Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The room-temperature crystal structures of four new thio derivatives of N-methyl­phenobarbital [systematic name: 5-ethyl-1-methyl-5-phenyl­pyrimidine-2,4,6(1H,3H,5H)-trione], C13H14N2O3, are compared with the structure of the parent compound. The sulfur substituents in N-methyl-2-thio­pheno­barbital [5-ethyl-1-methyl-5-phenyl-2-thioxo-1,2-di­­hydro­pyrimidine-4,6(3H,5H)-dione], C13H14N2O2S, N-methyl-4-thio­phenobarbital [5-ethyl-1-methyl-5-phenyl-4-thioxo-3,4-dihydro­pyrimidine-2,6(1H,5H)-dione], C13H14N2O2S, and N-methyl-2,4,6-trithio­pheno­barbital [5-ethyl-1-methyl-5-phenyl­pyrimidine-2,4,6­(1H,3H,5H)-tri­thione], C13H14N2S3, pre­serve the heterocyclic ring puckering observed for N-methyl­phenobarbital (a half-chair conformation), whereas in N-methyl-2,4-dithio­phenobarbital [5-ethyl-1-methyl-5-phenyl-2,4-dithioxo-1,2,3,4-tetra­hydro­pyrimidine-6(5H)-one], C13H14N2OS2, significant flattening of the ring was detected. The number and positions of the sulfur substituents influence the packing and hydrogen-bonding patterns of the derivatives. In the cases of the 2-thio, 4-thio and 2,4,6-trithio derivatives, there is a preference for the formation of a ring motif of the R22(8) type, which is also a characteristic of N-methyl­phenobarbital, whereas a C(6) chain forms in the 2,4-dithio derivative. The preferences for hydrogen-bond formation, which follow the sequence of acceptor position 4 > 2 > 6, confirm the differences in the nucleophilic properties of the C atoms of the heterocyclic ring and are consistent with the course of N-methylphenobarbital thio­nation reactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108043060/ln3120sup1.cif
Contains datablocks global, 2-TP, 4-TP, 2,4-DTP, 2,4,6-TTP, P

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043060/ln31202-TPsup2.hkl
Contains datablock 2-TP

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043060/ln31204-TPsup3.hkl
Contains datablock 4-TP

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043060/ln31202,4-DTPsup4.hkl
Contains datablock 2,4-DTP

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043060/ln31202,4,6-TTPsup5.hkl
Contains datablock 2,4,6-TTP

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108043060/ln3120Psup6.hkl
Contains datablock P

CCDC references: 724210; 724211; 724212; 724213; 724214

Comment top

Barbiturates are a widespread group of compounds with various pharmacological activities. In particular, phenobarbital, thiopental and pentobarbital have been the subjects of extensive research due to their anaesthetic, sedative, hypnotic, amnesiac and anticonvulsant properties (Kushikata et al., 2003; Huber et al., 2008). The structures of numerous barbituric acid derivatives, such as phenobarbital, have been studied with respect to their ability to form polymorphs (Williams, 1973, 1974; Platteau et al., 2005; Day et al., 2007). However, there are only a few examples of sulfur analogues of barbiturates. Recently, the crystal structure of 5-benzyl-1,3,5-trimethyltrithiobarbiturate was reported (Takechi et al., 2007).

In this paper, we present the crystal structures of four thio derivatives of 5-ethyl-1-methyl-5-phenyl-2,4,6(1H,3H,5H)-pyrimidinetrione, of common name N-methylphenobarbital, all crystallizing in the centrosymmetric space group P21/n. The structural formulae of the derivatives are given in the scheme. The asymmetric units of N-methyl-2-thiophenobarbital, (2-TP), N-methyl-4-thiophenobarbital, (4-TP), N-methyl-2,4-dithiophenobarbital, (2,4-DTP), N-methyl-2,4,6-trithiophenobarbital, (2,4,6-TTP), and N-methylphenobarbital, (P), are shown in Fig. 1. The structure of the latter compound was redetermined at 293 (2) K, so as to enable all five structures to be compared under the same conditions. The previously published data for N-methylphenobarbital were obtained at 163 K by Lewis et al. (2005) and refined to R = 0.042. A determination at 295 K by Bideau et al. (1969) was a low-quality determination with R = 0.107.

Selected geometric parameters at 293 (2) K for the crystal structures of the thio derivatives are given in Table 1, together with the values observed for N-methylphenobarbital at 293 (2) K and also at 163 (2) K (Lewis et al., 2005). The C—N bond lengths are similar to those found in β-lactams (Csp2–Nsp2= 1.385 Å; Allen et al., 1995), indicating that the lone pairs of the N1 and N3 atoms are conjugated with the carbonyl or thiocarbonyl groups, which results in the C2—N1—C6 and C2—N3—C4 angles being greater than 120° [the average values are 123.4 (3) and 127.8 (7)°, respectively], whereas the mean value of the C4—C5—C6 angle at the chiral centre is 112.8 (11)°. The heterocyclic ring in all crystal structures adopts a half-chair conformation, with the torsion angles and ring-puckering parameters given in Table 1. The set of torsion angles defining the heterocyclic ring conformation was found to be similar for (2-TP), (2,4,6-TTP), (4-TP) and (P), whereas for (2,4-DTP) all the torsion angles are close to zero, which indicates that the ring is significantly flattened. The geometric parameters of (P) at 293 (2) K are comparable with those found at 163 (2) K.

The CS bond lengths in the thio derivatives are significantly shortened [range 1.630–1.646 Å; 1.639 (6) Å on average, see Table 1] when compared with the value characteristic for thioureas (1.681 Å; Allen et al., 1995) and are similar to those observed in 5-benzyl-1,3,5-trimethylpyrimidine-2,4,6(1H,3H,5H)-trithione (Takechi et al., 2007). The average value of the CO bond lengths was found to be 1.212 (5) Å, which is also relatively short compared with the values observed in ureas (Allen et al., 1995).

Both (P) and its thio derivatives possess only one hydrogen-bond donor (the N3—H3 amide group), despite an excess of acceptor groups, which limits the number of possible moderate hydrogen bonds. The analysis of the hydrogen-bond parameters (Table 2) indicates the preferential acceptor properties of the O atom in position 4. If position 4 is occupied by an S atom, the role of the acceptor is taken over by the O atom in position 2 [as in (4-TP)]. In the case of the 2,4-dithio derivative, only the O atom in position 6 is available as the strong acceptor (the electronegativity of the O atom is 3.44 whereas that for the S atom is 2.58, which is comparable with that of a C atom, 2.55). When all the O atoms are replaced by S atoms in (2,4,6-TTP), position 4 is preferred again for the N—H···S hydrogen bond.

As can be seen in Fig. 2, the structures of (2-TP), (4-TP) and (2,4,6-TTP) contain centrosymmetric hydrogen-bonded dimers – like that observed in (P) – formed by the intermolecular N3—H3···O or N3—H3···S interactions across a centre of inversion. This hydrogen-bond motif can be recognized as the typical R22(8) type according to the graph-set approach (Etter et al., 1990; Bernstein et al., 1995). The type of hydrogen-bond system determines the specific packing pattern in the structures of the thio derivatives. The R22(8) ring composed of N3—H3···O4(2 - x, 1 - y, -z) hydrogen bonds in (2-TP) and that of N3—H3···S4(1 - x, 2 - y, 1 - z) in (2,4,6-TTP) enforces the same molecular packing arrangement shown in Figs. 3 and 6, respectively. Although the R22(8) system is also observed in the structure of (4-TP), the packing of the molecules is different (Fig. 4) because of the different acceptor type in the N3—H3···O2(2 - x, 1 - y, 1 - z) hydrogen bond. In (2,4-DTP) the R22(8) ring is not preserved because the donor and acceptor functional groups are not in adjacent positions on the heterocyclic ring. Instead, the packing of the molecules (Fig. 5) is dominated by a C(6) chain formed by the N3—H3···O6(x + 1, y, z) hydrogen bond (Fig. 2).

The preference of the moderate hydrogen-bond formation seems to follow the acceptor atom position in the heterocyclic ring according to the sequence 4 > 2 > 6, which corresponds with the nucleophilic properties of the heterocyclic ring C atoms. This finding is consistent with the order of the S atom substitution in the reaction of N-methyphenobarbital thionation, in which the amount of the thio derivatives of (P) in the reaction product was found to be: (4-TP) - 26% > (2,4-DTP) - 22% > (2-TP) - 16% (Stasiewicz-Urban et al., 2004).

Because the moderate hydrogen bonds form only discrete dimers or one-dimensional chains, the three-dimensional architecture of the molecular packing has to be provided by weak intermolecular interactions, the geometric parameters of which are summarized in Table 3. In the structures of (2-TP) and (2,4,6-TTP), with the substituent in position 4 (O4 and S4, respectively) serving as the acceptor for the N—H group, the hydrophobic layers (depicted in Figs. 7 and 8) are formed due to weak C—H···π edge-to-face interactions between the benzene rings of the adjacent molecules. A similar behaviour of the molecules is observed in the structure of (P).

In all the structures studied, the methyl group in position 1 seems to be engaged as the donor in weak intramolecular C—H···O or C—H···S hydrogen bonds. The differences in the values of the torsion angle defining the spatial arrangement of the substituents at position 5 (C4—C5—C7—C8 and C4—C5—C9—C10, Table 1), observed even in the structures with similar packing patterns, may be attributed to the resultant effect of the different set of weak attractive, weak repulsive and steric interactions. In the structure of (4-TP), the O6 atom is close to the centre of the neighbouring pyrimidine heterocyclic ring [Cg2 at -x + 3/2, y + 1/2, -z + 1/2; 3.214 (2) Å]. A similar observation can be made for atom O2 in the structure of (P) [Cg2 at -x, y - 1/2, -z + 3/2; 2.921 (2) Å].

Experimental top

The compunds were obtained by the thionation of N-methylphenobarbital with Lawesson's reagent (Stasiewicz-Urban et al., 2004). Crystals suitable for X-ray diffraction were grown by slow evaporation at room temperature from the following solvents: (2-TP) and (4-TP) from a mixture of n-hexane and ethyl acetate in the ratio 3:1, (2,4-DTP) from cyclohexane, (2,4,6-TTP) from n-hexane and (P) from ethanol.

Refinement top

Although all the derivatives studied have a chiral centre at the C5 atom, their crystal structures are centrosymmetric and so the crystals contain racemates. All H atoms were initially located in difference Fourier maps. The H atoms of the methyl (C1, C8) and methylene (C7) groups and those of the phenyl ring (C10–C14) were subsequently included in the refinement in geometrically idealised positions with C—H = 0.96, 0.97 and 0.93 Å, respectively, and refined using the riding model with isotropic displacement factors of Uiso(H) = 1.2Ueq (parent atom). The H atom attached to atom N3 was constrained to an idealised position for (2-TP) with N—H = 0.86 Å, restrained assuming a target N—H distance of 0.86 (1) Å for (2,4,6-TTP) and with Uiso(H) = 1.2Ueq(N) in both cases. For the remaining structures, the positional and displacement parameters of this H atom were refined freely.

In the last stage of the refinement, a few reflections, probably affected by absorption, wer omitted [(4-TP): reflections 200 and 153; (2,4-DTP): 032, 0121, 793 and 210; (2,4,6-TTP): 200; (P): 413, 620 and 114]. Additionally, in the case of (2,4-DTP) the θmax was also reduced from 27.41 to 27.00° (97 reflections omitted) which improved the data completeness (0.976 to 0.986).

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); ORTEP-3 for Windows (Farrugia, 1997); Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric units of (2-TP), (4-TP), (2,4-DTP), (2,4,6-TTP) and (P) showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen-bond motifs observed in the crystal structures of (2-TP), (4-TP), (2,4-DTP), (2,4,6-TTP) and (P). Symmetry codes: #1 2 - x,1 - y,-z; #2 2 - x,1 - y,1 - z; #3 1 + x,y,z; #4 1 - x, 2 - y,1 - z; #5 - x,-y,1 - z.
[Figure 3] Fig. 3. Packing of the molecules in (2-TP) with the N3—H3···O4 hydrogen-bond system of R22(8) type. H atoms, except those involved in the moderate hydrogen bonds, have been omitted for clarity.
[Figure 4] Fig. 4. Packing of the molecules in (4-TP) with the N3—H3···O2 hydrogen-bond system of R22(8) type. H atoms, except those involved in the moderate hydrogen bonds, have been omitted for clarity.
[Figure 5] Fig. 5. Packing of the molecules in (2,4-DTP) with the N3—H3···O6 hydrogen bonds forming the chain of C(6) type along the a direction. H atoms, except those involved in the moderate hydrogen bonds, have been omitted for clarity.
[Figure 6] Fig. 6. Packing of the molecules in (2,4,6-TTP) with the N3—H3···S4 hydrogen- bond system of R22(8) type. H- toms, except those involved in the moderate hydrogen bonds, have been omitted for clarity.
[Figure 7] Fig. 7. Edge-to-face interactions stabilizing the crystal structure of (2-TP). Only the H atom at N3 is shown.
[Figure 8] Fig. 8. Edge-to-face interactions stabilizing the crystal structure of (2,4,6-TTP). Only the H atom at N3 is shown.
(2-TP) 5-ethyl-1-methyl-5-phenyl-2-thioxo-1,2-dihydropyrimidine- 4,6(3H,5H)-dione top
Crystal data top
C13H14N2O2SF(000) = 552
Mr = 262.32Dx = 1.339 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.9315 (3) ÅCell parameters from 2315 reflections
b = 7.1804 (2) Åθ = 1.0–27.5°
c = 15.2362 (5) ŵ = 0.24 mm1
β = 113.077 (1)°T = 293 K
V = 1301.52 (6) Å3Block, yellow
Z = 40.35 × 0.30 × 0.12 mm
Data collection top
KappaCCD
diffractometer
2978 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.021
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ scans and ω scans to fill asymmetric unith = 1616
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 99
Tmin = 0.924, Tmax = 0.976l = 1919
4964 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.5601P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2978 reflectionsΔρmax = 0.24 e Å3
164 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C13H14N2O2SV = 1301.52 (6) Å3
Mr = 262.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.9315 (3) ŵ = 0.24 mm1
b = 7.1804 (2) ÅT = 293 K
c = 15.2362 (5) Å0.35 × 0.30 × 0.12 mm
β = 113.077 (1)°
Data collection top
KappaCCD
diffractometer
2978 independent reflections
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
2293 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.976Rint = 0.021
4964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2978 reflectionsΔρmin = 0.28 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.69598 (11)0.20338 (18)0.15072 (9)0.0340 (3)
C10.61802 (17)0.1000 (3)0.23340 (13)0.0491 (5)
H1A0.54270.11470.23700.059*
H1B0.63770.02970.22650.059*
H1C0.62280.14730.29060.059*
C20.80863 (15)0.2009 (2)0.13225 (12)0.0370 (4)
S20.86488 (5)0.07263 (8)0.19133 (4)0.0633 (2)
N30.87524 (12)0.3196 (2)0.06250 (10)0.0382 (4)
H30.94330.33210.05790.046*
C40.84634 (13)0.4202 (2)0.00043 (11)0.0326 (4)
O40.91342 (10)0.52423 (19)0.05753 (9)0.0480 (3)
C50.72875 (13)0.3900 (2)0.00387 (11)0.0290 (3)
C60.64935 (13)0.3179 (2)0.10122 (12)0.0332 (4)
O60.54948 (10)0.3441 (2)0.13142 (9)0.0507 (4)
C70.68492 (15)0.5742 (2)0.02065 (13)0.0384 (4)
H7A0.61120.55260.02130.046*
H7B0.73460.61230.08440.046*
C80.6764 (2)0.7322 (3)0.04828 (16)0.0556 (5)
H8A0.64860.84190.02880.067*
H8B0.62590.69720.11140.067*
H8C0.74940.75720.04820.067*
C90.73075 (13)0.2338 (2)0.06672 (11)0.0294 (3)
C100.82660 (15)0.1345 (2)0.11969 (12)0.0408 (4)
H100.89380.16120.11360.049*
C110.82360 (18)0.0042 (3)0.18170 (14)0.0528 (5)
H110.88900.06900.21710.063*
C120.7254 (2)0.0470 (3)0.19144 (14)0.0524 (5)
H120.72380.14000.23340.063*
C130.62957 (19)0.0491 (3)0.13846 (16)0.0555 (5)
H130.56240.02000.14420.067*
C140.63141 (15)0.1886 (3)0.07675 (14)0.0444 (5)
H140.56570.25280.04160.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0381 (8)0.0330 (7)0.0300 (7)0.0067 (6)0.0124 (6)0.0024 (6)
C10.0555 (12)0.0490 (11)0.0389 (10)0.0171 (9)0.0143 (9)0.0107 (9)
C20.0438 (10)0.0330 (8)0.0383 (9)0.0035 (7)0.0206 (8)0.0005 (7)
S20.0720 (4)0.0593 (4)0.0726 (4)0.0001 (3)0.0434 (3)0.0232 (3)
N30.0308 (7)0.0462 (8)0.0432 (8)0.0080 (6)0.0207 (6)0.0094 (7)
C40.0311 (8)0.0356 (8)0.0335 (9)0.0059 (7)0.0155 (7)0.0022 (7)
O40.0378 (7)0.0607 (8)0.0491 (8)0.0205 (6)0.0211 (6)0.0202 (7)
C50.0281 (8)0.0308 (8)0.0307 (8)0.0016 (6)0.0142 (6)0.0009 (6)
C60.0319 (8)0.0338 (8)0.0341 (9)0.0036 (7)0.0130 (7)0.0041 (7)
O60.0294 (7)0.0648 (9)0.0499 (8)0.0008 (6)0.0069 (6)0.0003 (7)
C70.0436 (10)0.0328 (9)0.0446 (10)0.0014 (7)0.0235 (8)0.0010 (7)
C80.0749 (15)0.0348 (10)0.0637 (14)0.0049 (10)0.0342 (12)0.0053 (9)
C90.0309 (8)0.0285 (7)0.0294 (8)0.0031 (6)0.0125 (7)0.0018 (6)
C100.0365 (9)0.0435 (9)0.0399 (10)0.0004 (8)0.0124 (8)0.0044 (8)
C110.0561 (12)0.0468 (11)0.0448 (11)0.0063 (9)0.0082 (9)0.0111 (9)
C120.0790 (15)0.0399 (10)0.0423 (11)0.0045 (10)0.0280 (11)0.0079 (9)
C130.0584 (13)0.0552 (12)0.0660 (14)0.0078 (10)0.0383 (11)0.0103 (11)
C140.0375 (9)0.0457 (10)0.0565 (12)0.0015 (8)0.0254 (9)0.0115 (9)
Geometric parameters (Å, º) top
N1—C21.371 (2)C7—H7A0.9700
N1—C61.402 (2)C7—H7B0.9700
N1—C11.469 (2)C8—H8A0.9600
C1—H1A0.9600C8—H8B0.9600
C1—H1B0.9600C8—H8C0.9600
C1—H1C0.9600C9—C101.383 (2)
C2—N31.371 (2)C9—C141.390 (2)
C2—S21.6436 (17)C10—C111.384 (3)
N3—C41.364 (2)C10—H100.9300
N3—H30.8600C11—C121.370 (3)
C4—O41.2147 (19)C11—H110.9300
C4—C51.512 (2)C12—C131.371 (3)
C5—C61.526 (2)C12—H120.9300
C5—C71.542 (2)C13—C141.380 (3)
C5—C91.547 (2)C13—H130.9300
C6—O61.2039 (19)C14—H140.9300
C7—C81.520 (2)
C2—N1—C6122.93 (14)C5—C7—H7A108.8
C2—N1—C1119.09 (15)C8—C7—H7B108.8
C6—N1—C1117.54 (14)C5—C7—H7B108.8
N1—C1—H1A109.5H7A—C7—H7B107.6
N1—C1—H1B109.5C7—C8—H8A109.5
H1A—C1—H1B109.5C7—C8—H8B109.5
N1—C1—H1C109.5H8A—C8—H8B109.5
H1A—C1—H1C109.5C7—C8—H8C109.5
H1B—C1—H1C109.5H8A—C8—H8C109.5
N3—C2—N1116.44 (14)H8B—C8—H8C109.5
N3—C2—S2119.63 (13)C10—C9—C14118.10 (15)
N1—C2—S2123.87 (13)C10—C9—C5123.12 (14)
C4—N3—C2127.72 (14)C14—C9—C5118.77 (14)
C4—N3—H3116.1C9—C10—C11120.73 (17)
C2—N3—H3116.1C9—C10—H10119.6
O4—C4—N3120.89 (14)C11—C10—H10119.6
O4—C4—C5122.89 (14)C12—C11—C10120.72 (19)
N3—C4—C5116.20 (13)C12—C11—H11119.6
C4—C5—C6111.91 (13)C10—C11—H11119.6
C4—C5—C7109.00 (13)C11—C12—C13119.04 (17)
C6—C5—C7110.83 (13)C11—C12—H12120.5
C4—C5—C9109.35 (13)C13—C12—H12120.5
C6—C5—C9104.53 (12)C12—C13—C14120.89 (18)
C7—C5—C9111.17 (12)C12—C13—H13119.6
O6—C6—N1120.63 (15)C14—C13—H13119.6
O6—C6—C5122.05 (15)C13—C14—C9120.51 (17)
N1—C6—C5117.04 (14)C13—C14—H14119.7
C8—C7—C5113.99 (14)C9—C14—H14119.7
C8—C7—H7A108.8
C6—N1—C2—N30.8 (2)C4—C5—C6—N132.14 (18)
C1—N1—C2—N3171.37 (15)C7—C5—C6—N1154.04 (13)
C6—N1—C2—S2178.15 (12)C9—C5—C6—N186.11 (15)
C1—N1—C2—S26.0 (2)C4—C5—C7—C861.7 (2)
N1—C2—N3—C410.4 (3)C6—C5—C7—C861.94 (19)
S2—C2—N3—C4172.09 (14)C9—C5—C7—C8177.74 (15)
C2—N3—C4—O4178.22 (17)C4—C5—C9—C103.4 (2)
C2—N3—C4—C53.4 (2)C6—C5—C9—C10116.58 (17)
O4—C4—C5—C6157.90 (16)C7—C5—C9—C10123.80 (17)
N3—C4—C5—C623.72 (19)C4—C5—C9—C14177.55 (15)
O4—C4—C5—C735.0 (2)C6—C5—C9—C1462.48 (18)
N3—C4—C5—C7146.67 (14)C7—C5—C9—C1457.1 (2)
O4—C4—C5—C986.76 (19)C14—C9—C10—C110.8 (3)
N3—C4—C5—C991.62 (16)C5—C9—C10—C11179.87 (16)
C2—N1—C6—O6165.03 (16)C9—C10—C11—C120.5 (3)
C1—N1—C6—O67.3 (2)C10—C11—C12—C130.3 (3)
C2—N1—C6—C520.9 (2)C11—C12—C13—C140.7 (3)
C1—N1—C6—C5166.77 (14)C12—C13—C14—C90.3 (3)
C4—C5—C6—O6153.92 (16)C10—C9—C14—C130.4 (3)
C7—C5—C6—O632.0 (2)C5—C9—C14—C13179.51 (17)
C9—C5—C6—O687.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.862.122.927 (2)157
Symmetry code: (i) x+2, y+1, z.
(4-TP) 5-ethyl-1-methyl-5-phenyl-4-thioxo-3,4-dihydropyrimidine- 2,6(1H,5H)-dione top
Crystal data top
C13H14N2O2SF(000) = 552
Mr = 262.32Dx = 1.373 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.5609 (3) ÅCell parameters from 3185 reflections
b = 9.5538 (3) Åθ = 1.0–29.1°
c = 11.7268 (3) ŵ = 0.25 mm1
β = 101.521 (2)°T = 293 K
V = 1269.13 (6) Å3Plate, yellow
Z = 40.32 × 0.30 × 0.07 mm
Data collection top
KappaCCD
diffractometer
3381 independent reflections
Radiation source: fine-focus sealed tube2494 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.021
Detector resolution: 9 pixels mm-1θmax = 29.2°, θmin = 2.8°
ϕ scans and ω scans to fill asymmetric unith = 1515
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.929, Tmax = 0.980l = 1515
5542 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.5723P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3381 reflectionsΔρmax = 0.37 e Å3
168 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (4)
Crystal data top
C13H14N2O2SV = 1269.13 (6) Å3
Mr = 262.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5609 (3) ŵ = 0.25 mm1
b = 9.5538 (3) ÅT = 293 K
c = 11.7268 (3) Å0.32 × 0.30 × 0.07 mm
β = 101.521 (2)°
Data collection top
KappaCCD
diffractometer
3381 independent reflections
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
2494 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.980Rint = 0.021
5542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
3381 reflectionsΔρmin = 0.41 e Å3
168 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.85462 (13)0.71786 (15)0.28315 (13)0.0354 (3)
C10.91162 (18)0.7383 (2)0.18288 (17)0.0463 (5)
H1A0.98170.68200.19260.056*
H1B0.93220.83510.17780.056*
H1C0.85820.71100.11280.056*
C20.91090 (14)0.63196 (17)0.37193 (15)0.0339 (4)
O21.00795 (11)0.58274 (14)0.37125 (12)0.0441 (3)
N30.85203 (13)0.60342 (17)0.45992 (13)0.0368 (3)
H30.888 (2)0.542 (3)0.5037 (19)0.050 (6)*
C40.73952 (15)0.64272 (18)0.46494 (15)0.0365 (4)
S40.66585 (5)0.55954 (7)0.54871 (5)0.0586 (2)
C50.69586 (15)0.77289 (18)0.39368 (15)0.0352 (4)
C60.75149 (15)0.78918 (18)0.28659 (15)0.0367 (4)
O60.70851 (13)0.86645 (17)0.20761 (12)0.0567 (4)
C90.73504 (15)0.90006 (19)0.47446 (16)0.0379 (4)
C100.82075 (19)0.9933 (2)0.45587 (19)0.0521 (5)
H100.86030.97750.39540.063*
C110.8486 (2)1.1100 (3)0.5261 (2)0.0666 (7)
H110.90551.17250.51140.080*
C120.7929 (2)1.1340 (3)0.6171 (2)0.0669 (7)
H120.81101.21310.66330.080*
C130.7100 (2)1.0399 (3)0.6393 (2)0.0651 (7)
H130.67311.05450.70180.078*
C140.68137 (18)0.9236 (3)0.56891 (19)0.0540 (5)
H140.62550.86040.58500.065*
C70.56027 (16)0.7752 (2)0.35226 (18)0.0442 (4)
H7A0.52420.76500.41970.053*
H7B0.53750.86600.31810.053*
C80.5106 (2)0.6631 (3)0.2645 (2)0.0634 (6)
H8A0.42630.67260.24370.076*
H8B0.53020.57240.29800.076*
H8C0.54380.67350.19620.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0316 (7)0.0385 (8)0.0374 (7)0.0050 (6)0.0103 (6)0.0031 (6)
C10.0433 (10)0.0539 (11)0.0460 (10)0.0031 (8)0.0190 (8)0.0047 (9)
C20.0294 (8)0.0311 (8)0.0406 (9)0.0004 (6)0.0055 (6)0.0019 (7)
O20.0298 (6)0.0460 (7)0.0575 (8)0.0068 (5)0.0111 (6)0.0067 (6)
N30.0348 (8)0.0365 (7)0.0389 (8)0.0074 (6)0.0072 (6)0.0062 (6)
C40.0348 (9)0.0376 (9)0.0377 (9)0.0026 (7)0.0087 (7)0.0007 (7)
S40.0571 (4)0.0625 (4)0.0636 (4)0.0053 (3)0.0301 (3)0.0195 (3)
C50.0299 (8)0.0373 (8)0.0391 (9)0.0040 (7)0.0088 (6)0.0010 (7)
C60.0336 (8)0.0375 (9)0.0392 (9)0.0059 (7)0.0075 (7)0.0033 (7)
O60.0558 (9)0.0666 (10)0.0494 (8)0.0229 (7)0.0146 (7)0.0224 (7)
C90.0310 (8)0.0389 (9)0.0427 (9)0.0074 (7)0.0052 (7)0.0010 (7)
C100.0523 (12)0.0494 (11)0.0558 (12)0.0050 (9)0.0138 (9)0.0034 (9)
C110.0696 (16)0.0535 (13)0.0725 (16)0.0118 (12)0.0043 (13)0.0113 (12)
C120.0626 (15)0.0608 (14)0.0676 (15)0.0114 (12)0.0106 (12)0.0237 (12)
C130.0507 (13)0.0850 (17)0.0575 (13)0.0163 (12)0.0058 (10)0.0281 (12)
C140.0407 (10)0.0679 (14)0.0554 (12)0.0020 (10)0.0146 (9)0.0145 (10)
C70.0304 (9)0.0506 (11)0.0508 (10)0.0048 (8)0.0065 (7)0.0006 (9)
C80.0457 (12)0.0707 (15)0.0697 (15)0.0070 (11)0.0019 (10)0.0100 (12)
Geometric parameters (Å, º) top
N1—C61.381 (2)C9—C141.392 (3)
N1—C21.382 (2)C10—C111.385 (3)
N1—C11.471 (2)C10—H100.9300
C1—H1A0.9600C11—C121.371 (4)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C131.376 (4)
C2—O21.218 (2)C12—H120.9300
C2—N31.372 (2)C13—C141.384 (3)
N3—C41.366 (2)C13—H130.9300
N3—H30.83 (2)C14—H140.9300
C4—C51.527 (2)C7—C81.516 (3)
C4—S41.6297 (18)C7—H7A0.9700
C5—C61.529 (2)C7—H7B0.9700
C5—C71.546 (2)C8—H8A0.9600
C5—C91.551 (2)C8—H8B0.9600
C6—O61.211 (2)C8—H8C0.9600
C9—C101.382 (3)
C6—N1—C2123.39 (14)C14—C9—C5119.37 (17)
C6—N1—C1119.02 (15)C9—C10—C11120.9 (2)
C2—N1—C1117.53 (14)C9—C10—H10119.5
N1—C1—H1A109.5C11—C10—H10119.5
N1—C1—H1B109.5C12—C11—C10120.5 (2)
H1A—C1—H1B109.5C12—C11—H11119.7
N1—C1—H1C109.5C10—C11—H11119.7
H1A—C1—H1C109.5C11—C12—C13119.4 (2)
H1B—C1—H1C109.5C11—C12—H12120.3
O2—C2—N3121.61 (16)C13—C12—H12120.3
O2—C2—N1121.33 (16)C12—C13—C14120.3 (2)
N3—C2—N1117.06 (14)C12—C13—H13119.9
C4—N3—C2126.67 (15)C14—C13—H13119.9
C4—N3—H3121.7 (16)C13—C14—C9120.8 (2)
C2—N3—H3110.2 (16)C13—C14—H14119.6
N3—C4—C5114.43 (15)C9—C14—H14119.6
N3—C4—S4120.57 (14)C8—C7—C5115.22 (16)
C5—C4—S4124.87 (13)C8—C7—H7A108.5
C4—C5—C6112.66 (14)C5—C7—H7A108.5
C4—C5—C7112.77 (15)C8—C7—H7B108.5
C6—C5—C7107.87 (15)C5—C7—H7B108.5
C4—C5—C9106.23 (14)H7A—C7—H7B107.5
C6—C5—C9107.60 (14)C7—C8—H8A109.5
C7—C5—C9109.56 (14)C7—C8—H8B109.5
O6—C6—N1120.22 (16)H8A—C8—H8B109.5
O6—C6—C5120.98 (16)C7—C8—H8C109.5
N1—C6—C5118.75 (14)H8A—C8—H8C109.5
C10—C9—C14117.97 (19)H8B—C8—H8C109.5
C10—C9—C5122.66 (17)
C6—N1—C2—O2172.10 (17)C4—C5—C6—N119.2 (2)
C1—N1—C2—O25.0 (2)C7—C5—C6—N1144.29 (16)
C6—N1—C2—N38.6 (2)C9—C5—C6—N197.58 (18)
C1—N1—C2—N3174.25 (16)C4—C5—C9—C10111.14 (19)
O2—C2—N3—C4174.07 (17)C6—C5—C9—C109.7 (2)
N1—C2—N3—C45.2 (3)C7—C5—C9—C10126.76 (19)
C2—N3—C4—C525.1 (3)C4—C5—C9—C1469.7 (2)
C2—N3—C4—S4158.79 (15)C6—C5—C9—C14169.37 (17)
N3—C4—C5—C630.1 (2)C7—C5—C9—C1452.3 (2)
S4—C4—C5—C6154.03 (14)C14—C9—C10—C112.8 (3)
N3—C4—C5—C7152.49 (16)C5—C9—C10—C11176.3 (2)
S4—C4—C5—C731.6 (2)C9—C10—C11—C121.2 (4)
N3—C4—C5—C987.48 (17)C10—C11—C12—C130.9 (4)
S4—C4—C5—C988.41 (17)C11—C12—C13—C141.3 (4)
C2—N1—C6—O6177.60 (18)C12—C13—C14—C90.4 (4)
C1—N1—C6—O60.5 (3)C10—C9—C14—C132.4 (3)
C2—N1—C6—C50.1 (3)C5—C9—C14—C13176.76 (19)
C1—N1—C6—C5177.13 (16)C4—C5—C7—C866.7 (2)
C4—C5—C6—O6163.18 (18)C6—C5—C7—C858.3 (2)
C7—C5—C6—O638.1 (2)C9—C5—C7—C8175.17 (18)
C9—C5—C6—O680.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.83 (3)2.08 (3)2.902 (2)170 (2)
Symmetry code: (i) x+2, y+1, z+1.
(2,4-DTP) 5-ethyl-1-methyl-5-phenyl-2,4-dithioxo-1,2,3,4-tetrahydropyrimidine- 6(5H)-one top
Crystal data top
C13H14N2OS2F(000) = 584
Mr = 278.38Dx = 1.390 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.9600 (3) ÅCell parameters from 4532 reflections
b = 14.9407 (7) Åθ = 1.0–27.5°
c = 13.1556 (10) ŵ = 0.39 mm1
β = 103.454 (2)°T = 293 K
V = 1330.47 (13) Å3Block, orange
Z = 40.25 × 0.15 × 0.10 mm
Data collection top
KappaCCD
diffractometer
2856 independent reflections
Radiation source: fine-focus sealed tube2309 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 27.0°, θmin = 3.2°
ϕ scans and ω scans to fill asymmetric unith = 88
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 1918
Tmin = 0.916, Tmax = 0.955l = 1616
5152 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.759P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2856 reflectionsΔρmax = 0.21 e Å3
168 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (4)
Crystal data top
C13H14N2OS2V = 1330.47 (13) Å3
Mr = 278.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9600 (3) ŵ = 0.39 mm1
b = 14.9407 (7) ÅT = 293 K
c = 13.1556 (10) Å0.25 × 0.15 × 0.10 mm
β = 103.454 (2)°
Data collection top
KappaCCD
diffractometer
2856 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
2309 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.955Rint = 0.032
5152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
2856 reflectionsΔρmin = 0.29 e Å3
168 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.94383 (10)0.93906 (5)0.10023 (5)0.0561 (2)
S41.11881 (8)0.74572 (5)0.43563 (5)0.0590 (2)
O60.4119 (2)0.84689 (13)0.26619 (13)0.0534 (5)
N10.6625 (2)0.89136 (12)0.19642 (12)0.0376 (4)
C20.8574 (3)0.88936 (15)0.19196 (15)0.0377 (5)
N30.9852 (3)0.84383 (13)0.27062 (14)0.0400 (4)
H31.103 (4)0.8445 (16)0.2669 (17)0.040 (6)*
C40.9435 (3)0.79720 (15)0.35175 (16)0.0381 (5)
C50.7277 (3)0.79573 (15)0.35849 (15)0.0368 (5)
C60.5877 (3)0.84601 (15)0.27097 (15)0.0371 (5)
C10.5201 (3)0.94113 (18)0.11563 (17)0.0486 (6)
H1A0.39060.93640.12900.058*
H1B0.51870.91640.04810.058*
H1C0.55821.00300.11720.058*
C90.7144 (3)0.84385 (16)0.46001 (16)0.0396 (5)
C100.7546 (4)0.93509 (18)0.46874 (19)0.0509 (6)
H100.79000.96500.41380.061*
C110.7429 (4)0.9822 (2)0.5576 (2)0.0615 (7)
H110.76761.04340.56160.074*
C120.6947 (4)0.9381 (2)0.6398 (2)0.0658 (8)
H120.68800.96920.70010.079*
C130.6564 (4)0.8478 (2)0.6326 (2)0.0672 (8)
H130.62410.81820.68850.081*
C140.6652 (4)0.8001 (2)0.54332 (19)0.0543 (6)
H140.63820.73900.53940.065*
C70.6558 (3)0.69729 (16)0.35046 (18)0.0452 (5)
H7A0.73260.66390.40930.054*
H7B0.51880.69580.35500.054*
C80.6738 (4)0.65186 (19)0.2495 (2)0.0597 (7)
H8A0.62800.59120.24890.072*
H8B0.80950.65210.24500.072*
H8C0.59520.68360.19090.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0537 (4)0.0706 (5)0.0493 (4)0.0020 (3)0.0226 (3)0.0215 (3)
S40.0332 (3)0.0825 (5)0.0606 (4)0.0105 (3)0.0094 (2)0.0329 (3)
O60.0278 (7)0.0726 (12)0.0601 (10)0.0041 (7)0.0111 (7)0.0197 (8)
N10.0327 (8)0.0461 (11)0.0338 (8)0.0036 (8)0.0073 (6)0.0083 (7)
C20.0377 (10)0.0406 (12)0.0358 (10)0.0008 (9)0.0108 (8)0.0028 (8)
N30.0282 (9)0.0514 (12)0.0420 (9)0.0006 (8)0.0116 (7)0.0115 (8)
C40.0301 (10)0.0445 (12)0.0407 (11)0.0004 (9)0.0102 (8)0.0081 (9)
C50.0271 (9)0.0452 (12)0.0386 (10)0.0011 (9)0.0088 (8)0.0106 (9)
C60.0303 (10)0.0427 (12)0.0380 (10)0.0002 (8)0.0075 (8)0.0055 (8)
C10.0427 (12)0.0590 (15)0.0421 (12)0.0106 (11)0.0056 (9)0.0156 (10)
C90.0281 (9)0.0508 (13)0.0398 (10)0.0005 (9)0.0074 (8)0.0072 (9)
C100.0488 (13)0.0539 (15)0.0498 (13)0.0032 (11)0.0115 (10)0.0042 (11)
C110.0567 (15)0.0627 (18)0.0619 (16)0.0004 (13)0.0074 (12)0.0094 (13)
C120.0532 (15)0.094 (2)0.0505 (15)0.0135 (15)0.0121 (12)0.0091 (15)
C130.0691 (18)0.090 (2)0.0495 (14)0.0065 (16)0.0282 (12)0.0092 (14)
C140.0521 (14)0.0640 (17)0.0517 (13)0.0027 (12)0.0220 (11)0.0123 (12)
C70.0362 (11)0.0428 (13)0.0563 (13)0.0025 (9)0.0105 (9)0.0098 (10)
C80.0539 (15)0.0530 (16)0.0720 (17)0.0060 (12)0.0143 (12)0.0048 (13)
Geometric parameters (Å, º) top
S2—C21.646 (2)C9—C101.391 (3)
S4—C41.635 (2)C10—C111.383 (4)
O6—C61.210 (2)C10—H100.9300
N1—C21.371 (2)C11—C121.374 (4)
N1—C61.389 (3)C11—H110.9300
N1—C11.475 (3)C12—C131.374 (5)
C2—N31.377 (3)C12—H120.9300
N3—C41.361 (3)C13—C141.388 (4)
N3—H30.83 (2)C13—H130.9300
C4—C51.525 (3)C14—H140.9300
C5—C61.522 (3)C7—C81.522 (3)
C5—C91.538 (3)C7—H7A0.9700
C5—C71.549 (3)C7—H7B0.9700
C1—H1A0.9600C8—H8A0.9600
C1—H1B0.9600C8—H8B0.9600
C1—H1C0.9600C8—H8C0.9600
C9—C141.386 (3)
C2—N1—C6123.81 (17)C10—C9—C5118.56 (19)
C2—N1—C1119.06 (17)C11—C10—C9121.2 (2)
C6—N1—C1117.08 (17)C11—C10—H10119.4
N1—C2—N3116.82 (17)C9—C10—H10119.4
N1—C2—S2123.75 (15)C12—C11—C10119.6 (3)
N3—C2—S2119.42 (15)C12—C11—H11120.2
C4—N3—C2128.56 (18)C10—C11—H11120.2
C4—N3—H3116.4 (16)C13—C12—C11119.7 (3)
C2—N3—H3115.0 (16)C13—C12—H12120.1
N3—C4—C5116.46 (17)C11—C12—H12120.1
N3—C4—S4120.54 (15)C12—C13—C14121.1 (3)
C5—C4—S4123.00 (15)C12—C13—H13119.4
C6—C5—C4114.50 (16)C14—C13—H13119.4
C6—C5—C9105.59 (17)C9—C14—C13119.7 (3)
C4—C5—C9107.62 (17)C9—C14—H14120.2
C6—C5—C7106.09 (17)C13—C14—H14120.2
C4—C5—C7108.45 (18)C8—C7—C5113.08 (19)
C9—C5—C7114.78 (17)C8—C7—H7A109.0
O6—C6—N1119.89 (18)C5—C7—H7A109.0
O6—C6—C5120.41 (18)C8—C7—H7B109.0
N1—C6—C5119.70 (16)C5—C7—H7B109.0
N1—C1—H1A109.5H7A—C7—H7B107.8
N1—C1—H1B109.5C7—C8—H8A109.5
H1A—C1—H1B109.5C7—C8—H8B109.5
N1—C1—H1C109.5H8A—C8—H8B109.5
H1A—C1—H1C109.5C7—C8—H8C109.5
H1B—C1—H1C109.5H8A—C8—H8C109.5
C14—C9—C10118.6 (2)H8B—C8—H8C109.5
C14—C9—C5122.8 (2)
C6—N1—C2—N34.1 (3)C4—C5—C6—N12.7 (3)
C1—N1—C2—N3178.5 (2)C9—C5—C6—N1115.5 (2)
C6—N1—C2—S2176.88 (17)C7—C5—C6—N1122.3 (2)
C1—N1—C2—S20.5 (3)C6—C5—C9—C14124.0 (2)
N1—C2—N3—C42.4 (3)C4—C5—C9—C14113.3 (2)
S2—C2—N3—C4178.54 (19)C7—C5—C9—C147.5 (3)
C2—N3—C4—C51.0 (3)C6—C5—C9—C1056.4 (2)
C2—N3—C4—S4178.57 (19)C4—C5—C9—C1066.3 (2)
N3—C4—C5—C61.1 (3)C7—C5—C9—C10172.83 (19)
S4—C4—C5—C6178.51 (17)C14—C9—C10—C111.1 (3)
N3—C4—C5—C9116.0 (2)C5—C9—C10—C11179.3 (2)
S4—C4—C5—C964.4 (2)C9—C10—C11—C121.3 (4)
N3—C4—C5—C7119.3 (2)C10—C11—C12—C130.7 (4)
S4—C4—C5—C760.3 (2)C11—C12—C13—C140.1 (4)
C2—N1—C6—O6175.8 (2)C10—C9—C14—C130.2 (3)
C1—N1—C6—O61.7 (3)C5—C9—C14—C13179.9 (2)
C2—N1—C6—C54.5 (3)C12—C13—C14—C90.4 (4)
C1—N1—C6—C5178.1 (2)C6—C5—C7—C864.5 (2)
C4—C5—C6—O6177.5 (2)C4—C5—C7—C858.9 (2)
C9—C5—C6—O664.3 (3)C9—C5—C7—C8179.30 (19)
C7—C5—C6—O657.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.83 (2)2.15 (2)2.984 (2)176 (2)
Symmetry code: (i) x+1, y, z.
(2,4,6-TTP) 5-ethyl-1-methyl-5-phenyl-2,4,6(1H,3H,5H)-pyrimidinetrithione top
Crystal data top
C13H14N2S3F(000) = 616
Mr = 294.44Dx = 1.390 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.8686 (2) ÅCell parameters from 5864 reflections
b = 7.2346 (4) Åθ = 1.0–27.5°
c = 14.9844 (5) ŵ = 0.51 mm1
β = 110.681 (1)°T = 293 K
V = 1406.56 (9) Å3Plate, red
Z = 40.19 × 0.15 × 0.05 mm
Data collection top
KappaCCD
diffractometer
3201 independent reflections
Radiation source: fine-focus sealed tube2587 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ scans and ω scans to fill asymmetric unith = 1717
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 98
Tmin = 0.905, Tmax = 0.975l = 1918
5585 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.9914P]
where P = (Fo2 + 2Fc2)/3
3201 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
C13H14N2S3V = 1406.56 (9) Å3
Mr = 294.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.8686 (2) ŵ = 0.51 mm1
b = 7.2346 (4) ÅT = 293 K
c = 14.9844 (5) Å0.19 × 0.15 × 0.05 mm
β = 110.681 (1)°
Data collection top
KappaCCD
diffractometer
3201 independent reflections
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
2587 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.975Rint = 0.025
5585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
3201 reflectionsΔρmin = 0.38 e Å3
166 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.62364 (7)0.57579 (12)0.67308 (7)0.0697 (3)
S40.59290 (5)1.07522 (10)0.41969 (5)0.0516 (2)
S60.97026 (5)0.84366 (11)0.65166 (5)0.0541 (2)
N10.79393 (14)0.7041 (3)0.64856 (12)0.0367 (4)
C20.68854 (18)0.7062 (3)0.62460 (16)0.0395 (5)
N30.63592 (14)0.8345 (3)0.55717 (14)0.0399 (4)
H30.5714 (9)0.849 (4)0.5512 (18)0.048*
C40.67072 (16)0.9342 (3)0.49844 (15)0.0331 (5)
C50.78160 (15)0.8976 (3)0.50722 (14)0.0293 (4)
C60.84561 (16)0.8160 (3)0.60545 (15)0.0333 (5)
C10.8537 (2)0.5882 (4)0.73020 (19)0.0559 (7)
H1A0.92570.59820.73990.067*
H1B0.83230.46180.71740.067*
H1C0.84200.62920.78650.067*
C90.78163 (16)0.7428 (3)0.43490 (14)0.0311 (4)
C100.69749 (18)0.6297 (3)0.39136 (16)0.0400 (5)
H100.63750.64600.40470.048*
C110.7015 (2)0.4927 (4)0.32819 (18)0.0493 (6)
H110.64420.41800.29980.059*
C120.7891 (2)0.4662 (4)0.30713 (18)0.0537 (7)
H120.79150.37450.26450.064*
C130.8734 (2)0.5772 (4)0.3501 (2)0.0579 (7)
H130.93300.56030.33610.069*
C140.87040 (18)0.7135 (4)0.41367 (18)0.0466 (6)
H140.92830.78650.44260.056*
C70.82923 (17)1.0775 (3)0.48562 (16)0.0368 (5)
H7A0.89861.05070.48780.044*
H7B0.78941.11610.42110.044*
C80.8343 (2)1.2379 (4)0.5529 (2)0.0533 (7)
H8A0.86491.34310.53420.064*
H8B0.87521.20290.61690.064*
H8C0.76591.26870.54990.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0742 (5)0.0664 (5)0.0840 (6)0.0054 (4)0.0471 (5)0.0349 (4)
S40.0363 (3)0.0645 (4)0.0569 (4)0.0160 (3)0.0201 (3)0.0288 (3)
S60.0332 (3)0.0706 (5)0.0492 (4)0.0058 (3)0.0028 (3)0.0019 (3)
N10.0441 (10)0.0361 (10)0.0289 (9)0.0100 (8)0.0118 (8)0.0058 (8)
C20.0495 (13)0.0373 (12)0.0378 (12)0.0054 (10)0.0230 (10)0.0064 (10)
N30.0345 (9)0.0477 (11)0.0436 (11)0.0077 (9)0.0212 (8)0.0125 (9)
C40.0322 (10)0.0355 (11)0.0346 (11)0.0037 (9)0.0153 (9)0.0022 (9)
C50.0272 (9)0.0331 (10)0.0284 (10)0.0034 (8)0.0108 (8)0.0000 (8)
C60.0352 (11)0.0348 (11)0.0286 (10)0.0070 (9)0.0097 (8)0.0033 (9)
C10.0652 (17)0.0536 (15)0.0441 (14)0.0184 (13)0.0133 (12)0.0182 (12)
C90.0349 (10)0.0306 (10)0.0275 (10)0.0026 (9)0.0107 (8)0.0019 (8)
C100.0416 (12)0.0405 (12)0.0359 (12)0.0045 (10)0.0111 (10)0.0007 (10)
C110.0596 (16)0.0399 (13)0.0382 (13)0.0060 (12)0.0043 (11)0.0036 (11)
C120.079 (2)0.0407 (14)0.0380 (13)0.0095 (13)0.0168 (13)0.0084 (11)
C130.0588 (16)0.0606 (17)0.0608 (17)0.0096 (14)0.0293 (14)0.0173 (14)
C140.0397 (12)0.0506 (14)0.0528 (15)0.0006 (11)0.0205 (11)0.0149 (12)
C70.0367 (11)0.0333 (11)0.0425 (12)0.0015 (9)0.0166 (10)0.0000 (9)
C80.0607 (16)0.0377 (13)0.0591 (16)0.0003 (12)0.0184 (13)0.0064 (12)
Geometric parameters (Å, º) top
S2—C21.640 (2)C9—C141.392 (3)
S4—C41.643 (2)C10—C111.385 (3)
S6—C61.632 (2)C10—H100.9300
N1—C21.377 (3)C11—C121.372 (4)
N1—C61.383 (3)C11—H110.9300
N1—C11.473 (3)C12—C131.376 (4)
C2—N31.376 (3)C12—H120.9300
N3—C41.352 (3)C13—C141.382 (3)
N3—H30.873 (10)C13—H130.9300
C4—C51.520 (3)C14—H140.9300
C5—C61.543 (3)C7—C81.522 (3)
C5—C71.544 (3)C7—H7A0.9700
C5—C91.558 (3)C7—H7B0.9700
C1—H1A0.9600C8—H8A0.9600
C1—H1B0.9600C8—H8B0.9600
C1—H1C0.9600C8—H8C0.9600
C9—C101.385 (3)
C2—N1—C6123.34 (18)C14—C9—C5119.05 (19)
C2—N1—C1117.2 (2)C9—C10—C11120.9 (2)
C6—N1—C1119.2 (2)C9—C10—H10119.5
N3—C2—N1115.95 (19)C11—C10—H10119.5
N3—C2—S2118.78 (18)C12—C11—C10120.6 (2)
N1—C2—S2125.21 (17)C12—C11—H11119.7
C4—N3—C2128.24 (19)C10—C11—H11119.7
C4—N3—H3117.2 (17)C11—C12—C13119.0 (2)
C2—N3—H3114.5 (18)C11—C12—H12120.5
N3—C4—C5115.71 (18)C13—C12—H12120.5
N3—C4—S4120.26 (16)C12—C13—C14120.8 (3)
C5—C4—S4123.94 (16)C12—C13—H13119.6
C4—C5—C6111.90 (16)C14—C13—H13119.6
C4—C5—C7109.25 (17)C13—C14—C9120.7 (2)
C6—C5—C7112.20 (17)C13—C14—H14119.7
C4—C5—C9108.28 (16)C9—C14—H14119.7
C6—C5—C9104.30 (16)C8—C7—C5115.24 (19)
C7—C5—C9110.76 (16)C8—C7—H7A108.5
N1—C6—C5116.81 (18)C5—C7—H7A108.5
N1—C6—S6121.32 (16)C8—C7—H7B108.5
C5—C6—S6121.62 (16)C5—C7—H7B108.5
N1—C1—H1A109.5H7A—C7—H7B107.5
N1—C1—H1B109.5C7—C8—H8A109.5
H1A—C1—H1B109.5C7—C8—H8B109.5
N1—C1—H1C109.5H8A—C8—H8B109.5
H1A—C1—H1C109.5C7—C8—H8C109.5
H1B—C1—H1C109.5H8A—C8—H8C109.5
C10—C9—C14117.9 (2)H8B—C8—H8C109.5
C10—C9—C5123.02 (19)
C6—N1—C2—N33.1 (3)C4—C5—C6—S6153.62 (16)
C1—N1—C2—N3171.2 (2)C7—C5—C6—S630.4 (2)
C6—N1—C2—S2179.65 (17)C9—C5—C6—S689.54 (19)
C1—N1—C2—S26.0 (3)C4—C5—C9—C1015.5 (3)
N1—C2—N3—C413.8 (4)C6—C5—C9—C10103.8 (2)
S2—C2—N3—C4168.8 (2)C7—C5—C9—C10135.3 (2)
C2—N3—C4—C50.9 (3)C4—C5—C9—C14165.6 (2)
C2—N3—C4—S4177.6 (2)C6—C5—C9—C1475.1 (2)
N3—C4—C5—C623.0 (3)C7—C5—C9—C1445.8 (3)
S4—C4—C5—C6160.47 (16)C14—C9—C10—C110.4 (3)
N3—C4—C5—C7147.9 (2)C5—C9—C10—C11179.4 (2)
S4—C4—C5—C735.6 (2)C9—C10—C11—C120.1 (4)
N3—C4—C5—C991.4 (2)C10—C11—C12—C130.3 (4)
S4—C4—C5—C985.1 (2)C11—C12—C13—C140.1 (4)
C2—N1—C6—C519.9 (3)C12—C13—C14—C90.7 (4)
C1—N1—C6—C5165.8 (2)C10—C9—C14—C130.8 (4)
C2—N1—C6—S6165.80 (17)C5—C9—C14—C13179.8 (2)
C1—N1—C6—S68.4 (3)C4—C5—C7—C861.5 (2)
C4—C5—C6—N132.1 (2)C6—C5—C7—C863.2 (2)
C7—C5—C6—N1155.33 (18)C9—C5—C7—C8179.32 (19)
C9—C5—C6—N184.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S4i0.87 (1)2.53 (1)3.376 (2)164 (2)
Symmetry code: (i) x+1, y+2, z+1.
(P) 5-ethyl-1-methyl-5-phenylpyrimidine-2,4,6(1H,3H,5H)-trione top
Crystal data top
C13H14N2O3F(000) = 520
Mr = 246.26Dx = 1.349 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.7063 (5) ÅCell parameters from 2505 reflections
b = 7.2553 (2) Åθ = 1.0–27.5°
c = 12.6606 (4) ŵ = 0.10 mm1
β = 105.565 (2)°T = 293 K
V = 1212.84 (7) Å3Block, colourless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
KappaCCD
diffractometer
2756 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.019
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ scans and ω scans to fill asymmetric unith = 1717
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 99
Tmin = 0.972, Tmax = 0.975l = 1615
4931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.4169P]
where P = (Fo2 + 2Fc2)/3
2756 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H14N2O3V = 1212.84 (7) Å3
Mr = 246.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7063 (5) ŵ = 0.10 mm1
b = 7.2553 (2) ÅT = 293 K
c = 12.6606 (4) Å0.30 × 0.30 × 0.30 mm
β = 105.565 (2)°
Data collection top
KappaCCD
diffractometer
2756 independent reflections
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
2230 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.975Rint = 0.019
4931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.37 e Å3
2756 reflectionsΔρmin = 0.23 e Å3
167 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.15281 (10)0.06849 (18)0.83089 (11)0.0391 (3)
H30.0159 (18)0.093 (3)0.5891 (17)0.058 (6)*
C10.14919 (18)0.1211 (3)0.94219 (15)0.0614 (5)
H1A0.09540.20800.93750.074*
H1B0.13730.01340.98110.074*
H1C0.21250.17610.98050.074*
C20.07740 (11)0.1379 (2)0.74425 (13)0.0365 (3)
O20.01695 (9)0.25137 (17)0.75646 (11)0.0523 (3)
N30.07344 (10)0.06910 (18)0.64185 (11)0.0355 (3)
C40.13138 (11)0.0701 (2)0.61907 (12)0.0348 (3)
O40.10742 (9)0.15042 (18)0.53145 (9)0.0483 (3)
C50.23105 (11)0.1068 (2)0.70516 (12)0.0353 (3)
C60.22523 (12)0.0571 (2)0.82031 (13)0.0403 (4)
O60.28554 (11)0.1204 (2)0.90135 (10)0.0605 (4)
C70.26374 (12)0.3102 (2)0.70232 (15)0.0429 (4)
H7A0.33020.32520.75300.051*
H7B0.26980.33780.62940.051*
C80.19227 (15)0.4488 (3)0.73127 (18)0.0557 (5)
H8A0.21780.57110.72750.067*
H8B0.18720.42530.80420.067*
H8C0.12650.43770.68040.067*
C90.31005 (11)0.0196 (2)0.67368 (13)0.0381 (4)
C100.32720 (14)0.0015 (3)0.57093 (15)0.0505 (4)
H100.29130.08970.52260.061*
C110.39780 (16)0.1089 (3)0.54037 (19)0.0644 (6)
H110.40910.09360.47170.077*
C120.45120 (16)0.2404 (3)0.6106 (2)0.0698 (6)
H120.49780.31490.58940.084*
C130.43520 (15)0.2606 (3)0.7122 (2)0.0674 (6)
H130.47160.34880.76010.081*
C140.36524 (13)0.1510 (3)0.74434 (17)0.0511 (5)
H140.35540.16600.81370.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0419 (7)0.0365 (7)0.0395 (7)0.0017 (6)0.0121 (6)0.0022 (6)
C10.0712 (13)0.0705 (13)0.0462 (10)0.0034 (11)0.0218 (9)0.0065 (10)
C20.0334 (7)0.0278 (7)0.0500 (9)0.0035 (6)0.0142 (6)0.0001 (6)
O20.0467 (7)0.0438 (7)0.0693 (8)0.0094 (6)0.0208 (6)0.0057 (6)
N30.0285 (6)0.0325 (7)0.0427 (7)0.0049 (5)0.0049 (5)0.0025 (5)
C40.0289 (7)0.0324 (7)0.0407 (8)0.0017 (6)0.0050 (6)0.0004 (6)
O40.0378 (6)0.0532 (7)0.0468 (7)0.0103 (5)0.0011 (5)0.0106 (5)
C50.0292 (7)0.0314 (7)0.0421 (8)0.0039 (6)0.0038 (6)0.0005 (6)
C60.0390 (8)0.0360 (8)0.0426 (8)0.0007 (7)0.0054 (7)0.0030 (7)
O60.0655 (9)0.0639 (9)0.0455 (7)0.0161 (7)0.0035 (6)0.0079 (6)
C70.0342 (8)0.0319 (8)0.0588 (10)0.0062 (6)0.0060 (7)0.0013 (7)
C80.0496 (10)0.0359 (9)0.0808 (13)0.0021 (8)0.0160 (9)0.0074 (9)
C90.0278 (7)0.0319 (7)0.0508 (9)0.0039 (6)0.0040 (6)0.0030 (7)
C100.0446 (9)0.0532 (11)0.0522 (10)0.0005 (8)0.0103 (8)0.0049 (8)
C110.0491 (11)0.0775 (14)0.0689 (12)0.0032 (11)0.0197 (9)0.0195 (11)
C120.0458 (11)0.0621 (13)0.1042 (18)0.0087 (10)0.0249 (11)0.0185 (13)
C130.0454 (10)0.0513 (12)0.1042 (18)0.0133 (9)0.0176 (11)0.0103 (12)
C140.0376 (9)0.0457 (10)0.0682 (11)0.0035 (7)0.0114 (8)0.0116 (8)
Geometric parameters (Å, º) top
N1—C61.380 (2)C7—H7A0.9700
N1—C21.384 (2)C7—H7B0.9700
N1—C11.473 (2)C8—H8A0.9600
C1—H1A0.9600C8—H8B0.9600
C1—H1B0.9600C8—H8C0.9600
C1—H1C0.9600C9—C141.385 (2)
C2—O21.2072 (19)C9—C101.391 (2)
C2—N31.377 (2)C10—C111.388 (3)
N3—C41.363 (2)C10—H100.9300
N3—H30.90 (2)C11—C121.374 (3)
C4—O41.2176 (19)C11—H110.9300
C4—C51.525 (2)C12—C131.369 (3)
C5—C61.525 (2)C12—H120.9300
C5—C71.545 (2)C13—C141.388 (3)
C5—C91.550 (2)C13—H130.9300
C6—O61.221 (2)C14—H140.9300
C7—C81.516 (2)
C6—N1—C2124.52 (13)C5—C7—H7A108.6
C6—N1—C1118.25 (15)C8—C7—H7B108.6
C2—N1—C1117.00 (15)C5—C7—H7B108.6
N1—C1—H1A109.5H7A—C7—H7B107.6
N1—C1—H1B109.5C7—C8—H8A109.5
H1A—C1—H1B109.5C7—C8—H8B109.5
N1—C1—H1C109.5H8A—C8—H8B109.5
H1A—C1—H1C109.5C7—C8—H8C109.5
H1B—C1—H1C109.5H8A—C8—H8C109.5
O2—C2—N3120.86 (15)H8B—C8—H8C109.5
O2—C2—N1122.60 (15)C14—C9—C10118.66 (16)
N3—C2—N1116.54 (13)C14—C9—C5122.63 (15)
C4—N3—C2126.16 (13)C10—C9—C5118.70 (14)
C4—N3—H3115.5 (14)C11—C10—C9120.17 (19)
C2—N3—H3115.6 (13)C11—C10—H10119.9
O4—C4—N3121.16 (13)C9—C10—H10119.9
O4—C4—C5122.59 (13)C12—C11—C10120.7 (2)
N3—C4—C5116.05 (13)C12—C11—H11119.7
C6—C5—C4112.05 (13)C10—C11—H11119.7
C6—C5—C7109.75 (13)C13—C12—C11119.38 (19)
C4—C5—C7111.08 (12)C13—C12—H12120.3
C6—C5—C9108.98 (12)C11—C12—H12120.3
C4—C5—C9105.46 (12)C12—C13—C14120.8 (2)
C7—C5—C9109.39 (12)C12—C13—H13119.6
O6—C6—N1120.59 (15)C14—C13—H13119.6
O6—C6—C5121.14 (15)C9—C14—C13120.34 (19)
N1—C6—C5118.19 (13)C9—C14—H14119.8
C8—C7—C5114.69 (14)C13—C14—H14119.8
C8—C7—H7A108.6
C6—N1—C2—O2177.98 (15)C4—C5—C6—N122.8 (2)
C1—N1—C2—O27.6 (2)C7—C5—C6—N1146.72 (14)
C6—N1—C2—N32.8 (2)C9—C5—C6—N193.50 (16)
C1—N1—C2—N3171.68 (15)C6—C5—C7—C860.70 (18)
O2—C2—N3—C4173.84 (15)C4—C5—C7—C863.76 (19)
N1—C2—N3—C45.4 (2)C9—C5—C7—C8179.78 (15)
C2—N3—C4—O4162.54 (15)C6—C5—C9—C141.3 (2)
C2—N3—C4—C522.5 (2)C4—C5—C9—C14121.73 (16)
O4—C4—C5—C6155.70 (15)C7—C5—C9—C14118.73 (17)
N3—C4—C5—C629.38 (19)C6—C5—C9—C10179.63 (14)
O4—C4—C5—C732.5 (2)C4—C5—C9—C1059.16 (18)
N3—C4—C5—C7152.53 (14)C7—C5—C9—C1060.38 (18)
O4—C4—C5—C985.87 (18)C14—C9—C10—C110.5 (3)
N3—C4—C5—C989.06 (16)C5—C9—C10—C11179.67 (16)
C2—N1—C6—O6175.48 (15)C9—C10—C11—C120.3 (3)
C1—N1—C6—O61.1 (3)C10—C11—C12—C130.8 (3)
C2—N1—C6—C57.5 (2)C11—C12—C13—C140.5 (3)
C1—N1—C6—C5178.11 (15)C10—C9—C14—C130.8 (3)
C4—C5—C6—O6160.18 (16)C5—C9—C14—C13179.91 (16)
C7—C5—C6—O636.3 (2)C12—C13—C14—C90.3 (3)
C9—C5—C6—O683.49 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.90 (2)1.99 (2)2.896 (2)178 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

(2-TP)(4-TP)(2,4-DTP)(2,4,6-TTP)
Crystal data
Chemical formulaC13H14N2O2SC13H14N2O2SC13H14N2OS2C13H14N2S3
Mr262.32262.32278.38294.44
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)293293293293
a, b, c (Å)12.9315 (3), 7.1804 (2), 15.2362 (5)11.5609 (3), 9.5538 (3), 11.7268 (3)6.9600 (3), 14.9407 (7), 13.1556 (10)13.8686 (2), 7.2346 (4), 14.9844 (5)
β (°) 113.077 (1) 101.521 (2) 103.454 (2) 110.681 (1)
V3)1301.52 (6)1269.13 (6)1330.47 (13)1406.56 (9)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.240.250.390.51
Crystal size (mm)0.35 × 0.30 × 0.120.32 × 0.30 × 0.070.25 × 0.15 × 0.100.19 × 0.15 × 0.05
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.924, 0.9760.929, 0.9800.916, 0.9550.905, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
4964, 2978, 2293 5542, 3381, 2494 5152, 2856, 2309 5585, 3201, 2587
Rint0.0210.0210.0320.025
(sin θ/λ)max1)0.6500.6860.6390.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.02 0.050, 0.145, 1.04 0.046, 0.114, 1.06 0.048, 0.116, 1.06
No. of reflections2978338128563201
No. of parameters164168168166
No. of restraints0001
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.280.37, 0.410.21, 0.290.32, 0.38


(P)
Crystal data
Chemical formulaC13H14N2O3
Mr246.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.7063 (5), 7.2553 (2), 12.6606 (4)
β (°) 105.565 (2)
V3)1212.84 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.972, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
4931, 2756, 2230
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.05
No. of reflections2756
No. of parameters167
No. of restraints0
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: COLLECT (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003); ORTEP-3 for Windows (Farrugia, 1997); Mercury (Macrae et al., 2006).

Table 1. A comparison of selected geometric parameters and ring-puckering parameters* (Å, °) for the thio derivatives of N-methylphenobarbital with N-methylphenobarbital (P) itself. top
(2–TP)(4–TP)(2,4–DTP)(2,4,6–TTP)(P)(P) at 163 K**
N1—C21.371 (2)1.382 (2)1.371 (2)1.377 (3)1.384 (2)1.391 (2)
C2—N31.371 (2)1.372 (2)1.377 (3)1.376 (3)1.377 (2)1.379 (2)
N3—C41.364 (2)1.366 (2)1.361 (3)1.352 (3)1.363 (2)1.365 (2)
C4—C51.512 (2)1.527 (2)1.525 (3)1.520 (3)1.525 (2)1.528 (2)
C5—C61.526 (2)1.529 (2)1.523 (3)1.543 (3)1.525 (2)1.528 (2)
N1—C61.402 (2)1.381 (2)1.389 (3)1.383 (3)1.380 (2)1.386 (2)
C2—O2 / S21.6436 (17)1.218 (2)1.646 (2)1.640 (2)1.2072 (19)1.2095 (19)
C4—O4 / S41.2147 (19)1.6297 (18)1.635 (2)1.643 (2)1.2176 (19)1.2184 (19)
C6—O6 / S61.2039 (19)1.211 (2)1.210 (2)1.632 (2)1.221 (2)1.2126 (19)
C2—N1—C6122.93 (14)123.39 (14)123.81 (17)123.34 (18)124.52 (13)124.39 (13)
N1—C2—N3116.44 (14)117.06 (14)116.82 (17)115.95 (19)116.54 (13)116.52 (13)
C2—N3—C4127.72 (14)126.67 (15)128.56 (18)128.24 (19)126.16 (13)126.06 (13)
N3—C4—C5116.20 (13)114.43 (15)116.46 (17)115.71 (18)116.05 (13)116.23 (13)
C4—C5—C6111.91 (13)112.66 (14)114.50 (16)111.90 (16)112.05 (13)111.91 (13)
N1—C6—C5117.04 (14)118.75 (14)119.70 (16)116.81 (18)118.19 (13)118.20 (13)
N1—C2—N3—C410.4 (3)5.2 (3)2.4 (3)13.8 (4)-5.4 (2)5.9 (2)
C2—N3—C4—C53.4 (2)-25.1 (3)-1.0 (3)0.9 (3)22.5 (2)-23.0 (2)
N3—C4—C5—C6-23.72 (19)30.1 (2)1.1 (3)-23.0 (3)-29.38 (19)29.84 (18)
C4—C5—C6—N132.14 (18)-19.2 (2)-2.7 (3)32.1 (2)22.8 (2)-23.27 (19)
C5—C6—N1—C2-20.9 (2)-0.1 (3)4.5 (3)-19.9 (3)-7.5 (2)8.1 (2)
C6—N1—C2—N3-0.8 (2)8.6 (2)-4.1 (3)-3.1 (3)-2.8 (2)2.2 (2)
C4—C5—C7—C861.7 (2)-66.7 (2)-58.9 (2)61.5 (2)63.76 (19)-63.03 (19)
C4—C5—C9—C10-3.4 (2)111.14 (19)66.3 (2)-15.5 (3)59.16 (18)-59.21 (17)
C4—C5—C9—C14177.55 (15)-69.7 (2)-113.3 (2)165.6 (2)-121.73 (16)-121.60 (15)
q20.251 (1)0.232 (2)0.019 (2)0.269 (2)0.198 (1)
q30.120 (2)0.117 (2)0.023 (2)-0.107 (2)-0.136 (2)
phi280.9 (4)-154.1 (4)-11 (5)80.8 (5)37.5 (5)
QT0.278 (2)0.260 (2)0.030 (2)0.289 (2)0.240 (2)
theta2115.5 (3)63.3 (4)39 (4)111.8 (4)124.6 (3)
* Ring-puckering parameters defined according Cremer & Pople (1975) and calculated using the PARST program (Nardelli, 1983).

** Crystal structure of N-methylphenobarbital reported erlier by Lewis et al. (2005) with R = 4.21% Refcode: MEPBAB01 (Allen, 2002).
Table 2. Hydrogen-bond geometry (Å, °). top
D—H···AAcceptor positionD—HH···AD···AD—H···A
(2-TP)
N3—H3···O4-x+2, -y+1, -z0.862.122.927 (2)157
(4-TP)
N3—H3···O2-x+2, -y+1, -z+10.83 (3)2.08 (3)2.902 (2)170 (2)
(2,4-DTP)
N3—H3···O6x+1, y, z0.83 (2)2.15 (2)2.984 (2)176 (2)
(2,4,6-TTP)
N3—H3···S4-x+1, -y+2, -z+10.87 (1)2.53 (1)3.376 (2)164 (2)
(P)
N3—H3···O4-x, -y, -z+10.90 (2)1.99 (2)2.896 (2)178 (2)
Table 3. Weak interactions (Å, °) and contacts (Å) for the analyzed crystal structures. top
Cg1 is the centre of gravity of C9 - C14 benzene ring, Cg2 is the centre of gravity of heterocyclic ring.
D—H···AAcceptor positionD—HH···AD···AD—H···ARemarks
(2-TP)
C1—H1a···O60.962.282.712 (3)106Intra
C8—H8a···Cg1x, y+1, z0.962.853.610 (2)136III*
C12—H12···Cg1-x+3/2, y-1/2, -z+1/20.932.733.639 (2)167Edge to face, I*
(4-TP)
C1—H1a···O20.962.262.710 (2)107Intra
C1—H1c···Cg1-x+3/2, y-1/2, -z+1/20.962.813.702 (2)154II*
O6···C2-x+3/2, y+1/2, -z+1/22.949 (2)
O6···Cg2-x+3/2, y+1/2, -z+1/23.214 (2)
(2,4-DTP)
C1—H1a···O60.962.222.677 (3)108Intra
C1—H1b···S4x-1/2, -y+3/2, z-1/20.963.003.824144
(2,4,6-TTP)
C1—H1a···S60.962.422.959 (3)115Intra
C8—H8c···S40.962.873.444 (3)120Intra
C8—H8a···Cg1x, y+1, z0.962.983.687 (3)132III*
C12—H12···Cg1-x+3/2, y-1/2, -z+1/20.932.753.620 (3)156Edge to face, I*
(P)
C1—H1a···O20.962.282.724108Intra
C1—H1c···Cg1x, -y-1/2, z+1/20.963.003.931165II*
C10—H10···O40.932.593.112 (2)116Intra
C10—H10···O6x, -y+1/2, z-1/20.932.593.436 (2)151
C13—H13···Cg1-x+1, y-1/2, -z+3/20.932.903.798 (2)162Edge to face, I*
O2···C2-x, y-1/2, -z+3/23.087 (2)
O2···Cg2-x, y-1/2, -z+3/22.921 (2)
* Category of weak H···π interaction according to the classification of Malone et al. (1997).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds