Download citation
Download citation
link to html
Bis[2-(2-hydr­oxy-3-methoxy­benzyl­ideneamino)phenolato-κO]dimethyl­silicon, C30H30N2O6Si, (II), was isolated from the reaction of 2-(2-hydr­oxy-3-methoxy­benzyl­ideneamino)phenol, (I), with dichloro­dimethyl­silane at 339 K. It consists of two ligand mol­ecules and the Me2Si unit forming a dialkoxy­dimethyl­silane with a tetra­coordinate Si atom. [2-(3-Meth­oxy-2-oxidobenzyl­ideneamino)phenolato-κ3O,N,O′]­dimethyl­sili­con, C16H17NO3Si, (III), was isolated from the same reaction conducted at 263 K. In this complex, the dianion of (I) is coordinated via two O atoms and an azomethine N atom to the penta­coordinate Si atom. According to quantum chemical calculations, (II) is the thermodynamically stable product and (III) is the kinetically favoured product.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110009285/ln3141sup1.cif
Contains datablocks II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009285/ln3141IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009285/ln3141IIIsup3.hkl
Contains datablock III

CCDC references: 774907; 774908

Comment top

The chemistry of hypercoordinate silicon complexes is currently one of the main research areas in silicon chemistry (Chuit et al., 1993; Corriu & Young, 1989; Holmes, 1996; Kost & Kalikhman, 1998, 2004; Pestunovich et al., 1998; Tacke et al., 1999). In our work on penta- and hexacoordinate silicon complexes with tridentate O,N,O ligands (Böhme et al., 2006; Böhme & Günther, 2007; Böhme & Foehn, 2007) we used 2-(2-hydroxy-3-methoxybenzylideneamino)phenol, (I), as a potential ligand molecule. The reaction of (I) with dichlorodimethylsilane in the presence of triethylamine in THF [tetrahydrofuran?] under reflux conditions yields product mixtures. This was proven by a 29Si NMR spectrum of the reaction solution. Extraction with n-hexane was attempted during the workup procedure. The raw product shows poor solubility in the non-polar solvent. The hexane solution was decanted from the product mixture, the solvent was removed in vacuo and the residue was recrystallized from a hexane/chloroform mixture (3:1) and stored for several weeks at 258 K. During that time an orange crystal formed. X-ray crystal structure analysis shows the formation of (II) as an unexpected side product from this reaction batch [Fig. 1 and reaction (a) in the Scheme]. Two ligand molecules and the Me2Si unit form a dialkoxydimethylsilane with a tetracoordinate silicon atom. The Si—O bonds [Si1—O2 1.654 (1) and Si1—O5 1.650 (1) Å] and the Si—C bonds [Si1—C29 1.842 (2) and Si1—C30 1.837 (2) Å] are in the average range for compounds of this type (Kaftory et al., 1998). The coordination geometry at the Si atom is distorted tetrahedral with bond angles between 104.50 (7) (O5—Si1—C30) and 116.2 (1)° (C30—Si1—C29). The compound is further stabilized by two intramolecular O—H···N hydrogen bonds between the ortho-hydroxy groups and the azomethine N atoms (see Table 2). Repeated attempts to prepare compound (II) selectively by choosing the appropriate ratio of educts failed.

On the other hand, it was possible to obtain the desired pentacoordinate product by choosing suitable reaction conditions [Scheme, reaction (b)]. The reaction between (I) and dichlorodimethylsilane was carried out at 263 K with a short reaction time (0.5 h) followed by immediate workup of the reaction batch. A red crystalline product was obtained after workup. The X-ray crystal structure analysis of a suitable crystal verified the formation of the pentacoordinate Si complex, (III) (Fig. 2). The Si atom is bound to the C atoms of the methyl groups (C15 and C16), to the O atoms (O1 and O2) and to the N atom, N1, of a single imine ligand. The Si—O [Si1—O1 1.7125 (9), Si1—O2 1.367 (9) Å] and the Si—C distances [Si1—C15 1.872 (1), Si1—C16 1.882 (1) Å] are comparable with those in similar pentacoordinate compounds (Böhme & Günther, 2007). The Si—N distance is longer [Si1—N1 2.068 (1) Å], which is easily explained by the coordinative character of this bond. The coordination geometry at the Si atom can be deduced from the bond angles at Si. A suitable parameter for the description of the coordination geometry in pentacoordinate complexes is defined as τ = (β-α)/60 (Addison et al., 1984). Angle β is the largest angle at the central atom and angle α is the second largest. For a perfect square pyramid, τ is equal to zero, whereas it becomes one for a perfect trigonal bipyramid. The two largest bond angles at Si in (III) are O1—Si—O2 135.57 (5) and C16—Si1—N1 163.39 (6)°. This gives a value of τ = 0.46 for complex (III), which is right between both coordination geometries. If we were to consider (III) as a strongly distorted square pyramid, the apex of the pyramid would be formed by atom C15, while atoms O1, O2, N1 and C16 would represent the base of the pyramid. The coordination geometry of (III) is far more distorted than the geometries of comparable Si complexes with o-hydroxyacetophenone-N-(2-hydroxyethyl)imine as the tridentate O,N,O ligand. Complexes with this ligand have τ values from 0.78 (Böhme & Günther, 2007) to 0.94 (Böhme & Foehn, 2007) as a result of a more flexible ethylene group instead of the phenylene group used in (III). The ethylene group allows for the occurrence of a relaxed coordination geometry close to that of an ideal trigonal bipyramid.

Bond lengthening through higher coordination is a known effect in Si chemistry (Chuit et al., 1993), and it is interesting to compare the bond lengths of the pentacoordinate derivative (III) with the bond lengths of the tetracoordinate compound (II). The bond Si1—O2 in (III) is 4.8% and 5.0% longer, respectively, than the comparable bonds Si1—O2 and Si1—O5 in (II). The average value of the Si—C bonds in (III) is 2% longer than the average of the Si—C bonds in (II).

It is possible to explain the preferred formation of a product mixture containing (II) on the basis of quantum chemical calculations. The geometries of (II), (III), and four different conformations of the ligand molecule (I) have been optimized with B3PW91/6–31 G(d,p). If we assume an equilibrium between (II) and a mixture of (I) and (III) [equilibrium (c) in the Scheme], we can calculate the enthalpy (ΔRH) and free energy (ΔRG) for this reaction (see Table 4). According to the quantum chemical analysis, the enthalpy of (II) is 42.3 kJ mol-1 lower than the sum of the enthalpies of (I) and (III). That means an individual molecule of (II) is thermodynamically more stable at 0 K than the mixture of (I) and (III). This picture becomes diversified if we consider the entropy of the system, which is 0.14 kJ mol-1 K-1, and calculate the free energy. The difference in free energy is only 1.6 kJ mol-1 at 298 K. Thus, at room temperature, (II) is only a tiny bit lower in energy than the mixture of (I) and (III). Raising the temperature above 298 K leads to a free energy of nearly zero (ΔRG 0), i.e. the compounds (II), (III) and (I) are in equilibrium. This explains the formation of product mixtures during the syntheses under reflux conditions.

The synthesis at low temperatures favours the formation of (III), which therefore should be considered as the kinetically preferred product if we take into consideration the competition between reactions (a) and (b). The influence of solvents, the solubility of intermediates and products, and the varying ratio of starting materials are not accounted for in this quantum chemical analysis and would complicate things further.

The isolation of (II) and (III) from the same starting materials represents a rare case, which allows insight into the complicated interplay between thermodynamic and kinetic factors determining the formation of tetra- or pentacoordinated compounds of silicon.

Related literature top

For related literature, see: Addison et al. (1984); Böhme & Foehn (2007); Böhme & Günther (2007); Böhme et al. (2006); Chuit et al. (1993); Corriu & Young (1989); Holmes (1996); Kaftory et al. (1998); Kost & Kalikhman (1998, 2004); Pestunovich et al. (1998); Tacke et al. (1999).

Experimental top

The preparation of (II) and (III) was performed in Schlenk tubes under an argon atmosphere with anhydrous and air-free solvents.

For the preparation of (II), product mixtures were obtained when the reaction of 2-(2-hydroxy-3-methoxybenzylideneamino)phenol, (I), with dichlorodimethylsilane was performed in tetrahydrofuran (THF) under reflux. The composition of the reaction mixture was analysed by 29Si NMR. The reaction mixture was filtered over a Schlenk filter and the residue was washed with THF. The solvent was removed completely in vacuo. Subsequent extraction of the red oily residue with hexane and diethyl ether also yielded product mixtures. The hexane was removed in vacuo from the extracted solution. Recrystallization from a hexane/chloroform mixture (3:1 v/v) gave one orange crystal of (II), which was characterized by X-ray structure analysis. Further spectroscopic characterization was not possible since only one crystal of (II) was obtained.

For the preparation of (III), 2-(2-hydroxy-3-methoxybenzylideneamino)phenol, (I) (1.50 g, 6.2 mmol), was dissolved in THF (70 ml). Triethylamine (1.87 g, 18.5 mmol, 50% excess) was added with a syringe. The reaction mixture was cooled to 263 K. After a few minutes, dichlorodimethylsilane (0.84 g, 6.5 mmol, 5% excess) was added with a syringe and this reaction mixture was stirred for 0.5 h at 263 K. After that time, a red suspension had formed. The suspension was filtered over a G3 filter at room temperature, and the residue was washed with THF (3 × 10 ml). The solvent was removed completely from the red filtrate in vacuo. The residue was dissolved in chloroform (5 ml), and n-hexane (8 ml) was added. A red crystalline precipitate deposited. The precipitate was filtered off, washed with n-hexane (2 × 2 ml) and dried in vacuo. Red prisms (1.23 g, 67%, m.p. 416–419 K). 1H NMR (CDCl3): δ 8.63 (s, CHN), 7.37–6.82 (m, CHar), 3.89 (s, OCH3), 0.33 (s, Si—CH3). 13C NMR (CDCl3): δ 155.9 (C1), 154.7 (C4), 152.2 (C9), 151.0 (C3), 131.1, 130.7, 123.5, 119.5, 118.9, 118.8, 118.1, 116.0, 113.6 (9 signals Car), 56.6 (C14), 3.6 (C15 and C16). 29Si NMR (CDCl3): δ -59.2.

Refinement top

The two H atoms in (II) forming the hydrogen bonds between the phenolic O and azomethine N atoms and the H atom at C1 in (III) were located in difference Fourier maps, and their positions and isotropic displacement parameters were refined. All other H atoms were positioned geometrically and were allowed to ride on their parent atoms, with C—H = 0.95 (phenyl) or 0.98 Å (methyl) and with Uiso(H) = 1.2Ueq(phenyl C) or 1.5Ueq(methyl C).

Computing details top

For both compounds, data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II) at 153 K shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular structure of (III) at 153 K shown with 50% probability displacement ellipsoids.
(II) Bis[2-(2-hydroxy-3-methoxybenzylideneamino)phenolato- κO]dimethylsilicon top
Crystal data top
C30H30N2O6SiF(000) = 1144
Mr = 542.65Dx = 1.268 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6120 reflections
a = 16.5171 (8) Åθ = 2.2–30.4°
b = 10.4952 (5) ŵ = 0.13 mm1
c = 18.2931 (9) ÅT = 153 K
β = 116.272 (1)°Prism, orange
V = 2843.5 (2) Å30.52 × 0.50 × 0.38 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6204 independent reflections
Radiation source: sealed tube4889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 2121
Tmin = 0.932, Tmax = 0.956k = 1312
39389 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.8424P]
where P = (Fo2 + 2Fc2)/3
6204 reflections(Δ/σ)max < 0.001
364 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C30H30N2O6SiV = 2843.5 (2) Å3
Mr = 542.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.5171 (8) ŵ = 0.13 mm1
b = 10.4952 (5) ÅT = 153 K
c = 18.2931 (9) Å0.52 × 0.50 × 0.38 mm
β = 116.272 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6204 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
4889 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.956Rint = 0.029
39389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.35 e Å3
6204 reflectionsΔρmin = 0.33 e Å3
364 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.53656 (3)0.07019 (4)0.23894 (3)0.03330 (11)
N10.69541 (7)0.19583 (11)0.28919 (7)0.0249 (2)
O10.72108 (7)0.12172 (9)0.43346 (6)0.0320 (2)
H30.7149 (13)0.1208 (19)0.3824 (13)0.056 (6)*
O20.62900 (6)0.03719 (9)0.22884 (6)0.0311 (2)
O30.73044 (7)0.17849 (10)0.57621 (6)0.0370 (3)
C10.68459 (9)0.31039 (13)0.30851 (8)0.0262 (3)
H10.66910.37590.26870.031*
C20.69550 (9)0.34171 (13)0.38953 (8)0.0253 (3)
C30.71198 (9)0.24611 (13)0.44832 (8)0.0254 (3)
C40.71701 (9)0.27888 (14)0.52442 (8)0.0280 (3)
C50.70757 (10)0.40518 (14)0.54197 (9)0.0334 (3)
H50.71220.42730.59400.040*
C60.69133 (11)0.49967 (14)0.48354 (9)0.0365 (3)
H60.68490.58580.49600.044*
C70.68464 (10)0.46875 (14)0.40807 (9)0.0319 (3)
H70.67260.53340.36830.038*
C80.67679 (9)0.16843 (13)0.20750 (8)0.0256 (3)
C90.63758 (8)0.05022 (13)0.17644 (8)0.0269 (3)
C100.60975 (9)0.02155 (16)0.09452 (9)0.0361 (3)
H100.58150.05780.07310.043*
C110.62330 (10)0.10896 (18)0.04440 (9)0.0403 (4)
H110.60280.09030.01180.048*
C120.66649 (10)0.22344 (17)0.07565 (9)0.0379 (4)
H120.67740.28170.04130.046*
C130.69375 (10)0.25312 (14)0.15697 (8)0.0306 (3)
H130.72410.33120.17840.037*
C140.72906 (14)0.20337 (19)0.65254 (10)0.0506 (5)
H14A0.67090.24120.64270.076*
H14B0.73750.12340.68270.076*
H14C0.77790.26260.68450.076*
C150.25485 (9)0.37213 (13)0.08815 (8)0.0275 (3)
H150.24650.44730.05670.033*
N20.33386 (7)0.32268 (11)0.12616 (7)0.0262 (2)
O40.27086 (6)0.14112 (10)0.17731 (6)0.0292 (2)
H170.3102 (15)0.193 (2)0.1675 (13)0.071 (7)*
O50.47136 (7)0.16523 (10)0.16416 (7)0.0366 (3)
O60.13233 (7)0.02422 (10)0.17973 (6)0.0338 (2)
C160.17841 (9)0.31227 (13)0.09362 (8)0.0273 (3)
C170.18987 (9)0.19776 (13)0.13724 (8)0.0245 (3)
C180.11392 (9)0.13672 (13)0.13723 (8)0.0278 (3)
C190.02911 (10)0.18977 (15)0.09573 (10)0.0365 (3)
H190.02190.14820.09580.044*
C200.01814 (10)0.30480 (16)0.05345 (11)0.0447 (4)
H200.04020.34150.02550.054*
C210.09143 (10)0.36473 (15)0.05225 (10)0.0396 (4)
H210.08330.44240.02320.047*
C220.41178 (9)0.37233 (13)0.12320 (8)0.0259 (3)
C230.48460 (9)0.28828 (13)0.14653 (8)0.0287 (3)
C240.56500 (10)0.32787 (15)0.14659 (10)0.0371 (3)
H240.61440.27050.16240.045*
C250.57279 (10)0.45131 (15)0.12355 (10)0.0381 (4)
H250.62760.47830.12340.046*
C260.50134 (10)0.53535 (15)0.10078 (10)0.0381 (3)
H260.50730.61980.08510.046*
C270.42097 (10)0.49673 (14)0.10074 (9)0.0334 (3)
H270.37210.55500.08540.040*
C280.05704 (11)0.04755 (17)0.17525 (11)0.0456 (4)
H28A0.02370.00260.19820.068*
H28B0.07840.12670.20630.068*
H28C0.01720.06790.11820.068*
C290.57717 (14)0.15255 (19)0.33776 (11)0.0528 (5)
H29A0.60550.23340.33520.079*
H29B0.62150.09880.38060.079*
H29C0.52610.16930.35010.079*
C300.46764 (12)0.07294 (17)0.22650 (14)0.0531 (5)
H30A0.41200.04940.22990.080*
H30B0.50170.13410.26970.080*
H30C0.45250.11160.17330.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0327 (2)0.0273 (2)0.0446 (2)0.00628 (16)0.02135 (18)0.00860 (17)
N10.0246 (5)0.0262 (6)0.0247 (5)0.0007 (4)0.0116 (4)0.0013 (4)
O10.0451 (6)0.0241 (5)0.0281 (5)0.0061 (4)0.0173 (5)0.0011 (4)
O20.0290 (5)0.0273 (5)0.0369 (5)0.0030 (4)0.0147 (4)0.0021 (4)
O30.0491 (6)0.0375 (6)0.0267 (5)0.0105 (5)0.0189 (5)0.0049 (4)
C10.0262 (6)0.0256 (7)0.0286 (7)0.0018 (5)0.0136 (5)0.0025 (5)
C20.0241 (6)0.0252 (7)0.0289 (7)0.0027 (5)0.0137 (5)0.0018 (5)
C30.0226 (6)0.0246 (7)0.0279 (6)0.0003 (5)0.0102 (5)0.0023 (5)
C40.0254 (6)0.0302 (7)0.0282 (7)0.0012 (5)0.0116 (5)0.0002 (6)
C50.0377 (8)0.0337 (8)0.0312 (7)0.0048 (6)0.0176 (6)0.0092 (6)
C60.0472 (9)0.0250 (7)0.0436 (8)0.0052 (6)0.0258 (7)0.0097 (6)
C70.0390 (8)0.0238 (7)0.0386 (8)0.0040 (6)0.0222 (6)0.0010 (6)
C80.0232 (6)0.0292 (7)0.0247 (6)0.0037 (5)0.0108 (5)0.0006 (5)
C90.0204 (6)0.0312 (7)0.0284 (6)0.0021 (5)0.0102 (5)0.0015 (5)
C100.0277 (7)0.0440 (9)0.0328 (7)0.0013 (6)0.0099 (6)0.0107 (7)
C110.0339 (8)0.0606 (11)0.0240 (7)0.0076 (7)0.0108 (6)0.0036 (7)
C120.0386 (8)0.0482 (10)0.0315 (7)0.0107 (7)0.0195 (6)0.0100 (7)
C130.0327 (7)0.0307 (7)0.0320 (7)0.0047 (6)0.0174 (6)0.0031 (6)
C140.0735 (12)0.0536 (11)0.0295 (8)0.0082 (9)0.0270 (8)0.0035 (7)
C150.0299 (7)0.0221 (7)0.0306 (7)0.0003 (5)0.0134 (6)0.0011 (5)
N20.0269 (6)0.0243 (6)0.0292 (6)0.0007 (4)0.0140 (5)0.0017 (4)
O40.0260 (5)0.0296 (5)0.0312 (5)0.0026 (4)0.0118 (4)0.0048 (4)
O50.0275 (5)0.0257 (5)0.0528 (6)0.0020 (4)0.0143 (5)0.0089 (5)
O60.0327 (5)0.0330 (6)0.0366 (5)0.0016 (4)0.0161 (4)0.0081 (4)
C160.0274 (7)0.0254 (7)0.0293 (7)0.0006 (5)0.0127 (5)0.0007 (5)
C170.0253 (6)0.0259 (7)0.0227 (6)0.0022 (5)0.0109 (5)0.0033 (5)
C180.0311 (7)0.0273 (7)0.0273 (7)0.0006 (6)0.0149 (6)0.0002 (5)
C190.0274 (7)0.0364 (8)0.0474 (9)0.0015 (6)0.0181 (6)0.0046 (7)
C200.0256 (7)0.0399 (9)0.0642 (11)0.0065 (6)0.0158 (7)0.0141 (8)
C210.0319 (8)0.0298 (8)0.0533 (9)0.0044 (6)0.0155 (7)0.0122 (7)
C220.0260 (6)0.0259 (7)0.0257 (6)0.0015 (5)0.0115 (5)0.0008 (5)
C230.0288 (7)0.0238 (7)0.0321 (7)0.0008 (5)0.0122 (6)0.0012 (5)
C240.0285 (7)0.0324 (8)0.0514 (9)0.0028 (6)0.0184 (7)0.0035 (7)
C250.0315 (7)0.0351 (8)0.0523 (9)0.0063 (6)0.0228 (7)0.0008 (7)
C260.0382 (8)0.0285 (8)0.0483 (9)0.0042 (6)0.0199 (7)0.0058 (7)
C270.0304 (7)0.0272 (7)0.0416 (8)0.0016 (6)0.0151 (6)0.0032 (6)
C280.0401 (9)0.0453 (10)0.0528 (10)0.0053 (7)0.0219 (8)0.0164 (8)
C290.0640 (12)0.0525 (11)0.0496 (10)0.0196 (9)0.0322 (9)0.0043 (8)
C300.0452 (10)0.0367 (9)0.0869 (14)0.0032 (8)0.0378 (10)0.0189 (9)
Geometric parameters (Å, º) top
Si1—O51.650 (1)C15—C161.4528 (19)
Si1—O21.654 (1)C15—H150.9500
Si1—C301.837 (2)N2—C221.4116 (17)
Si1—C291.842 (2)O4—C171.3460 (16)
N1—C11.2879 (18)O4—H170.93 (2)
N1—C81.4154 (17)O5—C231.3719 (17)
O1—C31.3554 (17)O6—C181.3717 (17)
O1—H30.89 (2)O6—C281.4250 (18)
O2—C91.3787 (17)C16—C211.4062 (19)
O3—C41.3678 (17)C16—C171.4082 (19)
O3—C141.4306 (18)C17—C181.4086 (19)
C1—C21.4495 (19)C18—C191.381 (2)
C1—H10.9500C19—C201.402 (2)
C2—C31.4065 (19)C19—H190.9500
C2—C71.4066 (19)C20—C211.373 (2)
C3—C41.4001 (19)C20—H200.9500
C4—C51.389 (2)C21—H210.9500
C5—C61.394 (2)C22—C271.397 (2)
C5—H50.9500C22—C231.3974 (19)
C6—C71.374 (2)C23—C241.391 (2)
C6—H60.9500C24—C251.386 (2)
C7—H70.9500C24—H240.9500
C8—C131.397 (2)C25—C261.382 (2)
C8—C91.3985 (19)C25—H250.9500
C9—C101.3920 (19)C26—C271.388 (2)
C10—C111.383 (2)C26—H260.9500
C10—H100.9500C27—H270.9500
C11—C121.385 (2)C28—H28A0.9800
C11—H110.9500C28—H28B0.9800
C12—C131.385 (2)C28—H28C0.9800
C12—H120.9500C29—H29A0.9800
C13—H130.9500C29—H29B0.9800
C14—H14A0.9800C29—H29C0.9800
C14—H14B0.9800C30—H30A0.9800
C14—H14C0.9800C30—H30B0.9800
C15—N21.2855 (17)C30—H30C0.9800
O5—Si1—O2109.28 (6)C15—N2—C22123.70 (12)
O5—Si1—C30104.50 (7)C17—O4—H17104.3 (14)
O2—Si1—C30111.53 (7)C23—O5—Si1130.58 (9)
O5—Si1—C29110.53 (7)C18—O6—C28116.96 (11)
O2—Si1—C29104.76 (7)C21—C16—C17119.22 (13)
C30—Si1—C29116.2 (1)C21—C16—C15120.37 (13)
C1—N1—C8119.19 (12)C17—C16—C15120.34 (12)
C3—O1—H3104.4 (13)O4—C17—C16122.51 (12)
C9—O2—Si1126.95 (9)O4—C17—C18118.00 (12)
C4—O3—C14117.89 (12)C16—C17—C18119.46 (12)
N1—C1—C2121.52 (12)O6—C18—C19125.11 (13)
N1—C1—H1119.2O6—C18—C17114.67 (12)
C2—C1—H1119.2C19—C18—C17120.22 (13)
C3—C2—C7119.60 (12)C18—C19—C20120.17 (14)
C3—C2—C1120.96 (12)C18—C19—H19119.9
C7—C2—C1119.35 (12)C20—C19—H19119.9
O1—C3—C4118.23 (12)C21—C20—C19120.26 (14)
O1—C3—C2122.33 (12)C21—C20—H20119.9
C4—C3—C2119.42 (12)C19—C20—H20119.9
O3—C4—C5125.13 (13)C20—C21—C16120.66 (14)
O3—C4—C3114.81 (12)C20—C21—H21119.7
C5—C4—C3120.06 (13)C16—C21—H21119.7
C4—C5—C6120.32 (13)C27—C22—C23119.26 (12)
C4—C5—H5119.8C27—C22—N2125.16 (12)
C6—C5—H5119.8C23—C22—N2115.56 (12)
C7—C6—C5120.32 (14)O5—C23—C24122.18 (13)
C7—C6—H6119.8O5—C23—C22117.43 (12)
C5—C6—H6119.8C24—C23—C22120.27 (13)
C6—C7—C2120.26 (14)C25—C24—C23119.75 (14)
C6—C7—H7119.9C25—C24—H24120.1
C2—C7—H7119.9C23—C24—H24120.1
C13—C8—C9119.21 (12)C26—C25—C24120.43 (14)
C13—C8—N1123.76 (13)C26—C25—H25119.8
C9—C8—N1117.02 (12)C24—C25—H25119.8
O2—C9—C10121.20 (13)C25—C26—C27120.19 (14)
O2—C9—C8118.65 (12)C25—C26—H26119.9
C10—C9—C8120.13 (13)C27—C26—H26119.9
C11—C10—C9119.80 (15)C26—C27—C22120.09 (13)
C11—C10—H10120.1C26—C27—H27120.0
C9—C10—H10120.1C22—C27—H27120.0
C12—C11—C10120.44 (14)O6—C28—H28A109.5
C12—C11—H11119.8O6—C28—H28B109.5
C10—C11—H11119.8H28A—C28—H28B109.5
C11—C12—C13120.09 (15)O6—C28—H28C109.5
C11—C12—H12120.0H28A—C28—H28C109.5
C13—C12—H12120.0H28B—C28—H28C109.5
C12—C13—C8120.15 (14)Si1—C29—H29A109.5
C12—C13—H13119.9Si1—C29—H29B109.5
C8—C13—H13119.9H29A—C29—H29B109.5
O3—C14—H14A109.5Si1—C29—H29C109.5
O3—C14—H14B109.5H29A—C29—H29C109.5
H14A—C14—H14B109.5H29B—C29—H29C109.5
O3—C14—H14C109.5Si1—C30—H30A109.5
H14A—C14—H14C109.5Si1—C30—H30B109.5
H14B—C14—H14C109.5H30A—C30—H30B109.5
N2—C15—C16119.56 (12)Si1—C30—H30C109.5
N2—C15—H15120.2H30A—C30—H30C109.5
C16—C15—H15120.2H30B—C30—H30C109.5
O5—Si1—O2—C979.12 (12)C16—C15—N2—C22178.67 (12)
C30—Si1—O2—C935.91 (14)O2—Si1—O5—C2365.70 (14)
C29—Si1—O2—C9162.43 (12)C30—Si1—O5—C23174.83 (13)
C8—N1—C1—C2174.88 (11)C29—Si1—O5—C2349.09 (15)
N1—C1—C2—C34.6 (2)N2—C15—C16—C21179.78 (14)
N1—C1—C2—C7178.79 (13)N2—C15—C16—C172.8 (2)
C7—C2—C3—O1178.53 (12)C21—C16—C17—O4179.05 (13)
C1—C2—C3—O11.9 (2)C15—C16—C17—O42.0 (2)
C7—C2—C3—C40.23 (19)C21—C16—C17—C181.3 (2)
C1—C2—C3—C4176.36 (12)C15—C16—C17—C18175.74 (12)
C14—O3—C4—C54.2 (2)C28—O6—C18—C195.0 (2)
C14—O3—C4—C3175.10 (14)C28—O6—C18—C17174.17 (13)
O1—C3—C4—O30.34 (18)O4—C17—C18—O60.43 (17)
C2—C3—C4—O3178.04 (11)C16—C17—C18—O6178.31 (12)
O1—C3—C4—C5179.66 (12)O4—C17—C18—C19178.79 (13)
C2—C3—C4—C51.3 (2)C16—C17—C18—C190.9 (2)
O3—C4—C5—C6178.02 (14)O6—C18—C19—C20179.23 (15)
C3—C4—C5—C61.2 (2)C17—C18—C19—C200.1 (2)
C4—C5—C6—C70.1 (2)C18—C19—C20—C210.7 (3)
C5—C6—C7—C21.0 (2)C19—C20—C21—C160.4 (3)
C3—C2—C7—C60.9 (2)C17—C16—C21—C200.6 (2)
C1—C2—C7—C6177.55 (13)C15—C16—C21—C20176.36 (15)
C1—N1—C8—C1335.55 (19)C15—N2—C22—C2719.9 (2)
C1—N1—C8—C9143.19 (13)C15—N2—C22—C23161.36 (13)
Si1—O2—C9—C1080.09 (15)Si1—O5—C23—C2446.9 (2)
Si1—O2—C9—C8101.24 (13)Si1—O5—C23—C22136.98 (12)
C13—C8—C9—O2173.94 (12)C27—C22—C23—O5176.78 (13)
N1—C8—C9—O27.26 (17)N2—C22—C23—O54.42 (18)
C13—C8—C9—C104.75 (19)C27—C22—C23—C240.6 (2)
N1—C8—C9—C10174.05 (12)N2—C22—C23—C24179.39 (13)
O2—C9—C10—C11176.85 (13)O5—C23—C24—C25176.11 (14)
C8—C9—C10—C111.8 (2)C22—C23—C24—C250.1 (2)
C9—C10—C11—C121.7 (2)C23—C24—C25—C260.2 (2)
C10—C11—C12—C132.2 (2)C24—C25—C26—C270.1 (2)
C11—C12—C13—C80.8 (2)C25—C26—C27—C220.4 (2)
C9—C8—C13—C124.2 (2)C23—C22—C27—C260.8 (2)
N1—C8—C13—C12174.47 (12)N2—C22—C27—C26179.43 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···N10.89 (2)1.77 (2)2.600 (2)153 (2)
O4—H17···N20.93 (2)1.68 (2)2.540 (2)152 (2)
(III) [2-(3-methoxy-2-oxidobenzylideneamino)phenolato- κ3O,N,O']dimethylsilicon top
Crystal data top
C16H17NO3SiF(000) = 632
Mr = 299.40Dx = 1.330 Mg m3
Monoclinic, P21/cMelting point: 419 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.0207 (3) ÅCell parameters from 7351 reflections
b = 12.8134 (5) Åθ = 2.3–35.7°
c = 12.9427 (5) ŵ = 0.17 mm1
β = 91.303 (2)°T = 153 K
V = 1495.61 (10) Å3Cube, orange
Z = 40.40 × 0.34 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3975 independent reflections
Radiation source: sealed tube3463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 1212
Tmin = 0.932, Tmax = 0.950k = 1717
17497 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.5981P]
where P = (Fo2 + 2Fc2)/3
3975 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H17NO3SiV = 1495.61 (10) Å3
Mr = 299.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0207 (3) ŵ = 0.17 mm1
b = 12.8134 (5) ÅT = 153 K
c = 12.9427 (5) Å0.40 × 0.34 × 0.32 mm
β = 91.303 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3975 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
3463 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.950Rint = 0.023
17497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
3975 reflectionsΔρmin = 0.29 e Å3
197 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.64343 (4)0.79634 (3)0.14766 (2)0.01718 (10)
O10.67900 (10)0.92436 (7)0.11941 (6)0.01935 (19)
O20.49030 (10)0.72605 (7)0.18738 (7)0.0220 (2)
N10.51860 (11)0.79782 (8)0.01170 (8)0.0174 (2)
C10.53489 (13)0.85781 (10)0.06723 (9)0.0182 (2)
H10.4762 (18)0.8479 (13)0.1279 (13)0.023 (4)*
C20.64141 (13)0.94176 (9)0.06502 (9)0.0176 (2)
C30.70831 (13)0.97075 (9)0.02932 (9)0.0171 (2)
C40.80827 (13)1.05568 (10)0.03205 (10)0.0198 (2)
C50.84307 (14)1.10653 (11)0.05865 (11)0.0237 (3)
H50.91311.16190.05710.028*
C60.77565 (15)1.07685 (11)0.15251 (10)0.0252 (3)
H60.80001.11240.21420.030*
C70.67431 (14)0.99650 (10)0.15618 (10)0.0218 (2)
H70.62680.97800.21980.026*
C80.41379 (13)0.71671 (9)0.01407 (10)0.0186 (2)
C90.40041 (13)0.68027 (10)0.11521 (10)0.0202 (2)
C100.29886 (15)0.60240 (11)0.13756 (11)0.0266 (3)
H100.28800.57800.20630.032*
C110.21344 (17)0.56113 (12)0.05649 (12)0.0305 (3)
H110.14270.50840.07050.037*
C120.22946 (16)0.59548 (11)0.04458 (11)0.0293 (3)
H120.17130.56500.09870.035*
C130.32988 (15)0.67404 (11)0.06695 (10)0.0239 (3)
H130.34100.69800.13580.029*
O30.86130 (11)1.08060 (8)0.12815 (7)0.0263 (2)
C140.97863 (15)1.15522 (12)0.13530 (12)0.0288 (3)
H14A1.06321.13040.09590.043*
H14B1.00901.16440.20790.043*
H14C0.94421.22210.10700.043*
C150.78151 (15)0.70660 (11)0.08845 (11)0.0270 (3)
H15A0.81220.73520.02200.040*
H15B0.73630.63780.07740.040*
H15C0.86830.69980.13490.040*
C160.70998 (15)0.81718 (11)0.28499 (10)0.0249 (3)
H16A0.80580.85320.28530.037*
H16B0.72110.74950.31960.037*
H16C0.63770.85970.32150.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.02031 (17)0.01753 (17)0.01364 (17)0.00043 (11)0.00075 (12)0.00124 (11)
O10.0259 (4)0.0185 (4)0.0136 (4)0.0030 (3)0.0006 (3)0.0013 (3)
O20.0253 (4)0.0257 (5)0.0150 (4)0.0065 (4)0.0014 (3)0.0011 (3)
N10.0188 (4)0.0166 (5)0.0167 (5)0.0003 (3)0.0003 (4)0.0007 (4)
C10.0202 (5)0.0189 (6)0.0156 (5)0.0018 (4)0.0001 (4)0.0010 (4)
C20.0199 (5)0.0170 (5)0.0159 (5)0.0020 (4)0.0009 (4)0.0010 (4)
C30.0189 (5)0.0167 (5)0.0157 (5)0.0023 (4)0.0019 (4)0.0016 (4)
C40.0198 (5)0.0203 (6)0.0192 (6)0.0003 (4)0.0006 (4)0.0015 (4)
C50.0242 (6)0.0216 (6)0.0253 (6)0.0038 (5)0.0030 (5)0.0027 (5)
C60.0303 (6)0.0254 (7)0.0201 (6)0.0017 (5)0.0037 (5)0.0058 (5)
C70.0257 (6)0.0235 (6)0.0164 (5)0.0008 (5)0.0007 (4)0.0027 (5)
C80.0213 (5)0.0163 (5)0.0182 (6)0.0013 (4)0.0003 (4)0.0004 (4)
C90.0226 (5)0.0195 (6)0.0183 (6)0.0013 (4)0.0005 (4)0.0005 (4)
C100.0310 (6)0.0264 (7)0.0225 (6)0.0072 (5)0.0010 (5)0.0041 (5)
C110.0338 (7)0.0268 (7)0.0308 (7)0.0119 (5)0.0028 (6)0.0037 (6)
C120.0347 (7)0.0259 (7)0.0268 (7)0.0088 (5)0.0075 (6)0.0009 (5)
C130.0299 (6)0.0226 (6)0.0189 (6)0.0032 (5)0.0038 (5)0.0001 (5)
O30.0289 (5)0.0298 (5)0.0200 (5)0.0110 (4)0.0012 (4)0.0026 (4)
C140.0254 (6)0.0282 (7)0.0327 (7)0.0073 (5)0.0036 (5)0.0023 (6)
C150.0273 (6)0.0272 (7)0.0265 (7)0.0059 (5)0.0005 (5)0.0000 (5)
C160.0317 (6)0.0263 (6)0.0165 (6)0.0054 (5)0.0040 (5)0.0027 (5)
Geometric parameters (Å, º) top
Si1—O11.7125 (9)C8—C131.3912 (17)
Si1—O21.7367 (9)C8—C91.3975 (17)
Si1—C151.872 (1)C9—C101.3895 (18)
Si1—C161.882 (1)C10—C111.3919 (19)
Si1—N12.068 (1)C10—H100.9500
O1—C31.3405 (14)C11—C121.391 (2)
O2—C91.3564 (15)C11—H110.9500
N1—C11.2895 (16)C12—C131.3891 (19)
N1—C81.4058 (15)C12—H120.9500
C1—C21.4423 (17)C13—H130.9500
C1—H10.946 (17)O3—C141.4278 (15)
C2—C31.3998 (16)C14—H14A0.9800
C2—C71.4100 (16)C14—H14B0.9800
C3—C41.4132 (17)C14—H14C0.9800
C4—O31.3604 (15)C15—H15A0.9800
C4—C51.3849 (18)C15—H15B0.9800
C5—C61.3988 (19)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.3769 (18)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C7—H70.9500
O1—Si1—O2135.57 (5)C13—C8—N1128.96 (11)
O1—Si1—C15111.80 (6)C9—C8—N1109.87 (10)
O2—Si1—C15110.10 (6)O2—C9—C10123.63 (11)
O1—Si1—C1690.48 (5)O2—C9—C8115.95 (11)
O2—Si1—C1691.88 (5)C10—C9—C8120.42 (11)
C15—Si1—C16105.83 (7)C9—C10—C11118.17 (12)
O1—Si1—N184.87 (4)C9—C10—H10120.9
O2—Si1—N180.52 (4)C11—C10—H10120.9
C15—Si1—N190.68 (5)C12—C11—C10121.42 (13)
C16—Si1—N1163.39 (6)C12—C11—H11119.3
C3—O1—Si1130.70 (8)C10—C11—H11119.3
C9—O2—Si1119.18 (8)C13—C12—C11120.50 (12)
C1—N1—C8123.15 (10)C13—C12—H12119.7
C1—N1—Si1127.59 (8)C11—C12—H12119.7
C8—N1—Si1109.16 (8)C12—C13—C8118.29 (12)
N1—C1—C2121.12 (11)C12—C13—H13120.9
N1—C1—H1120.4 (10)C8—C13—H13120.9
C2—C1—H1118.5 (10)C4—O3—C14117.46 (11)
C3—C2—C7120.21 (11)O3—C14—H14A109.5
C3—C2—C1119.28 (11)O3—C14—H14B109.5
C7—C2—C1120.48 (11)H14A—C14—H14B109.5
O1—C3—C2123.47 (11)O3—C14—H14C109.5
O1—C3—C4117.26 (10)H14A—C14—H14C109.5
C2—C3—C4119.23 (11)H14B—C14—H14C109.5
O3—C4—C5125.65 (11)Si1—C15—H15A109.5
O3—C4—C3114.49 (11)Si1—C15—H15B109.5
C5—C4—C3119.86 (11)H15A—C15—H15B109.5
C4—C5—C6120.39 (12)Si1—C15—H15C109.5
C4—C5—H5119.8H15A—C15—H15C109.5
C6—C5—H5119.8H15B—C15—H15C109.5
C7—C6—C5120.56 (12)Si1—C16—H16A109.5
C7—C6—H6119.7Si1—C16—H16B109.5
C5—C6—H6119.7H16A—C16—H16B109.5
C6—C7—C2119.69 (12)Si1—C16—H16C109.5
C6—C7—H7120.2H16A—C16—H16C109.5
C2—C7—H7120.2H16B—C16—H16C109.5
C13—C8—C9121.17 (11)
O2—Si1—O1—C3111.65 (11)O1—C3—C4—C5179.85 (11)
C15—Si1—O1—C347.89 (12)C2—C3—C4—C52.42 (18)
C16—Si1—O1—C3155.18 (11)O3—C4—C5—C6176.84 (12)
N1—Si1—O1—C340.79 (10)C3—C4—C5—C62.39 (19)
O1—Si1—O2—C992.91 (10)C4—C5—C6—C70.3 (2)
C15—Si1—O2—C966.87 (11)C5—C6—C7—C21.8 (2)
C16—Si1—O2—C9174.48 (10)C3—C2—C7—C61.75 (18)
N1—Si1—O2—C920.36 (9)C1—C2—C7—C6179.61 (12)
O1—Si1—N1—C125.75 (11)C1—N1—C8—C1312.0 (2)
O2—Si1—N1—C1163.65 (11)Si1—N1—C8—C13164.56 (11)
C15—Si1—N1—C186.08 (11)C1—N1—C8—C9167.62 (11)
C16—Si1—N1—C1100.0 (2)Si1—N1—C8—C915.80 (12)
O1—Si1—N1—C8157.87 (8)Si1—O2—C9—C10163.41 (11)
O2—Si1—N1—C819.97 (8)Si1—O2—C9—C817.18 (15)
C15—Si1—N1—C890.31 (9)C13—C8—C9—O2178.48 (11)
C16—Si1—N1—C883.6 (2)N1—C8—C9—O21.85 (15)
C8—N1—C1—C2178.38 (11)C13—C8—C9—C102.1 (2)
Si1—N1—C1—C25.70 (17)N1—C8—C9—C10177.58 (12)
N1—C1—C2—C311.82 (18)O2—C9—C10—C11179.62 (13)
N1—C1—C2—C7170.30 (11)C8—C9—C10—C111.0 (2)
Si1—O1—C3—C236.77 (17)C9—C10—C11—C120.7 (2)
Si1—O1—C3—C4145.61 (9)C10—C11—C12—C131.3 (2)
C7—C2—C3—O1177.94 (11)C11—C12—C13—C80.3 (2)
C1—C2—C3—O10.05 (18)C9—C8—C13—C121.4 (2)
C7—C2—C3—C40.36 (17)N1—C8—C13—C12178.18 (13)
C1—C2—C3—C4177.53 (11)C5—C4—O3—C149.63 (19)
O1—C3—C4—O30.83 (16)C3—C4—O3—C14171.10 (11)
C2—C3—C4—O3176.90 (11)

Experimental details

(II)(III)
Crystal data
Chemical formulaC30H30N2O6SiC16H17NO3Si
Mr542.65299.40
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)153153
a, b, c (Å)16.5171 (8), 10.4952 (5), 18.2931 (9)9.0207 (3), 12.8134 (5), 12.9427 (5)
β (°) 116.272 (1) 91.303 (2)
V3)2843.5 (2)1495.61 (10)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.130.17
Crystal size (mm)0.52 × 0.50 × 0.380.40 × 0.34 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick 1996)
Multi-scan
(SADABS; Sheldrick 1996)
Tmin, Tmax0.932, 0.9560.932, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
39389, 6204, 4889 17497, 3975, 3463
Rint0.0290.023
(sin θ/λ)max1)0.6390.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.07 0.037, 0.109, 1.05
No. of reflections62043975
No. of parameters364197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.330.36, 0.29

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond angles (º) for (II) top
O5—Si1—O2109.28 (6)O5—Si1—C29110.53 (7)
O5—Si1—C30104.50 (7)O2—Si1—C29104.76 (7)
O2—Si1—C30111.53 (7)C30—Si1—C29116.2 (1)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H3···N10.89 (2)1.77 (2)2.600 (2)153 (2)
O4—H17···N20.93 (2)1.68 (2)2.540 (2)152 (2)
Selected bond angles (º) for (III) top
O1—Si1—O2135.57 (5)C15—Si1—C16105.83 (7)
O1—Si1—C15111.80 (6)O1—Si1—N184.87 (4)
O2—Si1—C15110.10 (6)O2—Si1—N180.52 (4)
O1—Si1—C1690.48 (5)C15—Si1—N190.68 (5)
O2—Si1—C1691.88 (5)C16—Si1—N1163.39 (6)
Calculated enthalpy and free energy for (II) and (III) plus (I) at the B3PW91/6-31G(d,p) level of theory. top
MoleculeEnthalpyFree energy at 298 K
(III) plus (I)-2010.424566-2010.553834
(II)-2010.440665-2010.554451
Difference in Hartree0.0160990.000617
Difference in kJ mol-142.31.6
Tableheadnote: Total enthalpies and free energies are given in Hartree. All molecule geometries have been optimized and the stationary points were verified by calculating the Hessian matrices.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds