—K2iv2.787 (3)
F1—K1i2.677 (3)F7—K3vi2.753 (3)
F1—K3i2.785 (3)F7—K1iii2.785 (3)
C1—C21.398 (6)F8—K2v2.723 (3)
C1—C61.408 (5)F8—K1iii2.761 (2)
C1—B11.603 (5)F8—K3xi3.000 (2)
C2—C31.409 (5)F9—K3vi2.993 (3)
C2—K2vii3.254 (4)F9—K2v3.042 (3)
F1i—K1—F2ii124.43 (10)F5—K3—F2x173.99 (8)
F1i—K1—F8iii105.82 (8)F6viii—K3—F2x103.20 (8)
F2ii—K1—F8iii74.07 (8)F7ix—K3—F2x70.65 (8)
F1i—K1—F7iii117.41 (9)F1i—K3—F2x99.47 (8)
F2ii—K1—F7iii103.46 (8)F9ix—K3—F2x102.86 (8)
F8iii—K1—F7iii48.51 (7)F8x—K3—F2x102.64 (7)
F1i—K1—F3ii79.59 (9)F2i—K3—F2x63.79 (8)
F2ii—K1—F3ii48.88 (7)C6x—K3—F2x53.05 (8)
F8iii—K1—F3ii104.04 (8)F4viii—K3—F2x122.61 (8)
F7iii—K1—F3ii149.31 (8)F5—K3—B3ix97.68 (10)
F1i—K1—F3i46.70 (8)F6viii—K3—B3ix87.10 (10)
F2ii—K1—F3i93.34 (8)F7ix—K3—B3ix23.02 (9)
F8iii—K1—F3i63.28 (7)F1i—K3—B3ix86.94 (10)
F7iii—K1—F3i98.94 (8)F9ix—K3—B3ix24.21 (8)
F3ii—K1—F3i73.59 (8)F8x—K3—B3ix170.02 (9)
F1i—K1—C275.07 (10)F2i—K3—B3ix109.07 (9)
F2ii—K1—C2134.59 (10)C6x—K3—B3ix132.31 (10)
F8iii—K1—C2145.74 (9)F4viii—K3—B3ix125.76 (9)
F7iii—K1—C299.76 (9)F2x—K3—B3ix82.78 (9)
F3ii—K1—C2109.67 (10)F5—K3—B1i94.98 (10)
F3i—K1—C2120.90 (9)F6viii—K3—B1i177.51 (9)
F1i—K1—C189.32 (10)F7ix—K3—B1i73.05 (9)
F2ii—K1—C1139.24 (10)F1i—K3—B1i22.85 (10)
F8iii—K1—C1121.99 (9)F9ix—K3—B1i111.21 (9)
F7iii—K1—C174.53 (9)F8x—K3—B1i78.68 (9)
F3ii—K1—C1133.92 (9)F2i—K3—B1i23.91 (9)
F3i—K1—C1127.40 (8)C6x—K3—B1i93.80 (11)
C2—K1—C125.38 (10)F4viii—K3—B1i134.18 (9)
F1i—K1—C6114.81 (10)F2x—K3—B1i79.00 (10)
F2ii—K1—C6115.83 (10)B3ix—K3—B1i94.35 (11)
F8iii—K1—C6112.51 (9)B1—F1—K1i110.5 (2)
F7iii—K1—C665.18 (9)B1—F1—K3i107.7 (2)
F3ii—K1—C6133.67 (9)K1i—F1—K3i130.97 (10)
F3i—K1—C6148.84 (8)C2—C1—C6117.0 (3)
C2—K1—C644.16 (10)C2—C1—B1122.8 (3)
C1—K1—C625.54 (9)C6—C1—B1120.2 (3)
F1i—K1—C5126.15 (9)C2—C1—K177.1 (2)
F2ii—K1—C594.24 (10)C6—C1—K177.3 (2)
F8iii—K1—C5121.25 (9)B1—C1—K1113.7 (2)
F7iii—K1—C581.52 (9)C1—C2—C3123.8 (3)
F3ii—K1—C5109.97 (9)C1—C2—K177.6 (2)
F3i—K1—C5172.08 (8)C3—C2—K181.8 (2)
C2—K1—C551.45 (10)C1—C2—K2vii104.3 (2)
C1—K1—C545.00 (9)C3—C2—K2vii113.8 (2)
C6—K1—C525.23 (9)K1—C2—K2vii157.11 (13)
F1i—K1—C384.80 (9)C1—C2—H2118.1
F2ii—K1—C3110.02 (10)C3—C2—H2118.1
F8iii—K1—C3164.11 (9)K1—C2—H2112.3
F7iii—K1—C3116.23 (9)K2vii—C2—H246.2
F3ii—K1—C389.31 (9)C2—C3—C4116.3 (3)
F3i—K1—C3130.18 (9)C2—C3—B2118.8 (3)
C2—K1—C325.09 (9)C4—C3—B2124.8 (3)
C1—K1—C344.93 (10)C2—C3—K173.1 (2)
C6—K1—C351.66 (10)C4—C3—K178.6 (2)
C5—K1—C344.29 (9)B2—C3—K1115.2 (2)
F1i—K1—C4109.28 (10)C5—C4—C3122.9 (3)
F2ii—K1—C492.60 (10)C5—C4—K176.2 (2)
F8iii—K1—C4143.89 (9)C3—C4—K176.7 (2)
F7iii—K1—C4105.74 (9)C5—C4—H4118.5
F3ii—K1—C490.48 (10)C3—C4—H4118.5
F3i—K1—C4152.48 (9)K1—C4—H4119.5
C2—K1—C443.28 (9)C4—C5—C6117.4 (3)
C1—K1—C451.30 (10)C4—C5—B3124.5 (3)
C6—K1—C443.41 (9)C6—C5—B3118.0 (3)
C5—K1—C424.59 (9)C4—C5—K179.3 (2)
C3—K1—C424.71 (9)C6—C5—K173.9 (2)
F9—K2—F5iv110.97 (9)B3—C5—K1113.2 (2)
F9—K2—F8v132.81 (8)C1—C6—C5122.5 (3)
F5iv—K2—F8v80.34 (8)C1—C6—K177.2 (2)
F9—K2—F4vi72.55 (9)C5—C6—K180.9 (2)
F5iv—K2—F4vi70.24 (9)C1—C6—K3xi110.2 (2)
F8v—K2—F4vi68.89 (8)C5—C6—K3xi103.9 (2)
F9—K2—F6iv74.16 (8)K1—C6—K3xi165.62 (14)
F5iv—K2—F6iv49.46 (7)C1—C6—H6118.8
F8v—K2—F6iv129.72 (8)C5—C6—H6118.8
F4vi—K2—F6iv88.68 (9)K1—C6—H6113.3
F9—K2—F3vii159.34 (8)K3xi—C6—H652.4
F5iv—K2—F3vii78.70 (8)F1—B1—F2106.3 (3)
F8v—K2—F3vii65.50 (8)F1—B1—F3105.9 (3)
F4vi—K2—F3vii128.01 (9)F2—B1—F3107.2 (3)
F6iv—K2—F3vii101.76 (8)F1—B1—C1112.5 (3)
F9—K2—F9v92.27 (8)F2—B1—C1112.3 (3)
F5iv—K2—F9v118.76 (7)F3—B1—C1112.1 (3)
F8v—K2—F9v46.59 (7)F1—B1—K1xii102.0 (2)
F4vi—K2—F9v64.23 (8)F2—B1—K1xii54.22 (17)
F6iv—K2—F9v152.52 (8)F3—B1—K1xii56.21 (18)
F3vii—K2—F9v98.91 (8)C1—B1—K1xii145.4 (3)
F9—K2—C2vii108.01 (9)F1—B1—K1i46.69 (18)
F5iv—K2—C2vii135.84 (10)F2—B1—K1i129.9 (2)
F8v—K2—C2vii88.22 (9)F3—B1—K1i61.0 (2)
F4vi—K2—C2vii143.09 (10)C1—B1—K1i117.1 (3)
F6iv—K2—C2vii127.66 (9)K1xii—B1—K1i86.98 (11)
F3vii—K2—C2vii57.92 (8)F1—B1—K3i49.46 (19)
F9v—K2—C2vii78.96 (9)F2—B1—K3i59.5 (2)
F9—K2—B2iv95.05 (10)F3—B1—K3i132.3 (2)
F5iv—K2—B2iv24.68 (9)C1—B1—K3i115.2 (2)
F8v—K2—B2iv104.93 (10)K1xii—B1—K3i86.52 (10)
F4vi—K2—B2iv81.50 (10)K1i—B1—K3i91.52 (12)
F6iv—K2—B2iv25.20 (8)F4—B2—F6108.0 (3)
F3vii—K2—B2iv87.21 (9)F4—B2—F5106.7 (3)
F9v—K2—B2iv140.84 (9)F6—B2—F5105.4 (3)
C2vii—K2—B2iv133.77 (11)F4—B2—C3112.6 (3)
F9—K2—F4vii60.16 (8)F6—B2—C3113.6 (3)
F5iv—K2—F4vii169.45 (8)F5—B2—C3110.0 (3)
F8v—K2—F4vii101.47 (8)F4—B2—K2iv128.9 (3)
F4vi—K2—F4vii100.55 (8)F6—B2—K2iv56.01 (19)
F6iv—K2—F4vii127.26 (8)F5—B2—K2iv50.61 (17)
F3vii—K2—F4vii111.59 (7)C3—B2—K2iv118.2 (2)
F9v—K2—F4vii58.77 (7)F7—B3—F9105.6 (3)
C2vii—K2—F4vii54.71 (8)F7—B3—F8106.0 (3)
B2iv—K2—F4vii152.30 (9)F9—B3—F8106.9 (3)
F9—K2—B3v112.88 (10)F7—B3—C5111.8 (3)
F5iv—K2—B3v98.33 (9)F9—B3—C5114.2 (3)
F8v—K2—B3v22.65 (8)F8—B3—C5111.8 (3)
F4vi—K2—B3v62.81 (10)F7—B3—K1iii53.86 (17)
F6iv—K2—B3v144.44 (9)F9—B3—K1iii125.9 (2)
F3vii—K2—B3v82.49 (9)F8—B3—K1iii52.97 (17)
F9v—K2—B3v24.05 (8)C5—B3—K1iii119.9 (2)
C2vii—K2—B3v84.79 (10)F7—B3—K3vi49.27 (17)
B2iv—K2—B3v122.66 (11)F9—B3—K3vi59.22 (18)
F4vii—K2—B3v81.26 (9)F8—B3—K3vi132.5 (2)
F9—K2—K2v50.57 (7)C5—B3—K3vi115.1 (2)
F5iv—K2—K2v127.60 (7)K1iii—B3—K3vi95.98 (11)
F8v—K2—K2v85.48 (7)F7—B3—K2v122.0 (2)
F4vi—K2—K2v57.61 (7)F9—B3—K2v60.19 (19)
F6iv—K2—K2v120.27 (6)F8—B3—K2v47.06 (16)
F3vii—K2—K2v137.96 (7)C5—B3—K2v125.5 (3)
F9v—K2—K2v41.70 (5)K1iii—B3—K2v87.75 (11)
C2vii—K2—K2v93.31 (8)K3vi—B3—K2v106.17 (11)
B2iv—K2—K2v131.15 (8)B1—F2—K1xii101.0 (2)
F4vii—K2—K2v42.94 (5)B1—F2—K3i96.6 (2)
B3v—K2—K2v63.44 (8)K1xii—F2—K3i107.90 (9)
F5—K3—F6viii82.81 (8)B1—F2—K3xi118.1 (2)
F5—K3—F7ix107.65 (9)K1xii—F2—K3xi114.62 (11)
F6viii—K3—F7ix108.69 (8)K3i—F2—K3xi116.21 (8)
F5—K3—F1i74.59 (9)B1—F3—K1xii98.6 (2)
F6viii—K3—F1i155.61 (9)B1—F3—K2vii126.2 (2)
F7ix—K3—F1i70.64 (8)K1xii—F3—K2vii120.00 (10)
F5—K3—F9ix79.10 (8)B1—F3—K1i94.5 (2)
F6viii—K3—F9ix69.56 (8)K1xii—F3—K1i106.41 (8)
F7ix—K3—F9ix46.30 (7)K2vii—F3—K1i107.10 (9)
F1i—K3—F9ix96.79 (9)B2—F4—K2ix145.2 (3)
F5—K3—F8x76.04 (8)B2—F4—K3viii90.2 (2)
F6viii—K3—F8x99.62 (8)K2ix—F4—K3viii87.25 (8)
F7ix—K3—F8x151.68 (7)B2—F4—K2vii118.5 (2)
F1i—K3—F8x83.92 (8)K2ix—F4—K2vii79.45 (8)
F9ix—K3—F8x153.99 (7)K3viii—F4—K2vii145.46 (10)
F5—K3—F2i110.56 (9)B2—F5—K3147.3 (2)
F6viii—K3—F2i156.61 (8)B2—F5—K2iv104.7 (2)
F7ix—K3—F2i86.07 (7)K3—F5—K2iv105.12 (9)
F1i—K3—F2i45.94 (8)B2—F6—K3viii116.9 (2)
F9ix—K3—F2i130.49 (7)B2—F6—K2iv98.8 (2)
F8x—K3—F2i66.91 (7)K3viii—F6—K2iv105.57 (9)
F5—K3—C6x128.21 (9)B3—F7—K3vi107.7 (2)
F6viii—K3—C6x86.69 (10)B3—F7—K1iii101.8 (2)
F7ix—K3—C6x123.70 (9)K3vi—F7—K1iii133.07 (9)
F1i—K3—C6x114.46 (10)B3—F8—K2v110.3 (2)
F9ix—K3—C6x142.04 (8)B3—F8—K1iii102.6 (2)
F8x—K3—C6x56.03 (8)K2v—F8—K1iii120.40 (9)
F2i—K3—C6x69.94 (9)B3—F8—K3xi122.5 (2)
F5—K3—F4viii61.88 (8)K2v—F8—K3xi93.73 (8)
F6viii—K3—F4viii43.63 (7)K1iii—F8—K3xi108.63 (8)
F7ix—K3—F4viii148.77 (8)B3—F9—K2149.8 (2)
F1i—K3—F4viii126.97 (8)B3—F9—K3vi96.6 (2)
F9ix—K3—F4viii102.80 (7)K2—F9—K3vi102.40 (8)
F8x—K3—F4viii58.33 (7)B3—F9—K2v95.8 (2)
F2i—K3—F4viii125.01 (7)K2—F9—K2v87.73 (8)
C6x—K3—F4viii75.92 (9)K3vi—F9—K2v134.04 (9)
F1i—K1—C1—C254.8 (2)C3—K1—C6—K3xi173.3 (6)
F2ii—K1—C1—C293.6 (2)C4—K1—C6—K3xi141.5 (6)
F8iii—K1—C1—C2163.13 (19)K1i—F1—B1—F2129.9 (2)
F7iii—K1—C1—C2173.6 (2)K3i—F1—B1—F218.8 (3)
F3ii—K1—C1—C220.0 (3)K1i—F1—B1—F316.1 (3)
F3i—K1—C1—C284.1 (2)K3i—F1—B1—F3132.6 (2)
C6—K1—C1—C2122.0 (3)K1i—F1—B1—C1106.7 (3)
C5—K1—C1—C293.0 (2)K3i—F1—B1—C1104.6 (3)
C3—K1—C1—C228.5 (2)K1i—F1—B1—K1xii74.0 (2)
C4—K1—C1—C260.8 (2)K3i—F1—B1—K1xii74.68 (17)
F1i—K1—C1—C6176.8 (2)K3i—F1—B1—K1i148.7 (2)
F2ii—K1—C1—C628.3 (3)K1i—F1—B1—K3i148.7 (2)
F8iii—K1—C1—C674.9 (2)C2—C1—B1—F185.4 (5)
F7iii—K1—C1—C664.5 (2)C6—C1—B1—F192.9 (4)
F3ii—K1—C1—C6102.0 (2)K1—C1—B1—F14.1 (4)
F3i—K1—C1—C6153.96 (19)C2—C1—B1—F2154.6 (4)
C2—K1—C1—C6122.0 (3)C6—C1—B1—F227.1 (5)
C5—K1—C1—C629.00 (19)K1—C1—B1—F2115.8 (3)
C3—K1—C1—C693.5 (2)C2—C1—B1—F333.8 (6)
C4—K1—C1—C661.2 (2)C6—C1—B1—F3147.9 (4)
F1i—K1—C1—B165.6 (3)K1—C1—B1—F3123.4 (3)
F2ii—K1—C1—B1146.0 (2)C2—C1—B1—K1xii95.8 (5)
F8iii—K1—C1—B142.7 (3)C6—C1—B1—K1xii85.8 (5)
F7iii—K1—C1—B153.2 (2)K1—C1—B1—K1xii174.6 (3)
F3ii—K1—C1—B1140.4 (2)C2—C1—B1—K1i33.9 (5)
F3i—K1—C1—B136.3 (3)C6—C1—B1—K1i144.4 (3)
C2—K1—C1—B1120.4 (4)K1—C1—B1—K1i55.7 (3)
C6—K1—C1—B1117.6 (4)C2—C1—B1—K3i139.8 (3)
C5—K1—C1—B1146.6 (3)C6—C1—B1—K3i38.5 (4)
C3—K1—C1—B1148.9 (3)K1—C1—B1—K3i50.2 (3)
C4—K1—C1—B1178.8 (3)C2—C3—B2—F453.8 (5)
C6—C1—C2—C32.9 (6)C4—C3—B2—F4129.0 (4)
B1—C1—C2—C3178.7 (4)K1—C3—B2—F4137.5 (3)
K1—C1—C2—C371.2 (3)C2—C3—B2—F6176.9 (3)
C6—C1—C2—K168.3 (3)C4—C3—B2—F65.8 (6)
B1—C1—C2—K1110.1 (4)K1—C3—B2—F699.3 (3)
C6—C1—C2—K2vii135.2 (3)C2—C3—B2—F565.1 (4)
B1—C1—C2—K2vii46.4 (4)C4—C3—B2—F5112.2 (4)
K1—C1—C2—K2vii156.54 (14)K1—C3—B2—F518.6 (4)
F1i—K1—C2—C1122.2 (2)C2—C3—B2—K2iv120.3 (3)
F2ii—K1—C2—C1113.8 (2)C4—C3—B2—K2iv57.0 (5)
F8iii—K1—C2—C125.9 (3)K1—C3—B2—K2iv36.6 (3)
F7iii—K1—C2—C16.3 (2)C4—C5—B3—F795.1 (4)
F3ii—K1—C2—C1164.9 (2)C6—C5—B3—F781.1 (4)
F3i—K1—C2—C1112.9 (2)K1—C5—B3—F72.3 (4)
C6—K1—C2—C131.7 (2)C4—C5—B3—F924.7 (6)
C5—K1—C2—C164.6 (2)C6—C5—B3—F9159.1 (3)
C3—K1—C2—C1127.4 (3)K1—C5—B3—F9117.5 (3)
C4—K1—C2—C196.4 (2)C4—C5—B3—F8146.3 (4)
F1i—K1—C2—C3110.4 (2)C6—C5—B3—F837.5 (5)
F2ii—K1—C2—C313.6 (3)K1—C5—B3—F8121.0 (3)
F8iii—K1—C2—C3153.3 (2)C4—C5—B3—K1iii154.9 (3)
F7iii—K1—C2—C3133.7 (2)C6—C5—B3—K1iii21.3 (4)
F3ii—K1—C2—C337.5 (2)K1—C5—B3—K1iii62.2 (3)
F3i—K1—C2—C3119.7 (2)C4—C5—B3—K3vi41.1 (4)
C1—K1—C2—C3127.4 (3)C6—C5—B3—K3vi135.0 (3)
C6—K1—C2—C395.7 (2)K1—C5—B3—K3vi51.6 (2)
C5—K1—C2—C362.8 (2)C4—C5—B3—K2v94.3 (4)
C4—K1—C2—C331.0 (2)C6—C5—B3—K2v89.5 (4)
F1i—K1—C2—K2vii24.8 (3)K1—C5—B3—K2v172.95 (13)
F2ii—K1—C2—K2vii148.8 (3)F1—B1—F2—K1xii93.2 (3)
F8iii—K1—C2—K2vii71.5 (4)F3—B1—F2—K1xii19.7 (3)
F7iii—K1—C2—K2vii91.1 (4)C1—B1—F2—K1xii143.3 (3)
F3ii—K1—C2—K2vii97.7 (4)K1i—B1—F2—K1xii46.6 (3)
F3i—K1—C2—K2vii15.5 (4)K3i—B1—F2—K1xii109.74 (13)
C1—K1—C2—K2vii97.4 (4)F1—B1—F2—K3i16.5 (3)
C6—K1—C2—K2vii129.1 (4)F3—B1—F2—K3i129.4 (3)
C5—K1—C2—K2vii161.9 (4)C1—B1—F2—K3i107.0 (3)
C3—K1—C2—K2vii135.2 (5)K1xii—B1—F2—K3i109.74 (13)
C4—K1—C2—K2vii166.2 (4)K1i—B1—F2—K3i63.1 (3)
C1—C2—C3—C41.4 (6)F1—B1—F2—K3xi140.9 (2)
K1—C2—C3—C467.6 (3)F3—B1—F2—K3xi106.1 (3)
K2vii—C2—C3—C4129.8 (3)C1—B1—F2—K3xi17.5 (4)
C1—C2—C3—B2178.9 (4)K1xii—B1—F2—K3xi125.8 (2)
K1—C2—C3—B2109.9 (3)K1i—B1—F2—K3xi172.41 (16)
K2vii—C2—C3—B252.7 (4)K3i—B1—F2—K3xi124.46 (19)
C1—C2—C3—K169.0 (3)F1—B1—F3—K1xii94.1 (3)
K2vii—C2—C3—K1162.6 (2)F2—B1—F3—K1xii19.2 (3)
F1i—K1—C3—C265.4 (2)C1—B1—F3—K1xii142.9 (3)
F2ii—K1—C3—C2169.7 (2)K1i—B1—F3—K1xii107.37 (11)
F8iii—K1—C3—C267.4 (4)K3i—B1—F3—K1xii45.0 (4)
F7iii—K1—C3—C252.6 (2)F1—B1—F3—K2vii128.3 (3)
F3ii—K1—C3—C2145.0 (2)F2—B1—F3—K2vii118.4 (3)
F3i—K1—C3—C277.4 (2)C1—B1—F3—K2vii5.3 (5)
C1—K1—C3—C228.8 (2)K1xii—B1—F3—K2vii137.6 (3)
C6—K1—C3—C262.1 (2)K1i—B1—F3—K2vii115.0 (2)
C5—K1—C3—C294.9 (2)K3i—B1—F3—K2vii177.44 (15)
C4—K1—C3—C2122.3 (3)F1—B1—F3—K1i13.3 (3)
F1i—K1—C3—C4172.3 (2)F2—B1—F3—K1i126.6 (3)
F2ii—K1—C3—C447.4 (2)C1—B1—F3—K1i109.7 (3)
F8iii—K1—C3—C454.9 (4)K1xii—B1—F3—K1i107.37 (11)
F7iii—K1—C3—C469.7 (2)K3i—B1—F3—K1i62.4 (3)
F3ii—K1—C3—C492.7 (2)F6—B2—F4—K2ix94.7 (4)
F3i—K1—C3—C4160.3 (2)F5—B2—F4—K2ix18.2 (5)
C2—K1—C3—C4122.3 (3)C3—B2—F4—K2ix139.0 (3)
C1—K1—C3—C493.5 (2)K2iv—B2—F4—K2ix34.2 (6)
C6—K1—C3—C460.2 (2)F6—B2—F4—K3viii9.3 (3)
C5—K1—C3—C427.4 (2)F5—B2—F4—K3viii103.7 (2)
F1i—K1—C3—B248.9 (2)C3—B2—F4—K3viii135.5 (3)
F2ii—K1—C3—B275.9 (2)K2iv—B2—F4—K3viii51.2 (3)
F8iii—K1—C3—B2178.2 (3)F6—B2—F4—K2vii150.7 (2)
F7iii—K1—C3—B2167.0 (2)F5—B2—F4—K2vii96.4 (3)
F3ii—K1—C3—B230.7 (2)C3—B2—F4—K2vii24.4 (4)
F3i—K1—C3—B237.0 (3)K2iv—B2—F4—K2vii148.88 (17)
C2—K1—C3—B2114.4 (3)F4—B2—F5—K328.4 (5)
C1—K1—C3—B2143.2 (3)F6—B2—F5—K3143.1 (3)
C6—K1—C3—B2176.5 (3)C3—B2—F5—K394.0 (4)
C5—K1—C3—B2150.8 (3)K2iv—B2—F5—K3155.4 (4)
C4—K1—C3—B2123.3 (4)F4—B2—F5—K2iv127.0 (2)
C2—C3—C4—C51.0 (6)F6—B2—F5—K2iv12.3 (3)
B2—C3—C4—C5176.3 (4)C3—B2—F5—K2iv110.6 (3)
K1—C3—C4—C563.5 (4)F6viii—K3—F5—B270.3 (4)
C2—C3—C4—K164.5 (3)F7ix—K3—F5—B237.0 (4)
B2—C3—C4—K1112.9 (4)F1i—K3—F5—B2100.4 (4)
F1i—K1—C4—C5137.5 (2)F9ix—K3—F5—B20.1 (4)
F2ii—K1—C4—C594.5 (2)F8x—K3—F5—B2172.2 (4)
F8iii—K1—C4—C528.3 (3)F2i—K3—F5—B2129.5 (4)
F7iii—K1—C4—C510.3 (2)C6x—K3—F5—B2150.4 (4)
F3ii—K1—C4—C5143.4 (2)F4viii—K3—F5—B2110.9 (4)
F3i—K1—C4—C5163.17 (19)B3ix—K3—F5—B215.7 (4)
C2—K1—C4—C597.8 (2)B1i—K3—F5—B2110.8 (4)
C1—K1—C4—C564.7 (2)F6viii—K3—F5—K2iv84.97 (10)
C6—K1—C4—C531.4 (2)F7ix—K3—F5—K2iv167.64 (8)
C3—K1—C4—C5129.3 (3)F1i—K3—F5—K2iv104.29 (11)
F1i—K1—C4—C38.2 (2)F9ix—K3—F5—K2iv155.45 (10)
F2ii—K1—C4—C3136.2 (2)F8x—K3—F5—K2iv16.85 (8)
F8iii—K1—C4—C3157.7 (2)F2i—K3—F5—K2iv75.20 (10)
F7iii—K1—C4—C3119.1 (2)C6x—K3—F5—K2iv4.96 (15)
F3ii—K1—C4—C387.3 (2)F4viii—K3—F5—K2iv44.43 (8)
F3i—K1—C4—C333.8 (3)B3ix—K3—F5—K2iv171.05 (10)
C2—K1—C4—C331.5 (2)B1i—K3—F5—K2iv93.87 (11)
C1—K1—C4—C364.6 (2)F4—B2—F6—K3viii12.7 (4)
C6—K1—C4—C397.9 (2)F5—B2—F6—K3viii101.1 (3)
C5—K1—C4—C3129.3 (3)C3—B2—F6—K3viii138.3 (3)
C3—C4—C5—C61.7 (6)K2iv—B2—F6—K3viii112.52 (18)
K1—C4—C5—C665.4 (3)F4—B2—F6—K2iv125.2 (3)
C3—C4—C5—B3174.5 (4)F5—B2—F6—K2iv11.5 (3)
K1—C4—C5—B3110.8 (4)C3—B2—F6—K2iv109.1 (3)
C3—C4—C5—K163.7 (4)F9—B3—F7—K3vi19.7 (3)
F1i—K1—C5—C452.1 (2)F8—B3—F7—K3vi132.9 (2)
F2ii—K1—C5—C487.0 (2)C5—B3—F7—K3vi105.0 (3)
F8iii—K1—C5—C4160.9 (2)K1iii—B3—F7—K3vi143.04 (17)
F7iii—K1—C5—C4170.0 (2)K2v—B3—F7—K3vi84.0 (2)
F3ii—K1—C5—C439.4 (2)F9—B3—F7—K1iii123.3 (2)
C2—K1—C5—C460.3 (2)F8—B3—F7—K1iii10.1 (3)
C1—K1—C5—C493.5 (2)C5—B3—F7—K1iii111.9 (3)
C6—K1—C5—C4122.8 (3)K3vi—B3—F7—K1iii143.04 (17)
C3—K1—C5—C427.6 (2)K2v—B3—F7—K1iii59.1 (2)
F1i—K1—C5—C670.7 (2)F7—B3—F8—K2v119.2 (2)
F2ii—K1—C5—C6150.2 (2)F9—B3—F8—K2v6.9 (3)
F8iii—K1—C5—C676.3 (2)C5—B3—F8—K2v118.8 (3)
F7iii—K1—C5—C647.2 (2)K1iii—B3—F8—K2v129.43 (17)
F3ii—K1—C5—C6162.2 (2)K3vi—B3—F8—K2v70.4 (3)
C2—K1—C5—C662.5 (2)F7—B3—F8—K1iii10.3 (3)
C1—K1—C5—C629.4 (2)F9—B3—F8—K1iii122.5 (2)
C3—K1—C5—C695.2 (2)C5—B3—F8—K1iii111.8 (3)
C4—K1—C5—C6122.8 (3)K3vi—B3—F8—K1iii59.1 (3)
F1i—K1—C5—B3175.3 (2)K2v—B3—F8—K1iii129.43 (17)
F2ii—K1—C5—B336.1 (2)F7—B3—F8—K3xi132.3 (2)
F8iii—K1—C5—B337.8 (3)F9—B3—F8—K3xi115.4 (2)
F7iii—K1—C5—B366.9 (2)C5—B3—F8—K3xi10.2 (4)
F3ii—K1—C5—B383.7 (2)K1iii—B3—F8—K3xi122.0 (2)
C2—K1—C5—B3176.6 (3)K3vi—B3—F8—K3xi178.90 (15)
C1—K1—C5—B3143.4 (3)K2v—B3—F8—K3xi108.5 (2)
C6—K1—C5—B3114.1 (3)F7—B3—F9—K2146.3 (3)
C3—K1—C5—B3150.7 (3)F8—B3—F9—K2101.2 (5)
C4—K1—C5—B3123.1 (3)C5—B3—F9—K223.0 (7)
C2—C1—C6—C52.1 (6)K1iii—B3—F9—K2157.4 (3)
B1—C1—C6—C5179.5 (4)K3vi—B3—F9—K2129.0 (5)
K1—C1—C6—C570.3 (3)K2v—B3—F9—K295.4 (4)
C2—C1—C6—K168.1 (3)F7—B3—F9—K3vi17.3 (3)
B1—C1—C6—K1110.3 (3)F8—B3—F9—K3vi129.8 (2)
C2—C1—C6—K3xi124.7 (3)C5—B3—F9—K3vi105.9 (3)
B1—C1—C6—K3xi56.9 (4)K1iii—B3—F9—K3vi73.7 (3)
K1—C1—C6—K3xi167.13 (16)K2v—B3—F9—K3vi135.64 (11)
C4—C5—C6—C10.1 (6)F7—B3—F9—K2v118.3 (3)
B3—C5—C6—C1176.4 (4)F8—B3—F9—K2v5.8 (3)
K1—C5—C6—C168.3 (3)C5—B3—F9—K2v118.4 (3)
C4—C5—C6—K168.4 (3)K1iii—B3—F9—K2v62.0 (3)
B3—C5—C6—K1108.1 (3)K3vi—B3—F9—K2v135.64 (11)
C4—C5—C6—K3xi125.4 (3)F5iv—K2—F9—B3140.4 (5)
B3—C5—C6—K3xi58.1 (3)F8v—K2—F9—B3123.3 (5)
K1—C5—C6—K3xi166.17 (15)F4vi—K2—F9—B3159.6 (5)
F1i—K1—C6—C13.5 (2)F6iv—K2—F9—B3106.7 (5)
F2ii—K1—C6—C1159.9 (2)F3vii—K2—F9—B325.4 (6)
F8iii—K1—C6—C1117.6 (2)F9v—K2—F9—B397.6 (5)
F7iii—K1—C6—C1106.6 (2)C2vii—K2—F9—B318.4 (5)
F3ii—K1—C6—C1103.1 (2)B2iv—K2—F9—B3120.9 (5)
F3i—K1—C6—C142.4 (3)F4vii—K2—F9—B346.0 (5)
C2—K1—C6—C131.5 (2)B3v—K2—F9—B3110.4 (4)
C5—K1—C6—C1126.4 (3)K2v—K2—F9—B397.6 (5)
C3—K1—C6—C164.0 (2)F5iv—K2—F9—K3vi12.65 (10)
C4—K1—C6—C195.9 (2)F8v—K2—F9—K3vi108.98 (10)
F1i—K1—C6—C5122.9 (2)F4vi—K2—F9—K3vi72.66 (9)
F2ii—K1—C6—C533.4 (2)F6iv—K2—F9—K3vi21.01 (7)
F8iii—K1—C6—C5116.0 (2)F3vii—K2—F9—K3vi102.3 (2)
F7iii—K1—C6—C5126.9 (2)F9v—K2—F9—K3vi134.72 (9)
F3ii—K1—C6—C523.4 (3)C2vii—K2—F9—K3vi146.15 (9)
F3i—K1—C6—C5168.83 (18)B2iv—K2—F9—K3vi6.78 (9)
C2—K1—C6—C595.0 (2)F4vii—K2—F9—K3vi173.67 (11)
C1—K1—C6—C5126.4 (3)B3v—K2—F9—K3vi121.93 (10)
C3—K1—C6—C562.4 (2)K2v—K2—F9—K3vi134.72 (9)
C4—K1—C6—C530.6 (2)F5iv—K2—F9—K2v122.07 (8)
F1i—K1—C6—K3xi126.2 (5)F8v—K2—F9—K2v25.74 (11)
F2ii—K1—C6—K3xi77.5 (5)F4vi—K2—F9—K2v62.06 (8)
F8iii—K1—C6—K3xi5.1 (5)F6iv—K2—F9—K2v155.73 (8)
F7iii—K1—C6—K3xi16.0 (5)F3vii—K2—F9—K2v123.0 (2)
F3ii—K1—C6—K3xi134.2 (5)F9v—K2—F9—K2v0.000 (1)
F3i—K1—C6—K3xi80.3 (6)C2vii—K2—F9—K2v79.13 (9)
C2—K1—C6—K3xi154.1 (6)B2iv—K2—F9—K2v141.50 (9)
C1—K1—C6—K3xi122.7 (6)F4vii—K2—F9—K2v51.61 (7)
C5—K1—C6—K3xi110.9 (6)B3v—K2—F9—K2v12.79 (9)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2; (v) x+1, y, z+2; (vi) x, y1, z; (vii) x+1, y+1, z+2; (viii) x, y+2, z+2; (ix) x, y+1, z; (x) x1, y+1, z; (xi) x+1, y1, z; (xii) x+1, y, z.

Experimental details

Crystal data
Chemical formula3K+·C6H3B3F93
Mr395.81
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.4025 (15), 8.9349 (18), 11.160 (2)
α, β, γ (°)68.66 (3), 74.28 (3), 71.14 (3)
V3)640.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.35 × 0.30 × 0.28
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.688, 0.738
No. of measured, independent and
observed [I > 2σ(I)] reflections
6291, 2378, 2185
Rint0.093
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.180, 1.12
No. of reflections2378
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.57

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Selected bond lengths (Å) top
K1—F1i2.677 (3)K2—F9v3.042 (3)
K1—F2ii2.758 (3)K2—F4vii3.380 (3)
K1—F8iii2.761 (2)K3—F52.610 (3)
K1—F7iii2.785 (3)K3—F6viii2.713 (3)
K1—F3ii2.805 (3)K3—F7ix2.753 (3)
K1—F3i3.022 (3)K3—F1i2.785 (3)
K2—F92.620 (2)K3—F9ix2.993 (3)
K2—F5iv2.655 (3)K3—F8x3.000 (3)
K2—F8v2.723 (3)K3—F2i3.029 (3)
K2—F4vi2.727 (3)K3—F4viii3.302 (3)
K2—F6iv2.787 (3)K3—F2x3.314 (3)
K2—F3vii2.893 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2; (v) x+1, y, z+2; (vi) x, y1, z; (vii) x+1, y+1, z+2; (viii) x, y+2, z+2; (ix) x, y+1, z; (x) x1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds