Download citation
Download citation
link to html
The novel title compound, [Ba3(C3H5Cl2O6P2)2(C3H6O)(H2O)4]n, has a polymeric two-dimensional network structure which lies parallel to the (10\overline{1}) plane. The asymmetric unit consists of three independent Ba2+ ions, two of them eight-coordinated and the third nine-coordinated, and two independent ethyl (dichloro­methyl­ene)diphospho­nate(3−) lig­ands, one acetone ligand and four aqua ligands. The coordination environments around the BaO8 polyhedra are best described as bicapped trigonal prismatic, while the BaO9 polyhedron is in a distorted tricapped trigonal prismatic geometry. The two diphospho­nate ligands adopt different coordination modes. Both ligands chelate three metal cations, but one is coordinated to six metal cations in total and forms two six-membered and one four-membered chelate ring, while the other is coordinated to five metal cations in total and forms one six-membered and two four-membered chelate rings, the fifth unsubstituted O atom remaining uncoordinated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109010166/ln3125sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109010166/ln3125Isup2.hkl
Contains datablock I

CCDC reference: 730083

Comment top

Bisphosphonic acids have attracted close attention because of their utility in supramolecular chemistry and crystal engineering (Clearfield et al., 2001; Fu et al., 2007). Usually, metal bisphosphonates form polymeric materials and microporous solids, with properties that offer a diversity of practical applications in catalysis, ion-exchange and sorption (Clearfield, 1998, and references therein; Fu et al., 2007; Serre et al., 2006). Clodronate, (dichloromethylene)bisphosphonate or Cl2MBP, is one of the best documented bisphosphonates since it is widely used in therapeutics (Russell, 2007; Rodan & Martin, 2000). Several metal bisphosphonate complexes are known where the bisphosphonic ligand is fully ionic, but studies of the complexation of their ester derivatives are limited. The introduction of these ester substituents on phosphorus groups can result in novel structures of metal bishosphonates and produce interesting functionalities. However, of the numerous metal phosphonate compounds now known, only a small number have been prepared with alkali earth metals.

In earlier work, we developed a method for the preparation of partial amide esters of Cl2MBP (Jokiniemi et al., 2006) and a novel synthesis for partial phenyl esters of Cl2MBP (Jokiniemi et al., 2009). Several metal complexes of amide ester derivatives of clodronic acid have been reported by our group (Jokiniemi et al., 2007, 2008). We have also succeeded in preparing new Cd complexes with monophenyl, asymmetric diphenyl and monoethyl ester ligands of Cl2MBP, and these will be reported shortly (Jokiniemi et al., 2009).

In this work, using the monoethyl ester anion of Cl2MBP, we obtained the title novel layered Ba bisphosphonate complex, (I). The structure of (I) is different from the structures reported for other metal complexes of ester derivatives of Cl2MBP.

The asymmetric unit of (I) consists of three crystallographically independent Ba2+ ions, two independent (Cl2CP2O6Et)3- ligands, one acetone molecule and four aqua ligands. As shown in Fig. 1, there are two coordination modes for the (Cl2CP2O6Et)3- ligands. The (Cl2CP2O6Et)3- ligand containing atoms P1 and P2 is coordinated to six Ba2+ cations through five O atoms, forming two six-membered chelate rings with atoms Ba1 and Ba3, while atom P1 forms a four-membered chelate ring with the adjacent atom Ba3C [symmetry code: (C) 1/2 - x, 1/2 + y, 1/2 - z]. The (Cl2CP2O6Et)3- ligand containing atoms P3 and P4 is coordinated to five Ba2+cations through four O atoms, forming a six-membered chelate ring with atom Ba2, while atom P3 forms two four-membered chelate rings with atoms Ba1A [symmetry code: (A) -x, 1 - y, -z] and Ba3C. Thus, atom O42 of the phosphonate group containing atom P4 remains uncoordinated but is involved in hydrogen bonding. In both (Cl2CP2O6Et)3- ligands, two O atoms (O13, O22 and O32, O33) act as monoatomic bridges between two Ba atoms, and one O atom (O11 and O31) is coordinated simultaneously to three Ba atoms (Ba1, Ba2 and Ba3C). The Ba1···Ba3C contact of 4.1404 (8) Å is shorter than the sum of the van der Waals radii of Ba (4.28 Å; Guo & Zhang, 2008; Srinivasan et al., 2007), indicating weak metal-to-metal interaction.

Both atoms Ba1 and Ba2 are eight-coordinated in a distorted bicapped trigonal prismatic geometry. The coordination environment around atom Ba1 consists of five phosphonate O atoms from three different (Cl2CP2O6Et)3- ligands and three aqua ligands. The Ba1—O bond distances range from 2.692 (3) to 2.889 (3) Å (Table 1). The aqua ligands O2 and O3 bridge atom Ba1 to the adjacent atoms Ba2 and Ba3E [symmetry code: (E) x - 1/2, 1/2 - y, z - 1/2], with a Ba1···Ba2 distance of 4.301 (1) Å and a Ba1···Ba3E distance of 4.502 (2) Å. The coordination environment around atom Ba2 consists of five phosphonate O atoms from four different (Cl2CP2O6Et)3- ligands, two bridging aqua ligands and one acetone ligand. The Ba2—O bond distances vary more widely, from 2.637 (3) to 3.226 (3) Å, compared with those involving atoms Ba1 and Ba3. Atom Ba3 is nine-coordinated in a distorted tricapped trigonal prismatic geometry. The coordination sites around the metal centre are occupied by seven phosphonate O atoms from five different (Cl2CP2O6Et)3- ligands, and two bridging aqua ligands. The Ba3—O bond distances range from 2.642 (3) to 3.023 (3) Å.

The infinite two-dimensional network of (I) can be thought of as formed through phosphonate atoms O12, O22 and O13, which link the Ba2 and Ba3 centres by acting as mono- and triatomic bridges. The µ-aqua ligand O4 also bridges atoms Ba2 and Ba3 [Ba2···Ba3 = 4.385 (1) Å] and is involved in forming the two-dimensional polymeric structure lying parallel to the (101) plane (Fig. 2). As presented in Fig. 3, the Cl atoms and ethyl groups point away from the layers, with an interlayer distance of 14.5492 (4) Å.

The layered structure of (I) is stabilized by intralayer hydrogen bonds involving all the aqua ligands and coordinated phosphonate O atoms (O12, O21, O32 and O41), and the non-coordinated phosphonate atom O42 (Table 2, wherein the following symmetry codes are defined). The aqua ligands O1 and O4ii donate H atoms to phosphonate atoms O12ii and O21, respectively, thereby closing a ring, Ba1—O1—H1B···O12ii—Ba3ii—O4ii—H4Aii···O21—Ba1, which has a graph-set motif of R22(8) (Bernstein et al., 1995). The aqua ligand O1 is also involved in hydrogen bonds with the phosphonate atom O41 and aqua ligand O2v, which results in two further ring motifs, S(4) (Ba2—O1—H1A···O41—Ba2) and R22(6) (Ba3ii—O2v—H2Av···O1—H1B···O12ii—Ba3ii). As the aqua ligand O2 is involved in hydrogen bonding with atom O42, which further acts as an acceptor for two other H atoms of the aqua ligands O3v and O4vi [symmetry code: (vi) x-1/2, -y+1/2, z-1/2], a hydrogen-bonding network with several combined rings is formed.

Experimental top

The title compound was crystallized by the gel method. The starting materials Na3Cl2CP2O6Et (10 mg, 0.030 mmol) and BaCl2.2H2O (7.2 mg, 0.030 mmol) were dissolved separately in water (0.45 ml) and mixed, and tetramethoxysilane (0.1 ml) was added. The two-phase system was shaken until homogeneous. After gel formation, a precipitant, acetone (1 ml), was added above the gel to induce crystallization. Several months later, plate-like colourless crystals of (I) suitable for X-ray analysis were formed above the gel. Crystals for X-ray diffraction analysis were separated from the gel on a watch-glass under a microscope, washed with pure precipitant and dried in air.

Refinement top

C-bound H atoms were placed in calculated positions and refined using the riding-model approximation, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms. Water H atoms were located in a difference Fourier map and treated as riding, with O—H = 0.83–0.86 Å, and their isotropic displacement parameters were refined. The C atoms (C4, C5, C22) of the coordinated acetone molecule and ethyl substituent have relatively high thermal motions, indicating disorder in the methyl groups. However, no residual electron density suitable for a split-atom model was found. The highest peak (2.99 e Å-3) in the difference Fourier map is located 0.75 Å from atom H3B and the deepest hole (-0.92 e Å-3) 0.88 Å from Ba1.

Computing details top

Data collection: COLLECT (Nonius,1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit of (I), expanded to show relevant symmetry-related atoms, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled with the suffixes AE are at the symmetry postitions (-x, 1 - y, -z), (1/2 - x, y - 1/2, 1/2 - z), (1/2 - x, 1/2 + y, 1/2 - z), (1/2 + x, 1/2 - y, 1/2 + z) and (x - 1/2, 1/2 - y, z - 1/2), respectively.
[Figure 2] Fig. 2. The two-dimensional network of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds. Ethyl groups and acetone molecules have been omitted for clarity.
[Figure 3] Fig. 3. The packing of the layers of (I) parallel to the (101) plane, viewed along the b axis. H atoms have been omitted for clarity.
Poly[acetonetetraaqua[µ6-ethyl (dichloromethylene)diphosphonato][µ5-ethyl (dichloromethylene)diphosphonato]tribarium(II)] top
Crystal data top
[Ba3(C3H5Cl2O6P2)2(C3H6O)(H2O)4]F(000) = 2040
Mr = 1081.98Dx = 2.393 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 41896 reflections
a = 16.635 (3) Åθ = 2.0–26.0°
b = 9.814 (2) ŵ = 4.52 mm1
c = 19.495 (4) ÅT = 150 K
β = 109.32 (3)°Plate, colourless
V = 3003.5 (10) Å30.25 × 0.10 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
5887 independent reflections
Radiation source: fine-focus sealed tube5446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ scans, and ω scans with κ offsetsθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
h = 2020
Tmin = 0.550, Tmax = 0.805k = 1211
41896 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0484P)2 + 11.7367P]
where P = (Fo2 + 2Fc2)/3
5887 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 2.99 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Ba3(C3H5Cl2O6P2)2(C3H6O)(H2O)4]V = 3003.5 (10) Å3
Mr = 1081.98Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.635 (3) ŵ = 4.52 mm1
b = 9.814 (2) ÅT = 150 K
c = 19.495 (4) Å0.25 × 0.10 × 0.05 mm
β = 109.32 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5887 independent reflections
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
5446 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.805Rint = 0.041
41896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0484P)2 + 11.7367P]
where P = (Fo2 + 2Fc2)/3
5887 reflectionsΔρmax = 2.99 e Å3
346 parametersΔρmin = 0.92 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.019771 (16)0.26522 (3)0.099513 (13)0.01081 (8)
Ba20.289813 (16)0.29669 (3)0.142021 (13)0.01260 (8)
Ba30.366715 (15)0.14599 (2)0.366219 (13)0.01024 (8)
Cl10.01132 (7)0.38738 (12)0.27129 (7)0.0250 (3)
Cl20.14914 (9)0.35471 (13)0.40982 (6)0.0293 (3)
Cl30.16658 (8)0.47202 (13)0.15508 (6)0.0233 (3)
Cl40.29450 (7)0.46961 (12)0.01090 (6)0.0184 (2)
P10.18991 (7)0.41790 (11)0.27614 (6)0.0099 (2)
P20.11251 (7)0.13395 (11)0.29891 (6)0.0118 (2)
P30.11161 (7)0.47389 (11)0.02413 (6)0.0102 (2)
P40.19592 (8)0.21786 (12)0.06620 (6)0.0153 (2)
O10.1405 (2)0.0719 (3)0.08929 (18)0.0192 (7)
H1A0.15930.08240.05370.06 (2)*
H1B0.16990.01140.11810.028 (16)*
O20.0217 (2)0.1509 (3)0.04189 (17)0.0163 (7)
H2B0.02020.15290.05610.030 (17)*
H2A0.04670.07550.05220.037 (18)*
O30.1216 (3)0.1199 (5)0.0992 (3)0.0521 (13)
H3A0.11700.04580.07850.08 (3)*
H3B0.16480.16400.07290.10 (4)*
O40.4381 (2)0.3239 (3)0.28296 (18)0.0212 (7)
H4A0.43610.41010.28710.036 (18)*
H4B0.49070.30450.29590.04 (2)*
O50.4486 (3)0.2301 (5)0.1284 (3)0.0519 (13)
O110.1625 (2)0.3742 (3)0.19691 (16)0.0148 (6)
O120.2790 (2)0.3714 (3)0.31911 (18)0.0171 (7)
O130.1744 (2)0.5675 (3)0.28345 (16)0.0147 (6)
O210.0663 (2)0.1097 (3)0.22002 (17)0.0164 (7)
O220.2003 (2)0.0768 (3)0.33105 (17)0.0172 (7)
O230.0600 (2)0.0751 (4)0.34690 (18)0.0229 (8)
O310.13197 (19)0.3919 (3)0.04580 (16)0.0140 (6)
O320.1285 (2)0.6253 (3)0.00936 (17)0.0149 (6)
O330.02446 (19)0.4494 (3)0.07966 (16)0.0150 (6)
O410.2406 (2)0.1715 (3)0.00992 (18)0.0190 (7)
O420.1083 (2)0.1641 (3)0.10433 (19)0.0207 (7)
O430.2570 (2)0.1865 (4)0.11226 (19)0.0232 (8)
C10.1178 (3)0.3215 (4)0.3145 (2)0.0127 (9)
C20.1907 (3)0.4068 (5)0.0647 (2)0.0137 (9)
C30.4902 (5)0.1844 (8)0.0943 (4)0.0493 (17)
C40.5820 (5)0.1414 (11)0.1315 (5)0.072 (3)
H4E0.59590.14960.18320.108*
H4F0.61900.19890.11550.108*
H4D0.58910.04840.11930.108*
C50.4527 (6)0.1626 (13)0.0145 (5)0.088 (3)
H5A0.40140.21520.00420.132*
H5B0.43980.06780.00490.132*
H5C0.49280.19090.00860.132*
C410.2246 (4)0.1476 (7)0.1876 (3)0.0364 (14)
H41A0.16660.18030.20910.044*
H41B0.22390.04910.19160.044*
C420.2785 (5)0.2060 (8)0.2271 (4)0.0509 (18)
H42A0.27590.30360.22590.076*
H42C0.25840.17540.27670.076*
H42B0.33640.17680.20440.076*
C210.0307 (4)0.0476 (7)0.3179 (4)0.0395 (15)
H21B0.05870.11910.28410.047*
H21A0.04020.03800.29160.047*
C220.0669 (6)0.0406 (12)0.3758 (5)0.078 (3)
H22B0.03890.02980.40940.116*
H22A0.12660.02040.35560.116*
H22C0.05930.12640.40070.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01297 (14)0.00759 (13)0.00938 (14)0.00045 (9)0.00036 (10)0.00050 (9)
Ba20.01570 (14)0.00821 (14)0.01153 (14)0.00078 (9)0.00132 (10)0.00159 (9)
Ba30.01234 (14)0.00667 (14)0.00876 (13)0.00068 (8)0.00050 (10)0.00042 (9)
Cl10.0160 (5)0.0179 (6)0.0411 (7)0.0053 (4)0.0093 (5)0.0012 (5)
Cl20.0479 (8)0.0289 (7)0.0131 (6)0.0071 (6)0.0130 (5)0.0063 (5)
Cl30.0263 (6)0.0305 (6)0.0140 (5)0.0059 (5)0.0079 (5)0.0069 (5)
Cl40.0127 (5)0.0195 (6)0.0214 (6)0.0022 (4)0.0035 (4)0.0006 (4)
P10.0123 (5)0.0060 (5)0.0089 (5)0.0003 (4)0.0000 (4)0.0006 (4)
P20.0139 (5)0.0090 (5)0.0113 (5)0.0003 (4)0.0026 (4)0.0016 (4)
P30.0107 (5)0.0097 (5)0.0091 (5)0.0005 (4)0.0016 (4)0.0002 (4)
P40.0164 (6)0.0142 (6)0.0148 (6)0.0007 (4)0.0045 (5)0.0035 (4)
O10.0205 (17)0.0175 (17)0.0176 (17)0.0057 (13)0.0036 (14)0.0048 (13)
O20.0162 (16)0.0129 (17)0.0189 (17)0.0007 (12)0.0045 (13)0.0003 (13)
O30.030 (2)0.034 (3)0.084 (4)0.010 (2)0.009 (2)0.013 (3)
O40.0255 (19)0.0139 (17)0.0247 (18)0.0001 (14)0.0088 (15)0.0002 (14)
O50.043 (3)0.058 (3)0.063 (3)0.013 (2)0.030 (3)0.004 (3)
O110.0231 (17)0.0122 (15)0.0077 (14)0.0033 (12)0.0034 (13)0.0021 (12)
O120.0144 (16)0.0097 (15)0.0229 (17)0.0010 (12)0.0003 (13)0.0021 (13)
O130.0187 (16)0.0097 (15)0.0137 (15)0.0010 (12)0.0026 (13)0.0005 (12)
O210.0203 (16)0.0122 (15)0.0117 (15)0.0019 (12)0.0015 (13)0.0019 (12)
O220.0172 (16)0.0087 (15)0.0192 (16)0.0002 (12)0.0025 (13)0.0016 (12)
O230.0242 (18)0.0277 (19)0.0162 (16)0.0094 (15)0.0059 (14)0.0046 (14)
O310.0150 (15)0.0136 (15)0.0122 (15)0.0036 (12)0.0026 (12)0.0027 (12)
O320.0169 (16)0.0101 (15)0.0138 (15)0.0009 (12)0.0000 (13)0.0003 (12)
O330.0133 (15)0.0159 (16)0.0137 (15)0.0000 (12)0.0019 (12)0.0020 (12)
O410.0252 (18)0.0116 (16)0.0175 (17)0.0029 (13)0.0036 (14)0.0002 (13)
O420.0195 (17)0.0176 (17)0.0247 (18)0.0020 (13)0.0070 (14)0.0044 (14)
O430.0210 (18)0.029 (2)0.0200 (18)0.0027 (15)0.0078 (14)0.0081 (15)
C10.017 (2)0.012 (2)0.009 (2)0.0038 (17)0.0035 (17)0.0019 (16)
C20.011 (2)0.020 (2)0.010 (2)0.0000 (17)0.0034 (16)0.0033 (17)
C30.049 (4)0.047 (4)0.057 (5)0.002 (3)0.026 (4)0.000 (3)
C40.054 (5)0.095 (7)0.063 (6)0.020 (5)0.014 (4)0.000 (5)
C50.064 (6)0.132 (10)0.058 (6)0.029 (6)0.008 (5)0.006 (6)
C410.046 (4)0.043 (4)0.024 (3)0.005 (3)0.018 (3)0.015 (2)
C420.048 (4)0.068 (5)0.042 (4)0.003 (4)0.022 (3)0.008 (3)
C210.021 (3)0.048 (4)0.051 (4)0.004 (3)0.014 (3)0.018 (3)
C220.053 (5)0.124 (9)0.069 (6)0.009 (5)0.039 (4)0.013 (6)
Geometric parameters (Å, º) top
Ba1—O212.692 (3)P3—O311.522 (3)
Ba1—O112.721 (3)P3—O321.522 (3)
Ba1—O312.724 (3)P3—C21.865 (5)
Ba1—O32i2.731 (3)P3—Ba1i3.3715 (13)
Ba1—O32.748 (4)P3—Ba3ii3.4242 (12)
Ba1—O12.817 (3)P4—O411.494 (3)
Ba1—O22.842 (3)P4—O421.496 (4)
Ba1—O33i2.889 (3)P4—O431.593 (4)
Ba1—P3i3.3715 (13)P4—C21.857 (5)
Ba1—Cl13.6031 (15)O1—H1A0.8565
Ba1—Ba3ii4.1404 (8)O1—H1B0.8516
Ba1—Ba24.3010 (10)O2—Ba3v2.903 (3)
Ba2—O13iii2.637 (3)O2—H2B0.8314
Ba2—O412.723 (3)O2—H2A0.8403
Ba2—O112.777 (3)O3—H3A0.8476
Ba2—O22ii2.793 (3)O3—H3B0.8500
Ba2—O52.818 (5)O4—H4A0.8513
Ba2—O312.833 (3)O4—H4B0.8490
Ba2—O43.036 (4)O5—C31.194 (8)
Ba2—O13.226 (3)O11—Ba3ii2.910 (3)
Ba2—Cl43.4537 (13)O13—Ba2ii2.637 (3)
Ba2—P2ii3.6992 (13)O13—Ba3ii2.873 (3)
Ba2—P13.7269 (14)O22—Ba2iii2.793 (3)
Ba2—Ba3ii4.2757 (7)O23—C211.450 (6)
Ba3—O122.642 (3)O31—Ba3ii3.023 (3)
Ba3—O33iv2.654 (3)O32—Ba1i2.731 (3)
Ba3—O222.709 (3)O32—Ba3ii2.772 (3)
Ba3—O32iii2.772 (3)O33—Ba3v2.654 (3)
Ba3—O13iii2.873 (3)O33—Ba1i2.889 (3)
Ba3—O42.892 (3)O43—C411.439 (6)
Ba3—O2iv2.903 (3)C3—C51.488 (12)
Ba3—O11iii2.910 (3)C3—C41.517 (11)
Ba3—O31iii3.023 (3)C4—H4E0.9600
Ba3—P3iii3.4242 (12)C4—H4F0.9600
Ba3—P1iii3.4454 (12)C4—H4D0.9600
Ba3—Ba1iii4.1404 (8)C5—H5A0.9600
Cl1—C11.811 (4)C5—H5B0.9600
Cl2—C11.786 (4)C5—H5C0.9600
Cl3—C21.791 (4)C41—C421.477 (9)
Cl4—C21.807 (4)C41—H41A0.9700
P1—O131.506 (3)C41—H41B0.9700
P1—O121.512 (3)C42—H42A0.9600
P1—O111.520 (3)C42—H42C0.9600
P1—C11.867 (5)C42—H42B0.9600
P1—Ba3ii3.4454 (12)C21—C221.445 (10)
P2—O211.494 (3)C21—H21B0.9700
P2—O221.495 (3)C21—H21A0.9700
P2—O231.586 (3)C22—H22B0.9600
P2—C11.863 (5)C22—H22A0.9600
P2—Ba2iii3.6992 (13)C22—H22C0.9600
P3—O331.514 (3)
O21—Ba1—O1171.42 (9)O4—Ba3—P3iii149.49 (7)
O21—Ba1—O31123.97 (9)O2iv—Ba3—P3iii85.88 (7)
O11—Ba1—O3162.50 (9)O11iii—Ba3—P3iii83.18 (6)
O21—Ba1—O32i136.26 (10)O31iii—Ba3—P3iii26.37 (6)
O11—Ba1—O32i133.48 (9)O12—Ba3—P1iii106.96 (8)
O31—Ba1—O32i99.25 (9)O33iv—Ba3—P1iii93.54 (7)
O21—Ba1—O372.91 (13)O22—Ba3—P1iii69.45 (8)
O11—Ba1—O3138.91 (14)O32iii—Ba3—P1iii132.24 (7)
O31—Ba1—O3158.54 (14)O13iii—Ba3—P1iii25.58 (6)
O32i—Ba1—O367.24 (12)O4—Ba3—P1iii89.64 (7)
O21—Ba1—O170.97 (10)O2iv—Ba3—P1iii153.10 (7)
O11—Ba1—O180.59 (10)O11iii—Ba3—P1iii25.97 (6)
O31—Ba1—O171.65 (10)O31iii—Ba3—P1iii82.52 (6)
O32i—Ba1—O1137.10 (9)P3iii—Ba3—P1iii108.85 (3)
O3—Ba1—O1106.24 (13)O12—Ba3—Ba1iii169.06 (7)
O21—Ba1—O2122.02 (9)O33iv—Ba3—Ba1iii43.88 (7)
O11—Ba1—O2135.07 (10)O22—Ba3—Ba1iii100.82 (7)
O31—Ba1—O277.56 (9)O32iii—Ba3—Ba1iii84.93 (6)
O32i—Ba1—O269.71 (9)O13iii—Ba3—Ba1iii82.21 (6)
O3—Ba1—O281.97 (14)O4—Ba3—Ba1iii112.67 (7)
O1—Ba1—O267.39 (9)O2iv—Ba3—Ba1iii110.85 (7)
O21—Ba1—O33i130.82 (9)O11iii—Ba3—Ba1iii40.92 (6)
O11—Ba1—O33i80.63 (9)O31iii—Ba3—Ba1iii41.10 (6)
O31—Ba1—O33i71.49 (9)P3iii—Ba3—Ba1iii60.20 (2)
O32i—Ba1—O33i52.88 (9)P1iii—Ba3—Ba1iii62.10 (3)
O3—Ba1—O33i108.84 (13)C1—Cl1—Ba188.88 (14)
O1—Ba1—O33i143.07 (9)C2—Cl4—Ba292.48 (14)
O2—Ba1—O33i106.46 (9)O13—P1—O12114.18 (18)
O21—Ba1—P3i140.25 (8)O13—P1—O11111.59 (18)
O11—Ba1—P3i107.20 (7)O12—P1—O11112.78 (19)
O31—Ba1—P3i85.04 (7)O13—P1—C1107.67 (19)
O32i—Ba1—P3i26.29 (7)O12—P1—C1105.48 (19)
O3—Ba1—P3i87.84 (11)O11—P1—C1104.31 (19)
O1—Ba1—P3i148.77 (7)O13—P1—Ba3ii55.45 (12)
O2—Ba1—P3i87.85 (7)O12—P1—Ba3ii126.81 (14)
O33i—Ba1—P3i26.59 (6)O11—P1—Ba3ii56.96 (12)
O21—Ba1—Cl157.72 (7)C1—P1—Ba3ii127.68 (14)
O11—Ba1—Cl160.92 (7)O13—P1—Ba2120.52 (13)
O31—Ba1—Cl1116.61 (7)O12—P1—Ba273.09 (14)
O32i—Ba1—Cl199.36 (7)C1—P1—Ba2127.85 (14)
O3—Ba1—Cl182.99 (13)Ba3ii—P1—Ba273.07 (3)
O1—Ba1—Cl1122.53 (7)O21—P2—O22118.1 (2)
O2—Ba1—Cl1164.01 (7)O21—P2—O23110.67 (19)
O33i—Ba1—Cl173.47 (6)O22—P2—O23105.59 (19)
P3i—Ba1—Cl186.18 (3)O21—P2—C1107.82 (19)
O21—Ba1—Ba3ii112.77 (7)O22—P2—C1108.39 (19)
O11—Ba1—Ba3ii44.48 (6)O23—P2—C1105.6 (2)
O31—Ba1—Ba3ii46.85 (7)O21—P2—Ba2iii101.61 (13)
O32i—Ba1—Ba3ii90.87 (7)O23—P2—Ba2iii76.20 (14)
O3—Ba1—Ba3ii144.37 (12)C1—P2—Ba2iii147.25 (14)
O1—Ba1—Ba3ii108.77 (7)O33—P3—O31115.68 (18)
O2—Ba1—Ba3ii117.66 (7)O33—P3—O32111.28 (18)
O33i—Ba1—Ba3ii39.55 (6)O31—P3—O32111.99 (18)
P3i—Ba1—Ba3ii65.17 (3)O33—P3—C2106.47 (19)
Cl1—Ba1—Ba3ii72.88 (2)O31—P3—C2102.37 (19)
O21—Ba1—Ba283.82 (7)O32—P3—C2108.3 (2)
O11—Ba1—Ba238.99 (7)O33—P3—Ba1i58.63 (12)
O31—Ba1—Ba240.22 (6)O31—P3—Ba1i135.42 (13)
O32i—Ba1—Ba2139.37 (7)O32—P3—Ba1i52.65 (12)
O3—Ba1—Ba2151.16 (11)C2—P3—Ba1i121.98 (14)
O1—Ba1—Ba248.59 (7)O33—P3—Ba3ii120.80 (13)
O2—Ba1—Ba296.79 (7)O31—P3—Ba3ii61.93 (12)
O33i—Ba1—Ba299.19 (6)O32—P3—Ba3ii52.43 (12)
P3i—Ba1—Ba2120.97 (2)C2—P3—Ba3ii132.55 (14)
Cl1—Ba1—Ba299.00 (3)Ba1i—P3—Ba3ii82.96 (3)
Ba3ii—Ba1—Ba260.830 (9)O41—P4—O42118.0 (2)
O13iii—Ba2—O4194.52 (10)O41—P4—O43107.5 (2)
O13iii—Ba2—O1194.78 (9)O42—P4—O43110.5 (2)
O41—Ba2—O11117.32 (10)O41—P4—C2107.39 (19)
O13iii—Ba2—O22ii138.37 (9)O42—P4—C2108.5 (2)
O41—Ba2—O22ii127.03 (10)O43—P4—C2104.1 (2)
O11—Ba2—O22ii70.29 (9)Ba1—O1—Ba290.49 (9)
O13iii—Ba2—O578.83 (13)Ba1—O1—H1A115.8
O41—Ba2—O578.70 (13)Ba2—O1—H1A74.1
O11—Ba2—O5163.40 (13)Ba1—O1—H1B133.7
O22ii—Ba2—O5104.33 (13)Ba2—O1—H1B93.0
O13iii—Ba2—O31129.57 (9)H1A—O1—H1B109.5
O41—Ba2—O3166.41 (10)Ba1—O2—Ba3v103.19 (10)
O11—Ba2—O3160.45 (9)Ba1—O2—H2B110.6
O22ii—Ba2—O3177.51 (9)Ba3v—O2—H2B102.4
O5—Ba2—O31134.94 (13)Ba1—O2—H2A121.4
O13iii—Ba2—O466.96 (9)Ba3v—O2—H2A107.0
O41—Ba2—O4142.71 (10)H2B—O2—H2A110.2
O11—Ba2—O497.00 (9)Ba1—O3—H3A103.5
O22ii—Ba2—O476.34 (9)Ba1—O3—H3B106.8
O5—Ba2—O466.41 (13)H3A—O3—H3B109.9
O31—Ba2—O4150.17 (9)Ba3—O4—Ba295.37 (10)
O13iii—Ba2—O166.54 (9)Ba3—O4—H4A120.7
O41—Ba2—O155.34 (10)Ba2—O4—H4A97.3
O11—Ba2—O172.84 (9)Ba3—O4—H4B105.8
O22ii—Ba2—O1136.39 (9)Ba2—O4—H4B134.3
O5—Ba2—O1117.28 (13)H4A—O4—H4B105.2
O31—Ba2—O164.36 (9)C3—O5—Ba2150.9 (5)
O4—Ba2—O1131.13 (9)P1—O11—Ba1135.99 (18)
O13iii—Ba2—Cl4146.04 (7)P1—O11—Ba2117.26 (17)
O41—Ba2—Cl459.40 (7)Ba1—O11—Ba2102.95 (10)
O11—Ba2—Cl4115.85 (7)P1—O11—Ba3ii97.07 (14)
O22ii—Ba2—Cl470.24 (7)Ba1—O11—Ba3ii94.60 (9)
O5—Ba2—Cl475.10 (11)Ba2—O11—Ba3ii97.47 (10)
O31—Ba2—Cl463.07 (7)P1—O12—Ba3140.63 (18)
O4—Ba2—Cl4119.63 (7)P1—O13—Ba2ii150.39 (18)
O1—Ba2—Cl4107.22 (7)P1—O13—Ba3ii98.97 (15)
O13iii—Ba2—P2ii126.58 (7)Ba2ii—O13—Ba3ii105.39 (10)
O41—Ba2—P2ii131.43 (7)P2—O21—Ba1135.20 (18)
O11—Ba2—P2ii86.98 (7)P2—O22—Ba3141.88 (18)
O22ii—Ba2—P2ii21.32 (7)P2—O22—Ba2iii115.89 (16)
O5—Ba2—P2ii84.73 (11)Ba3—O22—Ba2iii101.99 (10)
O31—Ba2—P2ii97.26 (7)C21—O23—P2122.9 (3)
O4—Ba2—P2ii59.87 (7)P3—O31—Ba1127.46 (17)
O1—Ba2—P2ii157.49 (6)P3—O31—Ba2130.57 (17)
Cl4—Ba2—P2ii72.30 (3)Ba1—O31—Ba2101.41 (10)
O13iii—Ba2—P187.56 (7)P3—O31—Ba3ii91.70 (14)
O41—Ba2—P1138.00 (8)Ba1—O31—Ba3ii92.04 (9)
O11—Ba2—P121.26 (6)Ba2—O31—Ba3ii93.74 (9)
O22ii—Ba2—P164.28 (7)P3—O32—Ba1i101.06 (15)
O5—Ba2—P1142.17 (11)P3—O32—Ba3ii101.78 (15)
O31—Ba2—P180.13 (7)Ba1i—O32—Ba3ii109.76 (11)
O4—Ba2—P175.77 (7)P3—O33—Ba3v157.96 (19)
O1—Ba2—P188.09 (6)P3—O33—Ba1i94.78 (14)
Cl4—Ba2—P1126.26 (3)Ba3v—O33—Ba1i96.57 (10)
P2ii—Ba2—P175.40 (3)P4—O41—Ba2134.21 (18)
O13iii—Ba2—Ba3ii136.75 (7)C41—O43—P4122.2 (3)
O41—Ba2—Ba3ii109.71 (7)Cl2—C1—Cl1108.8 (2)
O11—Ba2—Ba3ii42.45 (6)Cl2—C1—P2109.4 (2)
O22ii—Ba2—Ba3ii38.29 (7)Cl1—C1—P2106.9 (2)
O5—Ba2—Ba3ii139.53 (11)Cl2—C1—P1108.6 (2)
O31—Ba2—Ba3ii44.87 (6)Cl1—C1—P1107.0 (2)
O4—Ba2—Ba3ii105.41 (7)P2—C1—P1116.0 (2)
O1—Ba2—Ba3ii98.12 (6)Cl3—C2—Cl4108.0 (2)
Cl4—Ba2—Ba3ii76.17 (3)Cl3—C2—P4109.8 (2)
P2ii—Ba2—Ba3ii59.57 (2)Cl4—C2—P4108.0 (2)
P1—Ba2—Ba3ii50.434 (19)Cl3—C2—P3109.3 (2)
O12—Ba3—O33iv142.50 (10)Cl4—C2—P3107.8 (2)
O12—Ba3—O2273.83 (10)P4—C2—P3113.7 (2)
O33iv—Ba3—O22143.63 (10)O5—C3—C5121.1 (7)
O12—Ba3—O32iii103.89 (10)O5—C3—C4121.1 (7)
O33iv—Ba3—O32iii83.02 (10)C5—C3—C4117.8 (7)
O22—Ba3—O32iii85.59 (10)C3—C4—H4E109.5
O12—Ba3—O13iii87.30 (10)C3—C4—H4F109.5
O33iv—Ba3—O13iii100.42 (10)H4E—C4—H4F109.5
O22—Ba3—O13iii78.22 (10)C3—C4—H4D109.5
O32iii—Ba3—O13iii156.99 (9)H4E—C4—H4D109.5
O12—Ba3—O465.25 (10)H4F—C4—H4D109.5
O33iv—Ba3—O484.31 (10)C3—C5—H5A109.5
O22—Ba3—O4125.73 (10)C3—C5—H5B109.5
O32iii—Ba3—O4136.76 (10)H5A—C5—H5B109.5
O13iii—Ba3—O466.16 (9)C3—C5—H5C109.5
O12—Ba3—O2iv78.84 (9)H5A—C5—H5C109.5
O33iv—Ba3—O2iv69.56 (10)H5B—C5—H5C109.5
O22—Ba3—O2iv136.02 (10)O43—C41—C42110.0 (5)
O32iii—Ba3—O2iv68.26 (9)O43—C41—H41A109.7
O13iii—Ba3—O2iv134.39 (9)C42—C41—H41A109.7
O4—Ba3—O2iv68.57 (9)O43—C41—H41B109.7
O12—Ba3—O11iii128.66 (9)C42—C41—H41B109.7
O33iv—Ba3—O11iii81.34 (9)H41A—C41—H41B108.2
O22—Ba3—O11iii69.48 (9)C41—C42—H42A109.5
O32iii—Ba3—O11iii107.67 (9)C41—C42—H42C109.5
O13iii—Ba3—O11iii51.28 (8)H42A—C42—H42C109.5
O4—Ba3—O11iii110.98 (9)C41—C42—H42B109.5
O2iv—Ba3—O11iii150.86 (9)H42A—C42—H42B109.5
O12—Ba3—O31iii141.96 (10)H42C—C42—H42B109.5
O33iv—Ba3—O31iii70.29 (9)C22—C21—O23110.7 (6)
O22—Ba3—O31iii75.62 (9)C22—C21—H21B109.5
O32iii—Ba3—O31iii51.39 (9)O23—C21—H21B109.5
O13iii—Ba3—O31iii108.04 (8)C22—C21—H21A109.5
O4—Ba3—O31iii152.77 (9)O23—C21—H21A109.5
O2iv—Ba3—O31iii109.46 (9)H21B—C21—H21A108.1
O11iii—Ba3—O31iii56.81 (8)C21—C22—H22B109.5
O12—Ba3—P3iii127.40 (8)C21—C22—H22A109.5
O33iv—Ba3—P3iii70.88 (7)H22B—C22—H22A109.5
O22—Ba3—P3iii84.18 (8)C21—C22—H22C109.5
O32iii—Ba3—P3iii25.79 (7)H22B—C22—H22C109.5
O13iii—Ba3—P3iii134.40 (6)H22A—C22—H22C109.5
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O410.862.022.798 (5)150
O1—H1B···O12iii0.851.852.697 (4)173
O2—H2B···O420.831.992.813 (5)172
O2—H2A···O1vi0.842.072.886 (5)163
O3—H3A···O42vi0.852.112.796 (6)137
O3—H3B···O32i0.852.583.034 (6)114
O4—H4A···O21ii0.851.962.806 (5)170
O4—H4B···O42iv0.852.282.957 (5)137
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (vi) x, y, z.

Experimental details

Crystal data
Chemical formula[Ba3(C3H5Cl2O6P2)2(C3H6O)(H2O)4]
Mr1081.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)16.635 (3), 9.814 (2), 19.495 (4)
β (°) 109.32 (3)
V3)3003.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)4.52
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(XPREP in SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.550, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
41896, 5887, 5446
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.07
No. of reflections5887
No. of parameters346
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0484P)2 + 11.7367P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.99, 0.92

Computer programs: COLLECT (Nonius,1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

Selected bond lengths (Å) top
Ba1—O212.692 (3)Ba2—O312.833 (3)
Ba1—O112.721 (3)Ba2—O43.036 (4)
Ba1—O312.724 (3)Ba2—O13.226 (3)
Ba1—O32i2.731 (3)Ba3—O122.642 (3)
Ba1—O32.748 (4)Ba3—O33iv2.654 (3)
Ba1—O12.817 (3)Ba3—O222.709 (3)
Ba1—O22.842 (3)Ba3—O32ii2.772 (3)
Ba1—O33i2.889 (3)Ba3—O13ii2.873 (3)
Ba2—O13ii2.637 (3)Ba3—O42.892 (3)
Ba2—O412.723 (3)Ba3—O2iv2.903 (3)
Ba2—O112.777 (3)Ba3—O11ii2.910 (3)
Ba2—O22iii2.793 (3)Ba3—O31ii3.023 (3)
Ba2—O52.818 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O410.862.022.798 (5)150
O1—H1B···O12ii0.851.852.697 (4)173
O2—H2B···O420.831.992.813 (5)172
O2—H2A···O1v0.842.072.886 (5)163
O3—H3A···O42v0.852.112.796 (6)137
O3—H3B···O32i0.852.583.034 (6)114
O4—H4A···O21iii0.851.962.806 (5)170
O4—H4B···O42iv0.852.282.957 (5)137
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds