Download citation
Download citation
link to html
The title compounds, C27H22ClN3, (IV), and C24H17Cl2N3O2, (V), were synthesized as part of our ongoing studies on (2+3)-cyclo­addition reactions. Compound (V) crystallizes with two mol­ecules in the asymmetric unit. The pyrazolidine ring of compound (IV) adopts a twisted conformation, while in compound (V) it adopts a twisted and an envolope conformation in the two molecules. There are short inter­molecular contacts, which can be recognized as unconventional hydrogen bonds, in both structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107053619/ln3061sup1.cif
Contains datablocks IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107053619/ln3061IVsup2.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107053619/ln3061Vsup3.hkl
Contains datablock V

CCDC references: 672558; 672559

Comment top

Azomethine imines, (I), belong to the class of well known and widely applied 1,3-dipoles (Grashey, 1984). They undergo (2 + 3)-cycloadditions with both electron-rich and electron-deficient ethylene derivatives to yield the corresponding 1,2-pyrazolidine derivatives of type (II). N-cyano substituted pyrazolidines are of interest because of their expected biological activity; for example, some of them were tested as cathepsin K inhibitors for the treatment of osteoporosis (Deaton et al., 2005). The mechanism of the (2 + 3)-cycloaddition in the case of azomethine imines is believed to follow the concerted pathway that results in stereospecific formation of the final cycloadducts (Huisgen & Eckell, 1977a). For the purposes of organic synthesis, an especially attractive group is the relatively stable and reactive azomethine imines of type (III) prepared from 4-chlorophenyldiazocyanide and diaryl derivatives of diazomethane, described for the first time by Huisgen et al. (1977). The yellow crystalline C-(2,2'-biphenylylene)-Nα-(4-chlorophenyl)-Nβ-cyanoazomthine imine, (III), reacts smoothly with norbornene and methyl α-chloroacrylate to affort the expected (2 + 3)-cycloadducts (IV) and (V), respectively, in high yields. The streochemical structures of the isolated products were initially established by Huisgen and co-workers on the basis of the spectroscopic data (Huisgen et al., 1977; Huisgen & Eckell, 1977b). The (2 + 3)-cycloaddition with norbornene was reported to give the exo-oriented cycloadduct (Huisgen & Eckell, 1977a). In the case of the product obtained from methyl α-chloroacrylate, the reaction was reported to lead mainly to the sterically more crowded regioisomer (V); the minor product corresponding to the structure (VI) was found in the mother liquor after separation of (V) (Huisgen & Eckell, 1977b). The goal of the present work was to resynthesize pyrazolidines (IV) and (V) and to confirm their structures and the predicted substitution pattern in the pyrazolidine ring by X-ray diffraction analysis. Other features related to the intermolecular interactions were also of interest.

Compound (IV) (Fig. 1) crystalizes with one molecule and compound (V) (Fig. 2) with two independent molecules in the asymmetric unit [(V-A) and (V-B)]. The weighted r.m.s. fit of the non-H atoms from the two molecules of (V) is 2.88 Å (Mackay, 1984). The largest deviation from perfect overlap is observed for the fluorene group. The molecules of both compounds contain the pyrazolidine ring as a relevant fragment of the structure. The substituents at atoms C3, N1 and N2 in both compounds are identical, as they originate from the same 1,3-dipole, (IIIa). In the molecule of (IV), the norbornane ring is fused with the heterocyclic ring, and in the case of (V), the Cl atom and ester group are bonded to atom C4. Thus, the regiochemical structure attributed to (V) by Huisgen & Eckell (1977a) was correct. Moreover, the structure of (IV) shows that the pyrazolidine ring is exo-oriented with respect to the norbornane skeleton. It is worth mentioning that an analogous orientation was proposed for (2 + 3)-cycloadducts obtained from norbornene and other 1,3-dipoles, for example, diphenylnitrilimine, benzonitrile N-oxide (Huisgen et al., 1967) and methyl diazoacetate (Gorpinchenko et al., 2006).

The sums of the bond angles around atom N1 [atom N101 in (V-B)] are 343 (1), 336 (1) and 336 (1)° for (IV), (V-A) and (V-B), respectively, while the corresponding angle sums around atom N2 [atom N102 in (V-B)] are 324 (1), 342 (1) and 343 (1)°, respectively. These values indicate significant pyramidalization at these N atoms. A similar pyramidalization about the N-cyano N atom is found in other heterocyclic compounds containing the –N—CN group (Bird et al., 1995). In contrast, the amine N atom of the parent cyanamide, CH2N2, has a geometry that is somewhat flatter; the sums of the bond angles were found to be 356 (2)° in a low-temperature X-ray study (Denner et al., 1988), and 349.3 (7) and 349.6 (7)° in a study based on neutron data and an X-ray multipole refinement, respectively, for a host–guest complex of cyanamide in 18-crown-6 (Koritsanszky et al., 1991).

The pyrazolidine ring in each compound is nonplanar, as the three C atoms and two N atoms are sp3-hybridized. In (IV), this ring adopts a twisted conformation, with the pseudo-twofold axis passing through the mid-point of the N2—C3 bond and atom C5. For (IV), the puckering parameters (Cremer & Pople, 1975) for the atom sequence N1—N2—C3—C4—C5 are q2 = 0.385 (1) Å and φ2 = 229.8 (2)° [asymmetry parameter (Nardelli, 1983) Δ2 = 0.019 (1)]. The substituents at atoms N1 and N2 occupy equatorial positions, while atoms C41 and C44 are in axial positions with respect to the pyrazolidine ring. The pyrazolidine ring of (V) adopts an envelope conformation in molecule A, with a pseudo-mirror passing through atom C4 and the mid-point of the N1—N2 bond. In molecule B, the ring has a twisted conformation, with the pseudo-twofold axis passing through the mid-point of the C104—C105 bond and atom N102. For (V-A), the puckering parameters for the atom sequence N1—N2—C3—C4—C5 are q2 = 0.400 (2) Å and φ2 = 295.1 (3)° [asymmetry parameter Δs = 0.041 (1)], while for (V-B) the puckering parameters for the atom sequence N101—N102—C103—C104—C105 are q2 = 0.389 (2) Å and φ2 = 128.4 (3)° [Δ2 = 0.013 (1)]. The different puckering of the pyrazolidine rings of molecules A and B causes differences in the orientations of the substituents. The cyano group at atom N1 is nearly axial and perfectly axial at atom N101. In both molecules of compound (V), the chlorophenyl substituent at atom N2 (N102) occupies a nearly equatorial position, while the Cl and ester substituents at atom C4 (C104) occupy axial and equatorial positions, respectively.

The bonds distances and angles in both molecules are mostly in good agreement with expected values (Allen et al., 1987). However, the N—N bond distances are longer than expected. The long N1—N2 bond of 1.4785 (15) Å in (IV) and 1.458 (3) and 1.445 (3) Å for (V-A) and (V-B), respectively, may be caused by the influence of the cyano and chlorophenyl substituents on the pyrazolidine ring. Moreover, a search of the Cambridge Structural Database (Version 5.28 of November 2006; Allen, 2002) for structures containing the pyrazolidine fragment (Scheme 2), revealed a range of N—N bond lengths from 1.387 to 1.514 Å for 42 structures. The search was limited to ordered structures, without errors, with R less than 0.05 and an average bond length s.u. smaller than 0.005 Å.

In (IV), atom N7i [symmetry code: (i) x - 1, y, z] is involved in an unconventional C17—H17···N7i hydrogen bond, which links the molecules into chains along the [100] direction (Fig. 2). This generates a graph-set motif of C(9) (Etter et al., 1990). In contrast, molecules A and B in (V) are linked into dimers by a weak C5—H5B···N107 interaction; atom N7 does not act as an acceptor in any interaction. In addition, some weak nonclassical intermolecular C—H···O, C—H···Cl and C—H···π interactions are observed. For (IV), a C—H···π interaction (see Table 1, where Cg1 is defined by atoms C8–C13 in one of the six-membered rings of the fluorene group) involves pairs of molecules related by a centre of inversion. For (V) (see Table 2, where Cg2 is defined by atoms C121–C126 in the chlorophenyl ring of molecule B), all interactions emanate from H atoms solely in molecule A and the acceptor atoms are in one adjacent molecule A and three different B molecules.

Related literature top

For related literature, see: Allen et al. (1987); Bird et al. (1995); Cremer & Pople (1975); Deaton et al. (2005); Denner et al. (1988); Etter et al. (1990); Gorpinchenko et al. (2006); Grashey (1984); Huisgen & Eckell (1977a, 1977b); Huisgen et al. (1967, 1977); Koritsanszky et al. (1991); Mackay (1984); Nardelli (1983).

Experimental top

Compound (III) was prepared following the literature protocol (Huisgen et al., 1977); compounds (IV) and (V) were synthesized from (III) and commercial norbornene (Huisgen & Eckell, 1977a) or methyl α-chloroarylate (Huisgen & Eckell, 1977b), respectively, according to the procedure reported by Huisgen et al. (1977)??. Crystals suitable for X-ray measurement were obtained by slow evaporation from a dichloromethane/methanol (1:3) mixture. The melting points are 458–459 K for (IV) and 454–455 K for (V) [the previously reported melting points were 461–462 K for (IV) (Huisgen & Eckell, 1977a) and 456–457 K for (V) (Huisgen & Eckell, 1977b)]. The melting points were determined in a capillary using a MELT-TEMP II aparatus (Aldrich) and are uncorrected.

Refinement top

All H atoms were positioned geometrically and refined with a riding model. In (IV), Uiso(H) values were constrained to 1.2Ueq(C), with C—H distances of 0.98, 0.97 and 0.93 Å for methine, methylene and aromatic groups, respectively. In (V), for methyl H atoms, Uiso(H) values were constrained to 1.5Ueq(C), with C—H distances of 0.98 Å; the C—H distances are 0.95 and 0.99 Å for the aromatic and methylene groups, respectively, with Uiso(H) values constrained to 1.2Ueq(C).

Structure description top

Azomethine imines, (I), belong to the class of well known and widely applied 1,3-dipoles (Grashey, 1984). They undergo (2 + 3)-cycloadditions with both electron-rich and electron-deficient ethylene derivatives to yield the corresponding 1,2-pyrazolidine derivatives of type (II). N-cyano substituted pyrazolidines are of interest because of their expected biological activity; for example, some of them were tested as cathepsin K inhibitors for the treatment of osteoporosis (Deaton et al., 2005). The mechanism of the (2 + 3)-cycloaddition in the case of azomethine imines is believed to follow the concerted pathway that results in stereospecific formation of the final cycloadducts (Huisgen & Eckell, 1977a). For the purposes of organic synthesis, an especially attractive group is the relatively stable and reactive azomethine imines of type (III) prepared from 4-chlorophenyldiazocyanide and diaryl derivatives of diazomethane, described for the first time by Huisgen et al. (1977). The yellow crystalline C-(2,2'-biphenylylene)-Nα-(4-chlorophenyl)-Nβ-cyanoazomthine imine, (III), reacts smoothly with norbornene and methyl α-chloroacrylate to affort the expected (2 + 3)-cycloadducts (IV) and (V), respectively, in high yields. The streochemical structures of the isolated products were initially established by Huisgen and co-workers on the basis of the spectroscopic data (Huisgen et al., 1977; Huisgen & Eckell, 1977b). The (2 + 3)-cycloaddition with norbornene was reported to give the exo-oriented cycloadduct (Huisgen & Eckell, 1977a). In the case of the product obtained from methyl α-chloroacrylate, the reaction was reported to lead mainly to the sterically more crowded regioisomer (V); the minor product corresponding to the structure (VI) was found in the mother liquor after separation of (V) (Huisgen & Eckell, 1977b). The goal of the present work was to resynthesize pyrazolidines (IV) and (V) and to confirm their structures and the predicted substitution pattern in the pyrazolidine ring by X-ray diffraction analysis. Other features related to the intermolecular interactions were also of interest.

Compound (IV) (Fig. 1) crystalizes with one molecule and compound (V) (Fig. 2) with two independent molecules in the asymmetric unit [(V-A) and (V-B)]. The weighted r.m.s. fit of the non-H atoms from the two molecules of (V) is 2.88 Å (Mackay, 1984). The largest deviation from perfect overlap is observed for the fluorene group. The molecules of both compounds contain the pyrazolidine ring as a relevant fragment of the structure. The substituents at atoms C3, N1 and N2 in both compounds are identical, as they originate from the same 1,3-dipole, (IIIa). In the molecule of (IV), the norbornane ring is fused with the heterocyclic ring, and in the case of (V), the Cl atom and ester group are bonded to atom C4. Thus, the regiochemical structure attributed to (V) by Huisgen & Eckell (1977a) was correct. Moreover, the structure of (IV) shows that the pyrazolidine ring is exo-oriented with respect to the norbornane skeleton. It is worth mentioning that an analogous orientation was proposed for (2 + 3)-cycloadducts obtained from norbornene and other 1,3-dipoles, for example, diphenylnitrilimine, benzonitrile N-oxide (Huisgen et al., 1967) and methyl diazoacetate (Gorpinchenko et al., 2006).

The sums of the bond angles around atom N1 [atom N101 in (V-B)] are 343 (1), 336 (1) and 336 (1)° for (IV), (V-A) and (V-B), respectively, while the corresponding angle sums around atom N2 [atom N102 in (V-B)] are 324 (1), 342 (1) and 343 (1)°, respectively. These values indicate significant pyramidalization at these N atoms. A similar pyramidalization about the N-cyano N atom is found in other heterocyclic compounds containing the –N—CN group (Bird et al., 1995). In contrast, the amine N atom of the parent cyanamide, CH2N2, has a geometry that is somewhat flatter; the sums of the bond angles were found to be 356 (2)° in a low-temperature X-ray study (Denner et al., 1988), and 349.3 (7) and 349.6 (7)° in a study based on neutron data and an X-ray multipole refinement, respectively, for a host–guest complex of cyanamide in 18-crown-6 (Koritsanszky et al., 1991).

The pyrazolidine ring in each compound is nonplanar, as the three C atoms and two N atoms are sp3-hybridized. In (IV), this ring adopts a twisted conformation, with the pseudo-twofold axis passing through the mid-point of the N2—C3 bond and atom C5. For (IV), the puckering parameters (Cremer & Pople, 1975) for the atom sequence N1—N2—C3—C4—C5 are q2 = 0.385 (1) Å and φ2 = 229.8 (2)° [asymmetry parameter (Nardelli, 1983) Δ2 = 0.019 (1)]. The substituents at atoms N1 and N2 occupy equatorial positions, while atoms C41 and C44 are in axial positions with respect to the pyrazolidine ring. The pyrazolidine ring of (V) adopts an envelope conformation in molecule A, with a pseudo-mirror passing through atom C4 and the mid-point of the N1—N2 bond. In molecule B, the ring has a twisted conformation, with the pseudo-twofold axis passing through the mid-point of the C104—C105 bond and atom N102. For (V-A), the puckering parameters for the atom sequence N1—N2—C3—C4—C5 are q2 = 0.400 (2) Å and φ2 = 295.1 (3)° [asymmetry parameter Δs = 0.041 (1)], while for (V-B) the puckering parameters for the atom sequence N101—N102—C103—C104—C105 are q2 = 0.389 (2) Å and φ2 = 128.4 (3)° [Δ2 = 0.013 (1)]. The different puckering of the pyrazolidine rings of molecules A and B causes differences in the orientations of the substituents. The cyano group at atom N1 is nearly axial and perfectly axial at atom N101. In both molecules of compound (V), the chlorophenyl substituent at atom N2 (N102) occupies a nearly equatorial position, while the Cl and ester substituents at atom C4 (C104) occupy axial and equatorial positions, respectively.

The bonds distances and angles in both molecules are mostly in good agreement with expected values (Allen et al., 1987). However, the N—N bond distances are longer than expected. The long N1—N2 bond of 1.4785 (15) Å in (IV) and 1.458 (3) and 1.445 (3) Å for (V-A) and (V-B), respectively, may be caused by the influence of the cyano and chlorophenyl substituents on the pyrazolidine ring. Moreover, a search of the Cambridge Structural Database (Version 5.28 of November 2006; Allen, 2002) for structures containing the pyrazolidine fragment (Scheme 2), revealed a range of N—N bond lengths from 1.387 to 1.514 Å for 42 structures. The search was limited to ordered structures, without errors, with R less than 0.05 and an average bond length s.u. smaller than 0.005 Å.

In (IV), atom N7i [symmetry code: (i) x - 1, y, z] is involved in an unconventional C17—H17···N7i hydrogen bond, which links the molecules into chains along the [100] direction (Fig. 2). This generates a graph-set motif of C(9) (Etter et al., 1990). In contrast, molecules A and B in (V) are linked into dimers by a weak C5—H5B···N107 interaction; atom N7 does not act as an acceptor in any interaction. In addition, some weak nonclassical intermolecular C—H···O, C—H···Cl and C—H···π interactions are observed. For (IV), a C—H···π interaction (see Table 1, where Cg1 is defined by atoms C8–C13 in one of the six-membered rings of the fluorene group) involves pairs of molecules related by a centre of inversion. For (V) (see Table 2, where Cg2 is defined by atoms C121–C126 in the chlorophenyl ring of molecule B), all interactions emanate from H atoms solely in molecule A and the acceptor atoms are in one adjacent molecule A and three different B molecules.

For related literature, see: Allen et al. (1987); Bird et al. (1995); Cremer & Pople (1975); Deaton et al. (2005); Denner et al. (1988); Etter et al. (1990); Gorpinchenko et al. (2006); Grashey (1984); Huisgen & Eckell (1977a, 1977b); Huisgen et al. (1967, 1977); Koritsanszky et al. (1991); Mackay (1984); Nardelli (1983).

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2000); cell refinement: X-AREA (Stoe & Cie, 2000); data reduction: X-AREA (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (IV), with the atomic numbering scheme and 40% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of the two symmetry-independent molecules of (V), with the atomic numbering scheme and 40% probability displacement ellipsoids. The C—H···N interaction forming dimers between molecules A and B is shown as a dashed line. The other H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of (IV), showing the C—H···N interaction forming chains along the a axis. The symmetry code is given in Table 1.
(IV) 2'-(4-Chlorophenyl)-2,3,4,5,6,7-hexahydro-4',7'-methanospiro[9H-fluorene- 9,3'-1H-indazole]-1'-carbonitrile top
Crystal data top
C27H22ClN3F(000) = 888
Mr = 423.93Dx = 1.330 Mg m3
Monoclinic, P21/nMelting point = 458–459 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.0914 (9) ÅCell parameters from 17870 reflections
b = 12.6225 (9) Åθ = 2.0–28.0°
c = 18.5025 (17) ŵ = 0.20 mm1
β = 94.576 (8)°T = 173 K
V = 2116.5 (3) Å3Plate, colorless
Z = 40.35 × 0.15 × 0.10 mm
Data collection top
Stoe IPDSII image-plate
diffractometer
3437 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 28.0°, θmin = 2.0°
Detector resolution: 150 pixels mm-1h = 1211
phi–scank = 1616
17870 measured reflectionsl = 2424
5071 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.048P)2P]
where P = (Fo2 + 2Fc2)/3
5071 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C27H22ClN3V = 2116.5 (3) Å3
Mr = 423.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0914 (9) ŵ = 0.20 mm1
b = 12.6225 (9) ÅT = 173 K
c = 18.5025 (17) Å0.35 × 0.15 × 0.10 mm
β = 94.576 (8)°
Data collection top
Stoe IPDSII image-plate
diffractometer
3437 reflections with I > 2σ(I)
17870 measured reflectionsRint = 0.046
5071 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.85Δρmax = 0.24 e Å3
5071 reflectionsΔρmin = 0.30 e Å3
280 parameters
Special details top

Experimental. The melting points were determined in a capillary using a MELT-TEMP II aparatus (Aldrich) and are uncorrected.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.87311 (5)0.11946 (3)0.00430 (2)0.05128 (12)
N10.98927 (12)0.52950 (9)0.22082 (6)0.0268 (2)
N20.98726 (11)0.41725 (9)0.24356 (6)0.0257 (2)
N71.16985 (13)0.57955 (11)0.13209 (7)0.0395 (3)
C30.88134 (13)0.41965 (10)0.30181 (7)0.0258 (3)
C40.92074 (14)0.52415 (10)0.34305 (7)0.0263 (3)
C50.97717 (14)0.59945 (10)0.28499 (7)0.0278 (3)
C61.09251 (14)0.55351 (11)0.17522 (7)0.0289 (3)
C80.88944 (14)0.32163 (10)0.34974 (7)0.0258 (3)
C91.01144 (14)0.26909 (11)0.38226 (7)0.0295 (3)
C100.98917 (16)0.18330 (11)0.42741 (7)0.0335 (3)
C110.84759 (17)0.15246 (11)0.44121 (8)0.0356 (3)
C120.72473 (15)0.20380 (11)0.40816 (7)0.0319 (3)
C130.74640 (14)0.28726 (10)0.36132 (7)0.0267 (3)
C140.64008 (14)0.34921 (10)0.31423 (7)0.0264 (3)
C150.48729 (14)0.34112 (11)0.30279 (7)0.0309 (3)
C160.41476 (14)0.40404 (11)0.24961 (8)0.0320 (3)
C170.49150 (15)0.47640 (11)0.21067 (8)0.0326 (3)
C180.64356 (14)0.48758 (11)0.22397 (7)0.0299 (3)
C190.71749 (13)0.42251 (10)0.27511 (7)0.0261 (3)
C210.94928 (13)0.34853 (11)0.18262 (7)0.0267 (3)
C220.89651 (15)0.38424 (12)0.11386 (7)0.0329 (3)
C230.87376 (15)0.31408 (12)0.05658 (8)0.0362 (3)
C240.89965 (14)0.20786 (12)0.06802 (8)0.0342 (3)
C250.94877 (15)0.17005 (12)0.13625 (8)0.0332 (3)
C260.97558 (14)0.24055 (11)0.19278 (7)0.0299 (3)
C411.04854 (14)0.52596 (11)0.40332 (7)0.0282 (3)
C421.04121 (16)0.63363 (11)0.44139 (7)0.0337 (3)
C431.08754 (18)0.71289 (12)0.38289 (8)0.0410 (4)
C441.12461 (15)0.63977 (11)0.32058 (7)0.0338 (3)
C451.18516 (14)0.54153 (12)0.36118 (7)0.0330 (3)
H40.83170.55400.36170.032*
H50.90800.65790.27380.033*
H91.10640.29080.37400.035*
H101.07000.14630.44850.040*
H110.83470.09670.47300.043*
H120.63000.18270.41730.038*
H150.43490.29470.33010.037*
H160.31320.39750.24000.038*
H170.44090.51790.17530.039*
H180.69460.53780.19900.036*
H220.87650.45590.10650.040*
H230.84120.33860.01070.043*
H250.96350.09780.14380.040*
H261.01160.21580.23810.036*
H411.05270.46450.43580.034*
H42A1.10900.63630.48460.040*
H42B0.94210.64830.45460.040*
H43A1.00730.76060.36770.049*
H43B1.17280.75410.40080.049*
H441.19070.67070.28700.041*
H45B1.27360.55610.39250.040*
H45A1.20200.48280.32910.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0585 (3)0.0538 (3)0.0408 (2)0.00231 (19)0.00080 (17)0.02135 (19)
N10.0300 (5)0.0277 (6)0.0234 (5)0.0006 (4)0.0053 (4)0.0024 (5)
N20.0282 (5)0.0262 (6)0.0229 (5)0.0003 (4)0.0040 (4)0.0010 (4)
N70.0352 (6)0.0487 (8)0.0356 (7)0.0021 (6)0.0086 (5)0.0090 (6)
C30.0262 (6)0.0281 (7)0.0236 (6)0.0013 (5)0.0041 (5)0.0007 (5)
C40.0275 (6)0.0270 (7)0.0249 (6)0.0008 (5)0.0053 (5)0.0003 (5)
C50.0321 (7)0.0268 (7)0.0249 (6)0.0015 (5)0.0040 (5)0.0001 (5)
C60.0280 (6)0.0324 (7)0.0261 (6)0.0018 (5)0.0005 (5)0.0032 (6)
C80.0310 (6)0.0256 (7)0.0211 (6)0.0001 (5)0.0034 (5)0.0029 (5)
C90.0310 (7)0.0314 (7)0.0260 (6)0.0015 (5)0.0017 (5)0.0026 (6)
C100.0425 (8)0.0293 (7)0.0276 (7)0.0057 (6)0.0035 (6)0.0008 (6)
C110.0520 (9)0.0269 (7)0.0276 (7)0.0037 (6)0.0013 (6)0.0007 (6)
C120.0387 (7)0.0297 (7)0.0278 (7)0.0058 (6)0.0052 (6)0.0012 (6)
C130.0309 (7)0.0263 (7)0.0234 (6)0.0003 (5)0.0040 (5)0.0036 (5)
C140.0302 (6)0.0252 (6)0.0243 (6)0.0007 (5)0.0048 (5)0.0049 (5)
C150.0300 (7)0.0316 (7)0.0318 (7)0.0026 (5)0.0076 (5)0.0058 (6)
C160.0248 (6)0.0355 (8)0.0356 (7)0.0019 (5)0.0022 (5)0.0090 (6)
C170.0312 (7)0.0338 (8)0.0325 (7)0.0066 (6)0.0004 (5)0.0017 (6)
C180.0310 (7)0.0289 (7)0.0298 (7)0.0019 (5)0.0032 (5)0.0007 (6)
C190.0266 (6)0.0263 (6)0.0257 (6)0.0012 (5)0.0036 (5)0.0032 (5)
C210.0234 (6)0.0313 (7)0.0256 (6)0.0013 (5)0.0028 (5)0.0025 (5)
C220.0346 (7)0.0340 (8)0.0296 (7)0.0047 (6)0.0018 (6)0.0002 (6)
C230.0378 (7)0.0446 (9)0.0254 (7)0.0042 (6)0.0028 (6)0.0033 (6)
C240.0301 (7)0.0411 (8)0.0314 (7)0.0008 (6)0.0029 (5)0.0109 (6)
C250.0330 (7)0.0309 (7)0.0363 (7)0.0012 (6)0.0075 (6)0.0033 (6)
C260.0309 (7)0.0336 (7)0.0258 (6)0.0029 (5)0.0046 (5)0.0010 (6)
C410.0328 (7)0.0293 (7)0.0225 (6)0.0020 (5)0.0030 (5)0.0006 (6)
C420.0422 (8)0.0333 (7)0.0257 (7)0.0049 (6)0.0042 (6)0.0020 (6)
C430.0586 (10)0.0329 (8)0.0316 (7)0.0104 (7)0.0051 (7)0.0010 (7)
C440.0380 (7)0.0372 (8)0.0268 (7)0.0106 (6)0.0068 (5)0.0009 (6)
C450.0287 (7)0.0419 (8)0.0281 (7)0.0028 (6)0.0001 (5)0.0022 (6)
Geometric parameters (Å, º) top
Cl1—C241.7442 (14)C44—H440.9800
N2—C211.4425 (17)C21—C261.3939 (19)
N2—N11.4785 (15)C41—C451.5311 (18)
N2—C31.5019 (16)C41—C421.5345 (19)
N1—C61.3458 (17)C41—H410.9800
N1—C51.4907 (16)C24—C231.375 (2)
C4—C411.5451 (18)C24—C251.390 (2)
C4—C31.5515 (18)C23—H230.9300
C4—C51.5518 (18)C26—C251.3801 (19)
C4—H40.9800C26—H260.9300
C13—C121.3882 (19)C11—C101.388 (2)
C13—C81.4035 (17)C11—H110.9300
C13—C141.4732 (18)C9—C81.3876 (18)
C19—C181.3858 (18)C9—C101.3923 (19)
C19—C141.3987 (18)C9—H90.9300
C19—C31.5319 (17)C42—C431.5565 (19)
C5—C441.5325 (18)C42—H42A0.9700
C5—H50.9800C42—H42B0.9700
C3—C81.5205 (18)C18—C171.3918 (19)
C6—N71.1527 (17)C18—H180.9300
C12—C111.390 (2)C16—C171.386 (2)
C12—H120.9300C16—H160.9300
C22—C231.384 (2)C17—H170.9300
C22—C211.3980 (18)C10—H100.9300
C22—H220.9300C25—H250.9300
C15—C161.389 (2)C43—H43A0.9700
C15—C141.3920 (18)C43—H43B0.9700
C15—H150.9300C45—H45B0.9700
C44—C451.529 (2)C45—H45A0.9700
C44—C431.535 (2)
C21—N2—N1111.19 (9)C23—C24—C25120.90 (13)
C21—N2—C3116.47 (10)C23—C24—Cl1119.62 (11)
N1—N2—C3102.01 (9)C25—C24—Cl1119.47 (11)
C6—N1—N2114.78 (10)C24—C23—C22119.53 (13)
C6—N1—C5117.74 (11)C24—C23—H23120.2
N2—N1—C5109.73 (9)C22—C23—H23120.2
C41—C4—C3119.89 (11)C25—C26—C21120.67 (13)
C41—C4—C5102.68 (10)C25—C26—H26119.7
C3—C4—C5104.86 (10)C21—C26—H26119.7
C41—C4—H4109.6C10—C11—C12120.86 (13)
C3—C4—H4109.6C10—C11—H11119.6
C5—C4—H4109.6C12—C11—H11119.6
C12—C13—C8120.62 (12)C8—C9—C10118.85 (12)
C12—C13—C14130.76 (12)C8—C9—H9120.6
C8—C13—C14108.53 (11)C10—C9—H9120.6
C18—C19—C14120.58 (12)C41—C42—C43103.06 (11)
C18—C19—C3129.82 (12)C41—C42—H42A111.2
C14—C19—C3109.51 (11)C43—C42—H42A111.2
N1—C5—C44114.92 (11)C41—C42—H42B111.2
N1—C5—C4103.77 (10)C43—C42—H42B111.2
C44—C5—C4103.42 (10)H42A—C42—H42B109.1
N1—C5—H5111.4C19—C18—C17118.78 (12)
C44—C5—H5111.4C19—C18—H18120.6
C4—C5—H5111.4C17—C18—H18120.6
N2—C3—C8113.46 (10)C17—C16—C15120.98 (12)
N2—C3—C19115.58 (10)C17—C16—H16119.5
C8—C3—C19102.00 (10)C15—C16—H16119.5
N2—C3—C4103.53 (10)C9—C8—C13120.29 (12)
C8—C3—C4113.98 (10)C9—C8—C3129.92 (11)
C19—C3—C4108.60 (10)C13—C8—C3109.76 (11)
N7—C6—N1173.07 (14)C16—C17—C18120.60 (13)
C13—C12—C11118.64 (12)C16—C17—H17119.7
C13—C12—H12120.7C18—C17—H17119.7
C11—C12—H12120.7C11—C10—C9120.65 (13)
C23—C22—C21120.66 (13)C11—C10—H10119.7
C23—C22—H22119.7C9—C10—H10119.7
C21—C22—H22119.7C15—C14—C19120.46 (12)
C16—C15—C14118.50 (12)C15—C14—C13130.59 (12)
C16—C15—H15120.7C19—C14—C13108.89 (11)
C14—C15—H15120.7C26—C25—C24119.45 (13)
C45—C44—C5102.12 (11)C26—C25—H25120.3
C45—C44—C43102.15 (11)C24—C25—H25120.3
C5—C44—C43106.59 (12)C44—C43—C42102.93 (11)
C45—C44—H44114.8C44—C43—H43A111.2
C5—C44—H44114.8C42—C43—H43A111.2
C43—C44—H44114.8C44—C43—H43B111.2
C26—C21—C22118.74 (12)C42—C43—H43B111.2
C26—C21—N2117.05 (11)H43A—C43—H43B109.1
C22—C21—N2124.10 (12)C44—C45—C4194.55 (10)
C45—C41—C42100.77 (11)C44—C45—H45B112.8
C45—C41—C4103.19 (10)C41—C45—H45B112.8
C42—C41—C4106.66 (11)C44—C45—H45A112.8
C45—C41—H41114.9C41—C45—H45A112.8
C42—C41—H41114.9H45B—C45—H45A110.3
C4—C41—H41114.9
C21—N2—N1—C664.03 (13)Cl1—C24—C23—C22179.26 (11)
C3—N2—N1—C6171.13 (10)C21—C22—C23—C241.8 (2)
C21—N2—N1—C5160.72 (10)C22—C21—C26—C250.59 (19)
C3—N2—N1—C535.87 (11)N2—C21—C26—C25176.97 (11)
C6—N1—C5—C4438.12 (16)C13—C12—C11—C100.4 (2)
N2—N1—C5—C4495.65 (12)C45—C41—C42—C4337.96 (13)
C6—N1—C5—C4150.30 (11)C4—C41—C42—C4369.45 (13)
N2—N1—C5—C416.53 (12)C14—C19—C18—C171.94 (19)
C41—C4—C5—N1117.15 (10)C3—C19—C18—C17178.09 (13)
C3—C4—C5—N18.88 (12)C14—C15—C16—C172.56 (19)
C41—C4—C5—C443.15 (13)C10—C9—C8—C131.16 (18)
C3—C4—C5—C44129.18 (10)C10—C9—C8—C3176.52 (12)
C21—N2—C3—C874.93 (13)C12—C13—C8—C93.22 (19)
N1—N2—C3—C8163.82 (10)C14—C13—C8—C9173.71 (11)
C21—N2—C3—C1942.39 (15)C12—C13—C8—C3174.89 (11)
N1—N2—C3—C1978.86 (12)C14—C13—C8—C38.18 (14)
C21—N2—C3—C4161.01 (10)N2—C3—C8—C945.86 (18)
N1—N2—C3—C439.75 (11)C19—C3—C8—C9170.85 (13)
C18—C19—C3—N249.41 (18)C4—C3—C8—C972.31 (16)
C14—C19—C3—N2134.10 (11)N2—C3—C8—C13136.26 (11)
C18—C19—C3—C8172.98 (13)C19—C3—C8—C1311.27 (13)
C14—C19—C3—C810.53 (13)C4—C3—C8—C13105.56 (12)
C18—C19—C3—C466.36 (17)C15—C16—C17—C180.1 (2)
C14—C19—C3—C4110.13 (12)C19—C18—C17—C162.2 (2)
C41—C4—C3—N284.11 (13)C12—C11—C10—C92.5 (2)
C5—C4—C3—N230.38 (12)C8—C9—C10—C111.65 (19)
C41—C4—C3—C839.62 (15)C16—C15—C14—C192.78 (19)
C5—C4—C3—C8154.11 (10)C16—C15—C14—C13174.00 (13)
C41—C4—C3—C19152.56 (11)C18—C19—C14—C150.55 (19)
C5—C4—C3—C1992.95 (11)C3—C19—C14—C15176.32 (11)
C8—C13—C12—C112.39 (19)C18—C19—C14—C13176.87 (12)
C14—C13—C12—C11173.77 (13)C3—C19—C14—C136.26 (14)
N1—C5—C44—C4575.37 (13)C12—C13—C14—C150.6 (2)
C4—C5—C44—C4537.01 (12)C8—C13—C14—C15175.91 (13)
N1—C5—C44—C43177.85 (11)C12—C13—C14—C19177.67 (13)
C4—C5—C44—C4369.76 (13)C8—C13—C14—C191.16 (14)
C23—C22—C21—C261.36 (19)C21—C26—C25—C242.11 (19)
C23—C22—C21—N2174.74 (12)C23—C24—C25—C261.7 (2)
N1—N2—C21—C26165.83 (10)Cl1—C24—C25—C26177.34 (10)
C3—N2—C21—C2677.91 (14)C45—C44—C43—C4232.57 (14)
N1—N2—C21—C2210.33 (16)C5—C44—C43—C4274.18 (14)
C3—N2—C21—C22105.93 (14)C41—C42—C43—C443.34 (14)
C3—C4—C41—C4583.87 (13)C5—C44—C45—C4155.09 (11)
C5—C4—C41—C4531.76 (13)C43—C44—C45—C4155.09 (12)
C3—C4—C41—C42170.45 (10)C42—C41—C45—C4456.92 (11)
C5—C4—C41—C4273.93 (12)C4—C41—C45—C4453.22 (12)
C25—C24—C23—C220.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N7i0.932.653.418 (1)141
C42—H42B···Cg1ii0.972.743.484 (2)134
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.
(V) methyl 4'-chloro-2'-(4-chlorophenyl)-1'-cyanospiro[9H-fluorene-9,3'-pyrazolidine]- 4'-carboxylate top
Crystal data top
C24H17Cl2N3O2F(000) = 1856
Mr = 450.31Dx = 1.444 Mg m3
Monoclinic, P21/cMelting point = 454–455 K
Hall symbol: -P2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.1818 (5) ÅCell parameters from 23396 reflections
b = 13.2534 (4) Åθ = 1.5–25.0°
c = 28.1265 (11) ŵ = 0.34 mm1
β = 96.363 (3)°T = 120 K
V = 4142.6 (3) Å3Plate, colorless
Z = 80.37 × 0.37 × 0.08 mm
Data collection top
Stoe IPDSII image-plate
diffractometer
4866 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.0°, θmin = 1.5°
Detector resolution: 150 pixels mm-1h = 1313
phi–scank = 1513
23396 measured reflectionsl = 2933
7295 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.02 [exp(2.00(sinθ/λ)2)]/ [σ2(Fo2) + (0.0404P)2]
where P = 0.33333Fo2 + 0.66667Fc2
7295 reflections(Δ/σ)max = 0.001
559 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C24H17Cl2N3O2V = 4142.6 (3) Å3
Mr = 450.31Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.1818 (5) ŵ = 0.34 mm1
b = 13.2534 (4) ÅT = 120 K
c = 28.1265 (11) Å0.37 × 0.37 × 0.08 mm
β = 96.363 (3)°
Data collection top
Stoe IPDSII image-plate
diffractometer
4866 reflections with I > 2σ(I)
23396 measured reflectionsRint = 0.045
7295 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.02Δρmax = 0.84 e Å3
7295 reflectionsΔρmin = 0.41 e Å3
559 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19062 (6)0.29108 (7)0.19441 (2)0.04582 (19)
Cl20.16398 (5)0.21353 (5)0.11089 (2)0.02777 (14)
O420.03896 (18)0.42321 (14)0.13806 (7)0.0443 (5)
O430.05242 (15)0.25933 (14)0.15557 (6)0.0337 (4)
N10.13052 (15)0.34045 (15)0.01889 (7)0.0235 (4)
N20.03496 (15)0.26720 (14)0.00639 (7)0.0207 (4)
N70.33242 (17)0.26889 (17)0.00682 (8)0.0343 (5)
C30.03988 (18)0.25762 (17)0.04691 (8)0.0202 (5)
C40.04764 (18)0.30204 (17)0.08939 (8)0.0218 (5)
C50.11071 (19)0.38595 (18)0.06505 (9)0.0245 (5)
C60.2398 (2)0.29813 (18)0.01484 (9)0.0249 (5)
C80.08308 (19)0.15019 (17)0.05501 (8)0.0208 (5)
C90.0201 (2)0.06051 (19)0.05753 (9)0.0277 (5)
C100.0814 (2)0.02777 (19)0.06602 (10)0.0341 (6)
C110.2029 (2)0.0268 (2)0.07142 (10)0.0349 (6)
C120.2679 (2)0.06282 (19)0.06741 (9)0.0270 (5)
C130.20753 (19)0.15122 (17)0.05916 (8)0.0212 (5)
C140.25432 (18)0.25389 (17)0.04983 (8)0.0208 (5)
C150.37180 (19)0.28903 (18)0.04468 (8)0.0235 (5)
C160.3931 (2)0.38780 (19)0.03009 (9)0.0282 (5)
C170.2990 (2)0.45054 (19)0.02063 (9)0.0296 (5)
C180.18093 (19)0.41529 (17)0.02576 (9)0.0238 (5)
C190.15874 (18)0.31695 (17)0.04065 (8)0.0196 (5)
C210.02069 (18)0.27844 (17)0.04112 (8)0.0206 (5)
C220.03237 (19)0.33527 (19)0.07485 (9)0.0252 (5)
C230.0188 (2)0.3390 (2)0.12205 (9)0.0297 (6)
C240.1233 (2)0.2859 (2)0.13532 (9)0.0284 (5)
C250.17731 (19)0.22963 (19)0.10255 (9)0.0276 (5)
C260.12646 (18)0.22486 (18)0.05564 (8)0.0234 (5)
C410.0180 (2)0.33600 (19)0.13058 (9)0.0265 (5)
C440.1166 (2)0.2836 (2)0.19602 (10)0.0410 (7)
H5A0.05930.44680.06050.029*
H5B0.18790.40440.08370.029*
H90.06320.05910.05360.033*
H100.03910.09000.06810.041*
H110.24220.08800.07790.042*
H120.35180.06340.07030.032*
H150.43630.24630.05100.028*
H160.47320.41300.02650.034*
H170.31540.51800.01060.036*
H180.11670.45810.01910.029*
H220.10420.37180.06540.030*
H230.01770.37770.14500.036*
H250.24970.19400.11230.033*
H260.16320.18520.03310.028*
H44A0.13750.22120.21180.062*
H44B0.19030.32070.18490.062*
H44C0.06550.32550.21870.062*
Cl100.38337 (5)1.05566 (5)0.06729 (2)0.03142 (14)
Cl200.59140 (5)0.44562 (4)0.21560 (2)0.02571 (13)
O1420.88978 (14)0.55891 (15)0.21929 (7)0.0373 (4)
O1430.77694 (13)0.53999 (13)0.28001 (6)0.0295 (4)
N1010.56634 (16)0.58986 (14)0.12830 (7)0.0233 (4)
N1020.52678 (16)0.66505 (14)0.16034 (7)0.0212 (4)
N1070.39892 (19)0.46855 (16)0.10314 (8)0.0352 (5)
C1030.60186 (18)0.65814 (17)0.20784 (8)0.0209 (5)
C1040.67443 (18)0.55739 (18)0.20260 (8)0.0221 (5)
C1050.6853 (2)0.55400 (19)0.14912 (9)0.0265 (5)
C1060.4775 (2)0.52116 (19)0.11662 (9)0.0266 (5)
C1080.68960 (18)0.74592 (17)0.21934 (8)0.0216 (5)
C1090.76794 (19)0.79090 (19)0.19067 (9)0.0281 (5)
C1100.8362 (2)0.8723 (2)0.20904 (10)0.0345 (6)
C1110.8273 (2)0.90848 (19)0.25489 (10)0.0338 (6)
C1120.7478 (2)0.86407 (18)0.28362 (9)0.0288 (6)
C1130.67825 (18)0.78260 (17)0.26526 (8)0.0228 (5)
C1140.58043 (18)0.72768 (17)0.28501 (8)0.0215 (5)
C1150.5323 (2)0.73906 (18)0.32810 (9)0.0257 (5)
C1160.4319 (2)0.68254 (19)0.33569 (9)0.0275 (5)
C1170.3798 (2)0.61718 (18)0.30117 (9)0.0261 (5)
C1180.42796 (18)0.60483 (17)0.25806 (8)0.0222 (5)
C1190.52974 (18)0.65980 (17)0.25058 (8)0.0197 (5)
C1210.50120 (18)0.76035 (17)0.13817 (8)0.0213 (5)
C1220.50433 (19)0.77323 (18)0.08901 (8)0.0244 (5)
C1230.4699 (2)0.86510 (19)0.06776 (9)0.0277 (5)
C1240.43247 (19)0.94295 (18)0.09512 (9)0.0245 (5)
C1250.43103 (18)0.93175 (17)0.14411 (8)0.0225 (5)
C1260.46445 (18)0.83985 (18)0.16532 (8)0.0223 (5)
C1410.79375 (19)0.55304 (18)0.23463 (9)0.0260 (5)
C1440.8833 (2)0.5201 (2)0.31279 (10)0.0403 (7)
H10A0.75020.59910.14060.032*
H10B0.70100.48450.13850.032*
H1090.77460.76660.15930.034*
H1100.89010.90390.18990.041*
H1110.87560.96390.26680.041*
H1120.74120.88870.31490.035*
H1150.56730.78450.35180.031*
H1160.39830.68890.36510.033*
H1170.31010.58020.30700.031*
H1180.39210.55990.23430.027*
H1220.52990.71950.07020.029*
H1230.47210.87420.03440.033*
H1250.40750.98630.16290.027*
H1260.46220.83120.19870.027*
H14A0.86050.51170.34520.060*
H14B0.93940.57680.31230.060*
H14C0.92220.45830.30310.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0386 (3)0.0757 (5)0.0220 (3)0.0065 (3)0.0020 (3)0.0084 (4)
Cl20.0255 (3)0.0294 (3)0.0279 (3)0.0027 (2)0.0007 (2)0.0019 (3)
O420.0648 (12)0.0307 (11)0.0410 (12)0.0043 (9)0.0213 (9)0.0057 (9)
O430.0413 (9)0.0339 (10)0.0282 (10)0.0056 (8)0.0136 (8)0.0006 (8)
N10.0184 (9)0.0267 (11)0.0256 (11)0.0027 (8)0.0025 (8)0.0033 (9)
N20.0183 (8)0.0231 (10)0.0207 (10)0.0050 (7)0.0021 (7)0.0015 (8)
N70.0264 (11)0.0361 (13)0.0414 (14)0.0021 (9)0.0089 (9)0.0013 (11)
C30.0216 (10)0.0210 (12)0.0182 (12)0.0000 (9)0.0028 (9)0.0012 (10)
C40.0220 (10)0.0230 (12)0.0203 (12)0.0002 (9)0.0018 (9)0.0002 (10)
C50.0220 (11)0.0257 (13)0.0257 (13)0.0020 (9)0.0020 (9)0.0027 (11)
C60.0243 (12)0.0274 (13)0.0227 (12)0.0041 (10)0.0019 (9)0.0018 (11)
C80.0228 (10)0.0215 (12)0.0181 (12)0.0038 (9)0.0024 (9)0.0031 (10)
C90.0270 (11)0.0253 (13)0.0310 (13)0.0026 (10)0.0037 (10)0.0004 (12)
C100.0407 (14)0.0208 (13)0.0413 (16)0.0026 (10)0.0066 (12)0.0015 (12)
C110.0400 (14)0.0232 (13)0.0424 (17)0.0082 (11)0.0082 (12)0.0035 (12)
C120.0263 (11)0.0249 (13)0.0307 (14)0.0057 (10)0.0066 (10)0.0001 (11)
C130.0248 (11)0.0217 (12)0.0177 (12)0.0011 (9)0.0039 (9)0.0005 (10)
C140.0234 (11)0.0237 (12)0.0155 (12)0.0014 (9)0.0036 (8)0.0003 (10)
C150.0216 (10)0.0272 (13)0.0224 (12)0.0017 (9)0.0050 (9)0.0012 (11)
C160.0225 (11)0.0316 (14)0.0310 (14)0.0053 (10)0.0047 (10)0.0005 (12)
C170.0335 (12)0.0219 (12)0.0330 (14)0.0046 (10)0.0013 (10)0.0033 (12)
C180.0239 (11)0.0231 (12)0.0249 (13)0.0014 (9)0.0042 (9)0.0032 (10)
C190.0201 (10)0.0239 (12)0.0154 (11)0.0001 (9)0.0049 (8)0.0010 (10)
C210.0219 (10)0.0216 (12)0.0184 (11)0.0040 (9)0.0025 (9)0.0004 (10)
C220.0247 (11)0.0264 (12)0.0248 (13)0.0030 (9)0.0046 (9)0.0020 (11)
C230.0308 (12)0.0343 (14)0.0250 (13)0.0020 (11)0.0081 (10)0.0041 (11)
C240.0255 (11)0.0382 (14)0.0213 (13)0.0035 (10)0.0024 (9)0.0001 (12)
C250.0211 (11)0.0359 (14)0.0258 (13)0.0023 (10)0.0020 (9)0.0020 (11)
C260.0196 (10)0.0289 (13)0.0222 (12)0.0013 (9)0.0046 (9)0.0020 (11)
C410.0271 (11)0.0278 (14)0.0245 (13)0.0030 (10)0.0026 (10)0.0041 (11)
C440.0446 (15)0.0478 (17)0.0349 (16)0.0067 (13)0.0231 (12)0.0065 (14)
Cl100.0342 (3)0.0237 (3)0.0355 (3)0.0033 (2)0.0000 (2)0.0056 (3)
Cl200.0295 (3)0.0193 (3)0.0288 (3)0.0016 (2)0.0054 (2)0.0000 (3)
O1420.0255 (8)0.0448 (11)0.0428 (11)0.0026 (8)0.0094 (8)0.0032 (10)
O1430.0266 (8)0.0344 (10)0.0270 (10)0.0069 (7)0.0005 (7)0.0016 (8)
N1010.0281 (10)0.0199 (10)0.0225 (11)0.0015 (8)0.0052 (8)0.0037 (8)
N1020.0265 (9)0.0193 (10)0.0182 (10)0.0010 (8)0.0039 (7)0.0039 (8)
N1070.0360 (11)0.0298 (12)0.0381 (13)0.0007 (10)0.0025 (10)0.0041 (10)
C1030.0230 (10)0.0203 (12)0.0196 (12)0.0005 (9)0.0037 (9)0.0006 (10)
C1040.0238 (10)0.0188 (11)0.0248 (12)0.0013 (9)0.0069 (9)0.0008 (11)
C1050.0288 (11)0.0245 (12)0.0275 (13)0.0023 (10)0.0089 (9)0.0033 (11)
C1060.0320 (12)0.0243 (13)0.0234 (13)0.0040 (10)0.0021 (10)0.0008 (11)
C1080.0205 (10)0.0187 (11)0.0256 (13)0.0020 (9)0.0018 (9)0.0007 (10)
C1090.0241 (11)0.0271 (13)0.0337 (14)0.0001 (10)0.0067 (10)0.0023 (12)
C1100.0257 (12)0.0332 (15)0.0448 (17)0.0054 (10)0.0045 (11)0.0067 (13)
C1110.0267 (12)0.0247 (13)0.0474 (17)0.0065 (10)0.0071 (11)0.0019 (12)
C1120.0297 (12)0.0229 (13)0.0317 (14)0.0010 (10)0.0063 (10)0.0013 (11)
C1130.0201 (10)0.0196 (12)0.0273 (13)0.0028 (9)0.0030 (9)0.0016 (10)
C1140.0213 (10)0.0171 (11)0.0252 (13)0.0052 (9)0.0014 (9)0.0005 (10)
C1150.0318 (12)0.0234 (13)0.0213 (12)0.0081 (10)0.0007 (10)0.0020 (10)
C1160.0317 (12)0.0305 (14)0.0219 (13)0.0109 (10)0.0098 (10)0.0055 (11)
C1170.0242 (11)0.0250 (13)0.0305 (14)0.0053 (9)0.0088 (10)0.0053 (11)
C1180.0217 (10)0.0207 (12)0.0240 (13)0.0015 (9)0.0013 (9)0.0005 (10)
C1190.0212 (10)0.0182 (11)0.0197 (12)0.0046 (9)0.0019 (8)0.0029 (10)
C1210.0207 (10)0.0205 (12)0.0230 (12)0.0024 (9)0.0036 (9)0.0007 (10)
C1220.0293 (11)0.0225 (12)0.0226 (12)0.0001 (10)0.0081 (9)0.0020 (10)
C1230.0321 (12)0.0293 (13)0.0224 (13)0.0015 (10)0.0058 (10)0.0011 (11)
C1240.0243 (10)0.0208 (12)0.0279 (13)0.0024 (9)0.0010 (9)0.0021 (11)
C1250.0193 (10)0.0214 (12)0.0269 (13)0.0004 (9)0.0025 (9)0.0047 (11)
C1260.0222 (10)0.0243 (12)0.0206 (12)0.0002 (9)0.0029 (9)0.0021 (10)
C1410.0272 (12)0.0174 (11)0.0340 (14)0.0015 (10)0.0061 (10)0.0040 (11)
C1440.0373 (14)0.0434 (16)0.0374 (16)0.0113 (12)0.0081 (12)0.0067 (13)
Geometric parameters (Å, º) top
O42—C411.202 (3)C103—N1021.500 (3)
O43—C411.317 (3)C103—C1191.520 (3)
O43—C441.447 (3)C103—C1081.533 (3)
Cl2—C41.806 (2)C103—C1041.578 (3)
Cl1—C241.748 (2)C104—C1051.523 (3)
N1—C61.361 (3)C104—C1411.526 (3)
N1—N21.458 (2)C104—Cl201.807 (2)
N1—C51.470 (3)C105—N1011.471 (3)
N2—C211.418 (3)C105—H10A0.9900
N2—C31.492 (3)C105—H10B0.9900
N7—C61.151 (3)C106—N1071.152 (3)
C3—C81.529 (3)C106—N1011.361 (3)
C3—C191.538 (3)C119—C1181.387 (3)
C3—C41.572 (3)C119—C1141.395 (3)
C4—C411.508 (3)C118—C1171.390 (3)
C4—C51.520 (3)C118—H1180.9500
C5—H5A0.9900C117—C1161.381 (4)
C5—H5B0.9900C117—H1170.9500
C8—C91.379 (3)C116—C1151.386 (3)
C8—C131.409 (3)C116—H1160.9500
C9—C101.390 (4)C115—C1141.388 (3)
C9—H90.9500C115—H1150.9500
C10—C111.383 (4)C114—C1131.473 (3)
C10—H100.9500C113—C1121.396 (3)
C11—C121.391 (4)C113—C1081.399 (3)
C11—H110.9500C112—C1111.396 (4)
C12—C131.385 (3)C112—H1120.9500
C12—H120.9500C111—C1101.390 (4)
C13—C141.471 (3)C111—H1110.9500
C14—C151.386 (3)C110—C1091.387 (4)
C14—C191.403 (3)C110—H1100.9500
C15—C161.385 (3)C109—C1081.389 (3)
C15—H150.9500C109—H1090.9500
C16—C171.390 (3)C121—C1261.390 (3)
C16—H160.9500C121—C1221.398 (3)
C17—C181.393 (3)C121—N1021.424 (3)
C17—H170.9500C126—C1251.389 (3)
C18—C191.383 (3)C126—H1260.9500
C18—H180.9500C125—C1241.388 (3)
C21—C221.394 (3)C125—H1250.9500
C21—C261.401 (3)C124—C1231.379 (3)
C26—C251.379 (3)C124—Cl101.746 (2)
C26—H260.9500C123—C1221.392 (3)
C25—C241.376 (4)C123—H1230.9500
C25—H250.9500C122—H1220.9500
C24—C231.379 (3)C141—O1421.203 (3)
C23—C221.387 (3)C141—O1431.322 (3)
C23—H230.9500C144—O1431.446 (3)
C22—H220.9500C144—H14A0.9800
C44—H44A0.9800C144—H14B0.9800
C44—H44B0.9800C144—H14C0.9800
C44—H44C0.9800N101—N1021.445 (3)
C41—O43—C44116.6 (2)N102—C103—C119114.20 (17)
C6—N1—N2110.27 (18)N102—C103—C108115.06 (19)
C6—N1—C5117.88 (18)C119—C103—C108101.85 (18)
N2—N1—C5107.94 (16)N102—C103—C104102.20 (17)
C21—N2—N1113.00 (17)C119—C103—C104114.17 (18)
C21—N2—C3120.27 (16)C108—C103—C104109.76 (16)
N1—N2—C3109.30 (16)C105—C104—C141114.95 (18)
N2—C3—C8113.97 (18)C105—C104—C103102.43 (18)
N2—C3—C19114.82 (18)C141—C104—C103113.70 (18)
C8—C3—C19102.13 (16)C105—C104—Cl20105.94 (16)
N2—C3—C4101.19 (16)C141—C104—Cl20106.55 (16)
C8—C3—C4114.57 (18)C103—C104—Cl20113.19 (14)
C19—C3—C4110.66 (18)N101—C105—C104102.49 (17)
C41—C4—C5114.7 (2)N101—C105—H10A111.3
C41—C4—C3112.36 (17)C104—C105—H10A111.3
C5—C4—C3102.27 (18)N101—C105—H10B111.3
C41—C4—Cl2109.32 (16)C104—C105—H10B111.3
C5—C4—Cl2105.85 (14)H10A—C105—H10B109.2
C3—C4—Cl2112.07 (15)N107—C106—N101173.7 (3)
N1—C5—C4102.74 (18)C118—C119—C114120.7 (2)
N1—C5—H5A111.2C118—C119—C103128.9 (2)
C4—C5—H5A111.2C114—C119—C103110.36 (18)
N1—C5—H5B111.2C119—C118—C117118.3 (2)
C4—C5—H5B111.2C119—C118—H118120.8
H5A—C5—H5B109.1C117—C118—H118120.8
N7—C6—N1172.2 (3)C116—C117—C118120.9 (2)
C9—C8—C13120.5 (2)C116—C117—H117119.6
C9—C8—C3129.95 (19)C118—C117—H117119.6
C13—C8—C3109.54 (19)C117—C116—C115121.1 (2)
C8—C9—C10118.4 (2)C117—C116—H116119.4
C8—C9—H9120.8C115—C116—H116119.4
C10—C9—H9120.8C116—C115—C114118.4 (2)
C11—C10—C9121.4 (2)C116—C115—H115120.8
C11—C10—H10119.3C114—C115—H115120.8
C9—C10—H10119.3C115—C114—C119120.6 (2)
C10—C11—C12120.6 (2)C115—C114—C113130.7 (2)
C10—C11—H11119.7C119—C114—C113108.6 (2)
C12—C11—H11119.7C112—C113—C108120.4 (2)
C13—C12—C11118.4 (2)C112—C113—C114130.5 (2)
C13—C12—H12120.8C108—C113—C114108.88 (19)
C11—C12—H12120.8C113—C112—C111118.4 (2)
C12—C13—C8120.7 (2)C113—C112—H112120.8
C12—C13—C14130.0 (2)C111—C112—H112120.8
C8—C13—C14109.22 (19)C110—C111—C112120.5 (2)
C15—C14—C19120.9 (2)C110—C111—H111119.8
C15—C14—C13130.1 (2)C112—C111—H111119.8
C19—C14—C13108.70 (18)C109—C110—C111121.4 (2)
C16—C15—C14118.6 (2)C109—C110—H110119.3
C16—C15—H15120.7C111—C110—H110119.3
C14—C15—H15120.7C110—C109—C108118.3 (2)
C15—C16—C17120.9 (2)C110—C109—H109120.9
C15—C16—H16119.6C108—C109—H109120.9
C17—C16—H16119.6C109—C108—C113121.0 (2)
C16—C17—C18120.6 (2)C109—C108—C103129.3 (2)
C16—C17—H17119.7C113—C108—C103109.70 (19)
C18—C17—H17119.7C126—C121—C122119.5 (2)
C19—C18—C17118.9 (2)C126—C121—N102119.3 (2)
C19—C18—H18120.5C122—C121—N102121.1 (2)
C17—C18—H18120.5C125—C126—C121120.7 (2)
C18—C19—C14120.15 (19)C125—C126—H126119.7
C18—C19—C3129.83 (19)C121—C126—H126119.7
C14—C19—C3109.92 (19)C124—C125—C126119.2 (2)
C22—C21—C26119.0 (2)C124—C125—H125120.4
C22—C21—N2121.51 (19)C126—C125—H125120.4
C26—C21—N2119.3 (2)C123—C124—C125120.8 (2)
C25—C26—C21120.1 (2)C123—C124—Cl10119.30 (19)
C25—C26—H26120.0C125—C124—Cl10119.92 (18)
C21—C26—H26120.0C124—C123—C122120.1 (2)
C24—C25—C26120.0 (2)C124—C123—H123120.0
C24—C25—H25120.0C122—C123—H123120.0
C26—C25—H25120.0C123—C122—C121119.7 (2)
C25—C24—C23121.1 (2)C123—C122—H122120.1
C25—C24—Cl1118.90 (18)C121—C122—H122120.1
C23—C24—Cl1119.99 (19)O142—C141—O143125.6 (2)
C24—C23—C22119.2 (2)O142—C141—C104122.9 (2)
C24—C23—H23120.4O143—C141—C104111.48 (18)
C22—C23—H23120.4O143—C144—H14A109.5
C23—C22—C21120.6 (2)O143—C144—H14B109.5
C23—C22—H22119.7H14A—C144—H14B109.5
C21—C22—H22119.7O143—C144—H14C109.5
O42—C41—O43125.1 (2)H14A—C144—H14C109.5
O42—C41—C4122.8 (2)H14B—C144—H14C109.5
O43—C41—C4112.1 (2)C106—N101—N102110.25 (17)
O43—C44—H44A109.5C106—N101—C105118.91 (19)
O43—C44—H44B109.5N102—N101—C105107.47 (17)
H44A—C44—H44B109.5C121—N102—N101113.52 (18)
O43—C44—H44C109.5C121—N102—C103120.65 (18)
H44A—C44—H44C109.5N101—N102—C103109.49 (16)
H44B—C44—H44C109.5C141—O143—C144116.39 (19)
C6—N1—N2—C2198.9 (2)N102—C103—C104—C10530.1 (2)
C5—N1—N2—C21131.06 (19)C119—C103—C104—C105153.97 (18)
C6—N1—N2—C3124.32 (19)C108—C103—C104—C10592.4 (2)
C5—N1—N2—C35.7 (2)N102—C103—C104—C141154.77 (18)
C21—N2—C3—C884.2 (2)C119—C103—C104—C14181.4 (2)
N1—N2—C3—C8142.63 (18)C108—C103—C104—C14132.2 (3)
C21—N2—C3—C1933.1 (3)N102—C103—C104—Cl2083.46 (18)
N1—N2—C3—C19100.1 (2)C119—C103—C104—Cl2040.4 (2)
C21—N2—C3—C4152.28 (19)C108—C103—C104—Cl20153.98 (16)
N1—N2—C3—C419.1 (2)C141—C104—C105—N101163.45 (19)
N2—C3—C4—C41159.53 (19)C103—C104—C105—N10139.6 (2)
C8—C3—C4—C4177.4 (2)Cl20—C104—C105—N10179.19 (18)
C19—C3—C4—C4137.4 (3)N102—C103—C119—C11847.6 (3)
N2—C3—C4—C536.0 (2)C108—C103—C119—C118172.3 (2)
C8—C3—C4—C5159.13 (18)C104—C103—C119—C11869.5 (3)
C19—C3—C4—C586.1 (2)N102—C103—C119—C114132.75 (19)
N2—C3—C4—Cl276.90 (18)C108—C103—C119—C1148.1 (2)
C8—C3—C4—Cl246.2 (2)C104—C103—C119—C114110.1 (2)
C19—C3—C4—Cl2160.97 (15)C114—C119—C118—C1171.6 (3)
C6—N1—C5—C496.6 (2)C103—C119—C118—C117178.0 (2)
N2—N1—C5—C429.1 (2)C119—C118—C117—C1160.0 (3)
C41—C4—C5—N1161.98 (17)C118—C117—C116—C1151.2 (3)
C3—C4—C5—N140.1 (2)C117—C116—C115—C1140.7 (3)
Cl2—C4—C5—N177.41 (17)C116—C115—C114—C1190.9 (3)
N2—C3—C8—C947.3 (3)C116—C115—C114—C113174.1 (2)
C19—C3—C8—C9171.8 (2)C118—C119—C114—C1152.1 (3)
C4—C3—C8—C968.6 (3)C103—C119—C114—C115177.52 (19)
N2—C3—C8—C13131.35 (19)C118—C119—C114—C113173.9 (2)
C19—C3—C8—C136.9 (2)C103—C119—C114—C1136.5 (2)
C4—C3—C8—C13112.7 (2)C115—C114—C113—C1122.4 (4)
C13—C8—C9—C102.4 (4)C119—C114—C113—C112173.1 (2)
C3—C8—C9—C10179.1 (2)C115—C114—C113—C108177.3 (2)
C8—C9—C10—C110.6 (4)C119—C114—C113—C1081.8 (2)
C9—C10—C11—C121.5 (4)C108—C113—C112—C1110.8 (3)
C10—C11—C12—C131.7 (4)C114—C113—C112—C111173.6 (2)
C11—C12—C13—C80.1 (4)C113—C112—C111—C1100.2 (4)
C11—C12—C13—C14174.7 (2)C112—C111—C110—C1090.7 (4)
C9—C8—C13—C122.1 (3)C111—C110—C109—C1080.0 (4)
C3—C8—C13—C12179.0 (2)C110—C109—C108—C1131.0 (3)
C9—C8—C13—C14173.7 (2)C110—C109—C108—C103178.0 (2)
C3—C8—C13—C145.2 (3)C112—C113—C108—C1091.5 (3)
C12—C13—C14—C153.2 (4)C114—C113—C108—C109174.0 (2)
C8—C13—C14—C15172.1 (2)C112—C113—C108—C103179.0 (2)
C12—C13—C14—C19176.2 (2)C114—C113—C108—C1033.5 (2)
C8—C13—C14—C190.9 (3)N102—C103—C108—C10946.3 (3)
C19—C14—C15—C160.2 (3)C119—C103—C108—C109170.3 (2)
C13—C14—C15—C16172.0 (2)C104—C103—C108—C10968.3 (3)
C14—C15—C16—C170.2 (4)N102—C103—C108—C113131.0 (2)
C15—C16—C17—C180.2 (4)C119—C103—C108—C1136.9 (2)
C16—C17—C18—C190.3 (4)C104—C103—C108—C113114.4 (2)
C17—C18—C19—C140.7 (3)C122—C121—C126—C1250.1 (3)
C17—C18—C19—C3176.7 (2)N102—C121—C126—C125175.64 (18)
C15—C14—C19—C180.7 (3)C121—C126—C125—C1241.2 (3)
C13—C14—C19—C18173.1 (2)C126—C125—C124—C1231.9 (3)
C15—C14—C19—C3177.4 (2)C126—C125—C124—Cl10176.69 (16)
C13—C14—C19—C33.7 (2)C125—C124—C123—C1221.4 (3)
N2—C3—C19—C1846.1 (3)Cl10—C124—C123—C122177.20 (17)
C8—C3—C19—C18170.0 (2)C124—C123—C122—C1210.2 (3)
C4—C3—C19—C1867.7 (3)C126—C121—C122—C1230.5 (3)
N2—C3—C19—C14130.2 (2)N102—C121—C122—C123175.04 (19)
C8—C3—C19—C146.4 (2)C105—C104—C141—O1428.7 (3)
C4—C3—C19—C14116.0 (2)C103—C104—C141—O142108.9 (3)
N1—N2—C21—C2215.7 (3)Cl20—C104—C141—O142125.7 (2)
C3—N2—C21—C22147.2 (2)C105—C104—C141—O143169.9 (2)
N1—N2—C21—C26169.51 (19)C103—C104—C141—O14372.5 (2)
C3—N2—C21—C2637.9 (3)Cl20—C104—C141—O14352.9 (2)
C22—C21—C26—C250.7 (3)C104—C105—N101—C10691.2 (2)
N2—C21—C26—C25175.7 (2)C104—C105—N101—N10234.8 (2)
C21—C26—C25—C240.9 (4)C126—C121—N102—N101178.80 (17)
C26—C25—C24—C230.6 (4)C122—C121—N102—N1015.7 (3)
C26—C25—C24—Cl1179.58 (19)C126—C121—N102—C10345.9 (3)
C25—C24—C23—C220.0 (4)C122—C121—N102—C103138.6 (2)
Cl1—C24—C23—C22179.04 (19)C106—N101—N102—C121106.5 (2)
C24—C23—C22—C210.2 (4)C105—N101—N102—C121122.51 (19)
C26—C21—C22—C230.2 (3)C106—N101—N102—C103115.5 (2)
N2—C21—C22—C23175.0 (2)C105—N101—N102—C10315.5 (2)
C44—O43—C41—O422.3 (3)C119—C103—N102—C12191.9 (2)
C44—O43—C41—C4179.93 (19)C108—C103—N102—C12125.4 (3)
C5—C4—C41—O4213.6 (3)C104—C103—N102—C121144.28 (18)
C3—C4—C41—O42102.6 (3)C119—C103—N102—N101133.52 (19)
Cl2—C4—C41—O42132.3 (2)C108—C103—N102—N101109.2 (2)
C5—C4—C41—O43168.66 (19)C104—C103—N102—N1019.7 (2)
C3—C4—C41—O4375.1 (2)O142—C141—O143—C1447.2 (4)
Cl2—C4—C41—O4350.0 (2)C104—C141—O143—C144171.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···N1070.992.513.459 (3)160
C23—H23···O142i0.952.573.502 (3)166
C25—H25···Cg2ii0.952.503.400 (2)158
C44—H44A···Cl1iii0.982.773.425 (3)125
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.

Experimental details

(IV)(V)
Crystal data
Chemical formulaC27H22ClN3C24H17Cl2N3O2
Mr423.93450.31
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)173120
a, b, c (Å)9.0914 (9), 12.6225 (9), 18.5025 (17)11.1818 (5), 13.2534 (4), 28.1265 (11)
β (°) 94.576 (8) 96.363 (3)
V3)2116.5 (3)4142.6 (3)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.200.34
Crystal size (mm)0.35 × 0.15 × 0.100.37 × 0.37 × 0.08
Data collection
DiffractometerStoe IPDSII image-plateStoe IPDSII image-plate
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17870, 5071, 3437 23396, 7295, 4866
Rint0.0460.045
(sin θ/λ)max1)0.6600.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.081, 0.85 0.036, 0.079, 1.02
No. of reflections50717295
No. of parameters280559
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.300.84, 0.41

Computer programs: X-AREA (Stoe & Cie, 2000), SHELXS86 (Sheldrick, 1990), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N7i0.932.653.418 (1)141
C42—H42B···Cg1ii0.972.743.484 (2)134
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···N1070.992.513.459 (3)160
C23—H23···O142i0.952.573.502 (3)166
C25—H25···Cg2ii0.952.503.400 (2)158
C44—H44A···Cl1iii0.982.773.425 (3)125
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds