Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of five metal complexes containing the 4-oxo-4H-pyran-2,6-dicarboxyl­ate dianion illustrate the remarkable coordinating versatility of this ligand and the great structural diversity of its complexes. In tetra­aqua­beryllium 4-oxo-4H-pyran-2,6-dicarboxyl­ate, [Be(H2O)4](C7H2O6), (I), the ions are linked by eight independent O—H...O hydrogen bonds to form a three-dimensional hydrogen-bonded framework structure. Each of the ions in hydrazinium(2+) diaqua­(4-oxo-4H-­pyran-2,6-dicarboxyl­ato)calcate, (N2H6)[Ca(C7H2O6)2(H2O)2], (II), lies on a twofold rotation axis in the space group P2/c; the anions form hydrogen-bonded sheets which are linked into a three-dimensional framework by the cations. In bis­(μ-4-oxo-4H-pyran-2,6-dicarboxyl­ato)bis­[tetraaquamanganese(II)] tetra­hydrate, [Mn2(C7H2O6)2(H2O)8]·4H2O, (III), the metal ions and the organic ligands form a cyclic centrosymmetric Mn2(C7H2O6)2 unit, and these units are linked into a complex three-dimensional framework structure containing 12 independent O—H...O hydrogen bonds. There are two independent CuII ions in tetra­aqua­(4-oxo-4H-pyran-2,6-dicarboxyl­ato)­copper(II), [Cu(C7H2O6)(H2O)4], (IV), and both lie on centres of inversion in the space group P\overline{1}; the metal ions and the organic ligands form a one-dimensional coordination polymer, and the polymer chains are linked into a three-dimensional framework containing eight independent O—H...O hydrogen bonds. Diaqua­(4-oxo-4H-pyran-2,6-dicarboxyl­ato)cadmium monohydrate, [Cd(C7H2O6)(H2O)2]·H2O, (V), forms a three-dimensional coordination polymer in which the organic ligand is coordinated to four different Cd sites, and this polymer is inter­woven with a complex three-dimensional framework built from O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010701459X/ln3043sup1.cif
Contains datablocks global, I, II, III, IV, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010701459X/ln3043Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010701459X/ln3043IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010701459X/ln3043IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010701459X/ln3043IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010701459X/ln3043Vsup6.hkl
Contains datablock V

CCDC references: 649070; 649071; 649072; 649073; 649074

Comment top

4-Oxo-4H-pyran-2,6-dicarboxylic acid (chelidonic acid), (A), is one of the constituents of the greater celandine Chelidonium majus, which exhibits a wide range of therapeutic properties (Chevallier, 1996). It is also an inhibitor of dihydrodipicolinate synthase, a key enzyme in the biosynthesis of lysine via the diaminopimelate pathway (Borthwick et al., 1995). A pKa of about 2.4 for both carboxyl groups (Miyamoto & Brochmann-Hanssen, 1962) makes it a very effective chelating agent at physiological pH. However, while a number of metal complexes formed by the closely-related 4-oxo-1,4-dihydropyridine-2,6-dicarboxylic acid (chelidamic acid), (B), have been structurally characterized (Devereux et al., 2002; Burnett et al., 2003; Zhou et al., 2004; Cui et al., 2006; Gao et al., 2006), very few complexes derived from 4-oxo-4H-pyran-2,6-dicarboxylic acid have been structurally characterized. In pentaaqua(4-oxo-4H-pyran-2,6-dicarboxylato)copper(II) monohydrate, the organic ligand is coordinated to the Cu via the ketonic O atom only and the coordination polyhedron around Cu is completed by five water ligands. The carboxylate groups do not coordinate to Cu, but they participate in a complex hydrogen-bonding scheme which generates a three-dimensional framework structure (Manojlović-Muir et al., 1999). In the dicyclohexylammonium salt of tributyl(4-oxo-4H-pyran-2,6-dicarboxylato)stannate(IV), the 4-oxo-4H-pyran-2,6-dicarboxylato dianion acts as a bridging ligand, via two different carboxylate groups, between planar tributyltin(IV) units, so forming a chain polymer (Ng et al., 2000).

With this in mind, we report here the molecular and supramolecular structures of five metal complexes derived from 4-oxo-4H-pyran-2,6-dicarboxylic acid, namely tetraaquaberyllium 4-oxo-4H-pyran-2,6-dicarboxylate, (I), hydrazinium(2+) diaqua(4-oxo-4H-pyran-2,6-dicarboxylato)calcate, (II), tetraaqua(4-oxo-4H-pyran-2,6-dicarboxylato)manganese(II) dihydrate, (III), tetraaqua(4-oxo-4H-pyran-2,6-dicarboxylato)copper(II), (IV), and diaqua(4-oxo-4H-pyran-2,6-dicarboxylato)cadmium monohydrate, (V). Complexes (I), (III) and (V) were prepared straightforwardly by the reactions, in aqueous solution, of 4-oxo-4H-pyran-2,6-dicarboxylic acid with beryllium sulfate tetrahydrate, manganese(II) acetate and cadmium nitrate, respectively. Complex (IV) was similarly prepared using basic copper carbonate. Attempts to prepare the simple hydrazinium salt by a similar type of reaction consistently yielded only polycrystalline material when conducted in doubly distilled water, but the same procedure in singly distilled water unexpectedly gave the anionic complex, (II), where the calcium component has presumably arisen from the water employed. Attempts to isolate crystals of this material from solutions containing hydrazine, calcium nitrate and 4-oxo-4H-pyran-2,6-dicarboxylic acid have been uniformly unsuccessful: polycrystalline samples of (II) have been readily obtained in this manner, in yields of around 65–70%, but no crystals suitable for single-crystal X-ray diffraction have been obtained by this route.

In each of compounds (I)–(V), the organic component is present in dianionic form, C7H2O62-. This entity occurs as isolated ions in compound (I), which is a hydrated salt in which the metal is present as a simple aqua ion, thus [Be(H2O)4]2+·C7H2O62- (Fig. 1). In each of the coordination compounds (II)–(V), the 4-oxo-4H-pyran-2,6-dicarboxylate anion acts as a ligand towards the metal, and the coordination complexes are neutral in the cases of compounds (III)–(V) and anionic in compound (II). Compound (II) contains isolated mononuclear anions (Fig. 2), compound (III) contains isolated dimers which are neutral and centrosymmetric (Fig. 3), while both (IV) and (V) (Figs. 4 and 5) form coordination polymers, which are one-dimensional in the case of (IV) and three-dimensional in the case of (V). In all compounds, there is an extensive series of hydrogen bonds which link the metal-containing species. We note in particular here the contrast between the coordination polymer formed in the tetrahydrate, (IV), and the isolated mononuclear complexes formed in the corresponding hexahydrate (Manojlović-Muir et al., 1999).

In compound (II), the 4-oxo-4H-pyran-2,6-dicarboxylate anion acts as a tridentate ligand to the Ca2+ cation, coordinating via a pair of carboxylate O atoms and also via the ring O atom (Fig. 2). In each of compounds (III) and (IV), the organic anion acts as a bidentate ligand bridging a pair of metal centres. However, in the Mn complex, (III), the anion utilizes two O atoms from a single carboxylate group acting as donor to a pair of symmetry-related MnII cations, and the resulting aggregate is centrosymmetric (Fig. 3). By contrast, in the Cu complex, (IV), the anion utilizes one O atom from each carboxylate group as donors to two independent CuII cations, each of which lies on a centre of inversion (Fig. 4). Finally, in the Cd complex, (V), the organic ligand utilizes three carboxylate O atoms and the ketonic O atom as donors to four different Cd atoms (Fig. 5).

The bond lengths within the organic ligands are remarkably constant across the series (I)–(V). The C—O distances in the carboxylate groups are fully consistent with complete ionization in every case. The metal—O distances present only a few unexpected values. In the Ca complex, (II), the distance to the ring O atom [2.6231 (12) Å] is significantly longer than the distances [2.4002 (13) and 2.4314 (13) Å] to the adjacent carboxylate O atoms, purely for geometric reasons. In the Cd complex, (V), the Cd—O(carboxylate) distances range from 2.242 (3) to 2.3284 (19) Å, with the distances to the water O atoms both within this range, but the distance to the ketonic O atom is significantly longer, at 2.419 (3) Å. The most striking distances occur for the CuII complex, (IV), where the six-coordination of the two independent CuII cations is subject to Jahn–Teller distortion giving, for both ions, the typical (4 + 2) coordination having local D4h (4/mmm) point symmtry, with the two axial distances significantly longer than the four equatorial distances. However, for atom Cu1, the two axial sites are occupied by a pair of water molecules, while for atom Cu2, these sites are occupied by a pair of carboxylate ligands (Table 4).

The supramolecular structures of compounds (I)–(V) are all three-dimensional. In compounds (I)–(III), the three-dimensional frameworks are all built entirely from hydrogen bonds. Compound (IV) forms a one-dimensional polymer chain, and these chains are linked into a three-dimensional structure by hydrogen bonds, while compound (V) consists of the three-dimensional coordination polymer interwoven with a three-dimensional hydrogen-bonded framework.

Within the selected asymmetric unit of the hydrated salt, (I) (Fig. 1), the cation is linked to the anion by two nearly linear O—H···O hydrogen bonds (Table 1), where both acceptors are in the same carboxylate group. Ion pairs of this type are linked by six further O—H···O hydrogen bonds into a three-dimensional framework structure, whose formation is readily analysed in terms of simple sub-structures. The cation at (x, y, z) acts as hydrogen-bond donor via atom O11 to atom O61 in the anion at (1/2 - x, 1/2 + y, 3/2 - z), via atom O13 to atoms O21 and O61 in the anion at (3/2 - x, 1/2 + y, 3/2 - z), and via atom O14 to atom O62 in the anion at (1 + x, 1 + y, z), resulting in the formation of a complex sheet parallel to (001) generated by the 21 screw axes at z = 3/4 (Fig. 6). Successive (001) sheets are linked by two further hydrogen bonds. The cation at (x, y, z) is linked via atoms O12 and O14, respectively, to atoms O4 in the anions at (2 - x, 1 - y, 1 - z) and (1 - x, 1 - y, 1 - z), both of which lie in the (001) sheet generated by the 21 screw axes at y = 1/4. These two interactions together form a chain of alternating R44(18) (Bernstein et al., 1995) and R44(22) rings (Fig. 7), whose propagation by the space group thus links each (001) sheet to the two adjacent sheets. Hence, all of the component ions are linked into a single three-dimensional structure.

In the salt (II), N2H62+·[Ca(C7H2O6)2(H2O)2]2-, the Ca atom forms part of an isolated anion, which lies across a twofold rotation axis in space group P2/c. The hydrazinium cation likewise lies across a twofold axis. A combination of O—H···O and N—H···O hydrogen bonds (Table 2) links the component ions into a three-dimensional framework, but it is possible to identify a two-dimensional sub-structure built from anions only. The water atoms O2 at (x, y, z) and (1 - x, y, 1/2 - z) are components of the reference anion across the axis (1/2, y, 1/4). These two atoms act as hydrogen-bond donors via atom H2A to the ketonic atoms O4 at (1 - x, 2 - y, -z) and (x, 2 - y, 1/2 + z), respectively, which lie in the anions across (1/2, -y, 1/4) and (1/2, -y, 3/4), respectively. Similarly, the water atoms O2 at (x, y, z) and (1 - x, y, 1/2 - z) act as hydrogen-bond donors via atom H2B to the carboxylate atoms O22 at (-1 + x, y, z) and (2 - x, y, 1/2 - z), which form parts of the anions across (-1/2, y, 1/4) and (3/2, y, 1/4), respectively. Propagation of these two hydrogen bonds by translation, rotation and inversion then generates a sheet of anions lying parallel to (010) and containing three types of ring (Fig. 8). A single sheet of this type passes through each unit cell. The hydrazinium cations lie within one of the larger rings, and each cation forms six N—H···O hydrogen bonds, four of which (involving atoms H3A and H3B) lie within the reference (010) sheet, while the other two, involving atom H3C, serve to link the reference sheet to the two adjacent sheets, so linking all of the ions into a single three-dimensional framework.

The 4-oxo-4H-pyran-2,6-dicarboxylate ligand in the MnII complex, (III), acts as a bridging ligand between two symmetrically related metal centres, thereby forming a cyclic centrosymmetric aggregate containing an R24(8) (Starbuck et al., 1999) ring (Fig. 3), located for the sake of convenience across (1/2, 1/2, 1/2). The four water molecules coordinated to the metal form three internal O—H···O hydrogen bonds, one to a carboxylate O atom and the other two to the uncoordinated water molecules. In addition, the non-coordinated water atom O15 at (x, y, z) forms an internal hydrogen bond to the coordinated water atom O12 at (1 - x, 1 - y, 1 - z). In each dimeric aggregate, therefore, there are 16 O—H bonds available for the formation of hydrogen bonds between the aggregates (Table 3), and these link the metal complexes into a three-dimensional framework structure of considerable complexity. However, the three-dimensional nature of the supramolecular structure can be readily demonstrated using just four of the independent hydrogen bonds between the aggregates, which give rise to three simple one-dimensional sub-structures. In the first of these sub-structures, water atom O12 at (x, y, z) acts as hydrogen-bond donor, via atom H12A, to ketonic atom O4 at (x, y, -1 + z), so generating by translation a molecular ladder running parallel to the [001] direction, in which the uprights are formed by an antiparallel pair of C(8) chains, while the rungs of the ladder contain the R24(8) rings (Fig. 9). In addition, atom O12 at (x, y, z) also acts as donor to atom O4 at (1 - x, 2 - y, 1 - z), this time via atom H12B, and propagation of this interaction by inversion generates a chain of fused rings running parallel to the [010] direction (Fig. 10). Finally, water atoms O13 and O14 at (x, y, z) act as donors to, respectively, carboxylate atoms O61 and O62 at (-1 + x, 1 + y, -1 + z), so generating by translation a chain of fused rings running parallel to the [111] direction (Fig. 11). The combination of these [001], [010] and [111] chains suffices to generate a three-dimensional framework, whose structure is rendered considerably more complex by further hydrogen bonds involving both coordinated and non-coordinated water molecules (Table 3).

The two independent CuII ions in compound (IV) both lie on centres of inversion in space group P1, selected as those at (0, 0, 1/2) for Cu1 and (1/2, 0, 0) for Cu2. The 4-oxo-4H-pyran-2,6-dicarboxylate ligand lies in a general position, bridging the two Cu ions via a pair of carboxylate O atoms (Fig. 4). The action of the two independent inversion centres then generates a coordination polymer chain of alternating cations and anions, running parallel to the [101] direction (Fig. 12). The role of the 4-oxo-4H-pyran-2,6-dicarboxylate ligand in (IV) is thus similar to that in the polymer formed with tributyltin(IV) units (Ng et al., 2000), although in that instance the coordination polymer is anionic, whereas in (IV) it is neutral.

The coordination polymer chains are linked into a complex three-dimensional framework by no fewer than eight independent O—H···O hydrogen bonds (Table 5), but the three-dimensional nature of the supramolecular structure can most simply be demonstrated in terms of two one-dimensional hydrogen-bonded sub-structures involving just three of the hydrogen bonds. In the first of these sub-structures, water atom O1B at (x, y, z) acts as hydrogen-bond donor, via atom H12B, to ketonic atom O4 at (x, -1 + y, z), and propagation of this interaction by translation and inversion generates a chain of spiro-fused R46(18) rings running parallel to the [010] direction (Fig. 13). In the second hydrogen-bonded sub-structure, water atoms O2A and O2B at (x, y, z) act as donors to, respectively, atoms O62 and O61 at (-1 + x, y, z). Propagation of these interactions by translation and inversion then generates a complex chain of R44(8) and R46(8) rings running parallel to the [100] direction (Fig. 14). The combination of these [100], [010] and [101] chains is sufficient to generate a three-dimensional framework, with further complexity generated by the remaining hydrogen bonds.

Compound (V) is a coordination compound, [Cd(C7H2O6)(H2O)2]·H2O (Fig. 5), in which the Cd centre is coordinated by two water molecules, occupying cis sites, and four O atoms, one of them a ketonic O atom and three of them from carboxylate groups, which themselves form parts of four different anionic ligands. The six-coordination of the Cd ion is markedly distorted from regular octahedral. The third water molecule is not coordinated to the Cd ion, but instead forms hydrogen bonds to O atoms in three different anions via one two-centre O—H···O interaction and one three-centre O—H···(O)2 interaction (Table 6).

The Cd cations and the anions together form a three-dimensional coordination polymer, whose formation is very easily analysed in terms of two simple sub-structures, namely a two-dimensional sub-structure involving only carboxylate coordination and a one-dimensional sub-structure based on the coordination of the ketonic O atom to the Cd ion. The reference Cd ion at (x, y, z) is coordinated not only by atom O21 at (x, y, z), but also by atoms O61 and O62 in the anions at (x, 1 + y, z) and (-1 + x, 1 + y, z), respectively, and these interactions together generate a sheet parallel to (001) which takes the form of a (4,4) net (Batten & Robson, 1998) (Fig. 15). In the second sub-structure, the reference Cd ion is coordinated by ketonic atom O4 in the anion at (-1 + x, y, -1 + z), so forming a C(7) chain (Starbuck et al., 1999) running parallel to the [101] direction (Fig. 16). The combination of these [101] chains and (001) sheets suffices to generate a single three-dimensional coordination polymer.

In addition, the polymer framework is reinforced by an extensive series of hydrogen bonds (Table 6). These individually form chains parallel to [100], [010], [101], [201], [011] and [111], and their combination thereby forms a very complex three-dimensional hydrogen-bonded framework interwoven with the coordination polymer framework.

The range of the structures reported here, together with those reported previously (Manojlović-Muir et al., 1999, Ng et al., 2000), indicates the remarkably versatile coordination behaviour of the 4-oxo-4H-pyran-2,6-dicarboxylate dianion, which has led here to the characterization of cationic, neutral and anionic complexes, encompassing finite coordination species, both mononuclear and binuclear, as well as one- and three-dimensional coordination polymers.

Related literature top

For related literature, see: Batten & Robson (1998); Bernstein et al. (1995); Borthwick et al. (1995); Burnett et al. (2003); Chevallier (1996); Cui et al. (2006); Devereux et al. (2002); Flack (1983); Gao et al. (2006); Manojlović-Muir, Muir, Campbell, McKendrick & Robins (1999); Miyamoto & Brochmann-Hanssen (1962); Ng et al. (2000); Starbuck et al. (1999); Zhou et al. (2004).

Experimental top

For the synthesis of compound (I), equimolar quantities (1 mmol of each component) of beryllium sulfate tetrahydrate and 4-oxo-4H-pyran-2,6-dicarboxylic acid were dissolved in doubly distilled water (20 ml). Slow evaporation at ambient temperature yielded, after 19 d, pale-yellow prismatic crystals of (I) (yield 94%). Analysis for (I), found: C 32.0, H 3.8%; C7H10BeO10 requires: C 31.9, H 3.8%.

Compound (II) was unexpectedly obtained from the reaction between equimolar quantities (1 mmol of each component) of hydrazine hydrate and 4-oxo-4H-pyran-2,6-dicarboxylic acid in singly distilled water, followed by slow evaporation. Analysis for (II), found: C 36.0, H 2.9, N 5.8%; C14H8CaN2O14 requires: C 35.4, H 3.0, N 5.9%; IR (KBr, ν, cm-1): 3460, 3299, 3064, 1616, 1402, 1349, 1109.

For the synthesis of compound (III), a solution of manganese(II) acetate (1 mmol in 5 ml of water) was added to a solution of 4-oxo-4H-pyran-2,6-dicarboxylic acid (1 mmol in 15 ml of water). Slow evaporation at ambient temperature gave, after 12 d, yellow rhomboid crystals of (III) (yield 53%). Analysis for (III), found: C 26.0, H 3.0%; C7H14MnO12 requires: C 24.4, H 4.1%.

Compound (IV) was prepared by the portionwise addition of basic copper(II) carbonate (1 mmol, as a solid) to a hot (ca 350 K) solution of 4-oxo-4H-pyran-2,6-dicarboxylic acid (2 mmol in 40 ml of water). The solution was filtered hot and then allowed to cool to ambient temperature, when slow evaporation gave pale-green crystals of (IV) after 12 d (yield 80%). Analysis for (IV), found: C 26.1, H 3.2%; C7H10CuO10 requires: C 26.5, H 3.2%.

For the synthesis of compound (V), aqueous solutions of cadmium nitrate (1 mmol in 5 ml of water) and 4-oxo-4H-pyran-2,6-dicarboxylic acid (1 mmol in 15 ml of water) were mixed at ambient temperature. Subsequent slow evaporation at ambient temperature yielded, after 8 d, pale-yellow rhomboid crystals of (V) (yield 79%). Analysis for (V), found: C 24.4, H 2.1%; C7H8CdO9 requires: C 24.15, H 2.3%.

In every case, the crystals were collected by filtration and then washed with ice-cold water (ca 5 ml) prior to analysis.

Refinement top

For compound (I), the space group P21/n was uniquely assigned from the systematic absences. For compound (II), the systematic absences permitted Pc and P2/c as possible space groups; P2/c was selected, and confirmed by the successful structure analysis. Crystals of compounds (III)–(V) are all triclinic. The space group P1 was selected for compounds (III) and (IV), and P1 was selected for compound (V), and these selections were all confirmed by the subsequent structure analyses. All H atoms were located in difference maps and then treated as riding atoms. H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). H atoms bonded to N or O atoms were permitted to ride at the locations deduced from the difference maps, giving N—H = 0.88–0.96 Å and O—H = 0.82–0.94 Å, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). The correct absolute configuration of the structure of compound (V) in the crystal selected for data collection was established by means of the Flack parameter (Flack, 1983).

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent ionic components of compound (I), showing the atom-numbering scheme and the two hydrogen bonds (dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The independent ionic components of compound (II), showing the atom-labelling scheme and the hydrogen bond (dashed line) between the ions in the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled with the suffix a or b are at the symmetry positions (1 - x, y, 1/2 - z) and (-x, y, 1/2 - z), respectively.
[Figure 3] Fig. 3. The dimeric aggregate in compound (III) and the two independent non-coordinated water molecules, showing the atom-labelling scheme and the hydrogen bonds (dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled with the suffix a are at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 4] Fig. 4. The independent components of compound (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled with the suffix a or b are at the symmetry positions (-x, -y, 1 - z) and (1 - x, -y, -z), respectively.
[Figure 5] Fig. 5. The independent components of compound (V), showing the atom-labelling scheme, the hydrogen bond (dashed line) within the selected asymmetric unit and the distorted octahedral coordination of the Cd atom. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled with the suffix a, b or d are at the symmetry positions (-1 + x, y, -1 + z), (-1 + x, 1 + y, z) and (x, 1 + y, z), respectively.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded sheet parallel to (001). For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (I), showing the formation of the hydrogen-bonded chain of rings which links adjacent (001) sheets. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded sheet of anions. For the sake of clarity, the cations and H atoms bonded to C atoms have been omitted.
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded molecular ladder along [001]. For the sake of clarity, non-coordinated water molecules and H atoms bonded to C atoms have been omitted.
[Figure 10] Fig. 10. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded chain of fused rings along [010]. For the sake of clarity, non-coordinated water molecules and H atoms bonded to C atoms have been omitted.
[Figure 11] Fig. 11. A stereoview of part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded chain of fused rings along [111]. For the sake of clarity, non-coordinated water molecules and H atoms bonded to C atoms have been omitted.
[Figure 12] Fig. 12. Part of the crystal structure of compound (IV), showing the formation of a chain of alternating cations and anions along [101]. For the sake of clarity, the water molecules and H atoms bonded to C atoms have all been omitted. O atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (-x, -y, 1 - z), (1 - x, -y, -z), (1 + x, y, -1 + z) and (-1 + x, y, 1 + z), respectively. Atoms Cu1# and Cu1& are at ((1, 0, -1/2) and (-1, 0, 3/2), respectively, and atoms Cu2* and Cu2$ are at (-1/2, 0, 1) and (3/2, 0, 01), respectively.
[Figure 13] Fig. 13. A stereoview of part of the crystal structure of compound (IV), showing the formation of a hydrogen-bonded chain of spiro-fused rings along [010]. For the sake of clarity, atom Cu2, three of the water molecules, and H atoms bonded to C atoms, have been omitted.
[Figure 14] Fig. 14. A stereoview of part of the crystal structure of compound (IV), showing the formation of a hydrogen-bonded chain of fused rings along [100]. For the sake of clarity, atom Cu1, two of the water molecules, and H atoms bonded to C atoms, have been omitted.
[Figure 15] Fig. 15. A stereoview of part of the crystal structure of compound (V), showing the formation of a coordination polymer sheet parallel to (001). For the sake of clarity, the water molecules and H atoms bonded to C atoms have been omitted.
[Figure 16] Fig. 16. Part of the crystal structure of compound (V), showing the formation of a coordination polymer chain along [101]. For the sake of clarity, the water molecules and H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-1 + x, y, -1 + z) and (1 + x, y, 1 + z), respectively.
(I) tetraaquaberyllium 4-oxo-4H-pyran-2,6-dicarboxylate top
Crystal data top
[Be(H2O)4](C7H2O6)F(000) = 544
Mr = 263.16Dx = 1.594 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2504 reflections
a = 5.4331 (2) Åθ = 3.7–27.5°
b = 10.6173 (4) ŵ = 0.15 mm1
c = 19.1890 (5) ÅT = 120 K
β = 97.771 (2)°Block, colourless
V = 1096.75 (6) Å30.28 × 0.24 × 0.11 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2504 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.7°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.968, Tmax = 0.984l = 2424
11511 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.5571P]
where P = (Fo2 + 2Fc2)/3
2504 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Be(H2O)4](C7H2O6)V = 1096.75 (6) Å3
Mr = 263.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4331 (2) ŵ = 0.15 mm1
b = 10.6173 (4) ÅT = 120 K
c = 19.1890 (5) Å0.28 × 0.24 × 0.11 mm
β = 97.771 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2504 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2180 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.984Rint = 0.034
11511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.15Δρmax = 0.37 e Å3
2504 reflectionsΔρmin = 0.34 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Be10.9267 (4)0.82639 (19)0.70311 (10)0.0159 (4)
O110.7690 (2)0.72233 (11)0.73958 (6)0.0207 (3)
O121.0599 (2)0.74678 (11)0.64721 (6)0.0232 (3)
O131.1337 (2)0.89899 (10)0.75675 (5)0.0166 (2)
O140.7441 (2)0.93860 (11)0.66807 (6)0.0181 (3)
O10.40311 (19)0.33307 (10)0.60011 (5)0.0150 (2)
C20.5898 (3)0.38121 (14)0.56826 (7)0.0135 (3)
C210.7056 (3)0.49728 (14)0.60615 (8)0.0158 (3)
O210.6151 (2)0.53141 (11)0.65993 (6)0.0219 (3)
O220.8768 (2)0.54817 (11)0.57978 (6)0.0226 (3)
C30.6627 (3)0.33029 (14)0.51029 (8)0.0141 (3)
C40.5414 (3)0.21854 (14)0.47974 (7)0.0147 (3)
O40.6024 (2)0.16676 (11)0.42565 (6)0.0187 (3)
C50.3443 (3)0.16948 (15)0.51547 (8)0.0150 (3)
C60.2847 (3)0.22814 (14)0.57311 (8)0.0136 (3)
C610.0816 (3)0.18509 (15)0.61493 (8)0.0146 (3)
O610.0470 (2)0.24956 (11)0.66770 (6)0.0185 (3)
O620.0342 (2)0.08964 (11)0.59166 (6)0.0202 (3)
H11A0.71540.65950.71300.031*
H11B0.67940.73670.77750.031*
H12A0.99880.68010.62560.035*
H12B1.16780.78100.62170.035*
H13A1.06640.94490.78740.025*
H13B1.23870.85360.78640.025*
H14A0.62440.91460.63430.027*
H14B0.82450.99790.63910.027*
H30.79380.36780.48950.017*
H50.25680.09590.49830.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Be10.0188 (9)0.0161 (9)0.0141 (8)0.0038 (7)0.0062 (7)0.0015 (7)
O110.0274 (6)0.0155 (6)0.0223 (6)0.0064 (5)0.0145 (5)0.0056 (4)
O120.0284 (6)0.0202 (6)0.0248 (6)0.0122 (5)0.0169 (5)0.0102 (5)
O130.0183 (5)0.0173 (6)0.0144 (5)0.0013 (4)0.0034 (4)0.0018 (4)
O140.0183 (5)0.0186 (6)0.0170 (5)0.0056 (4)0.0013 (4)0.0009 (4)
O10.0164 (5)0.0148 (5)0.0149 (5)0.0041 (4)0.0064 (4)0.0021 (4)
C20.0126 (7)0.0140 (7)0.0141 (7)0.0021 (5)0.0020 (5)0.0026 (6)
C210.0193 (7)0.0135 (7)0.0150 (7)0.0014 (6)0.0032 (6)0.0003 (6)
O210.0304 (6)0.0180 (6)0.0198 (6)0.0085 (5)0.0127 (5)0.0058 (4)
O220.0254 (6)0.0205 (6)0.0241 (6)0.0109 (5)0.0116 (5)0.0065 (5)
C30.0140 (7)0.0148 (7)0.0139 (7)0.0030 (5)0.0030 (5)0.0017 (5)
C40.0145 (7)0.0170 (7)0.0127 (7)0.0007 (6)0.0027 (5)0.0002 (6)
O40.0188 (6)0.0220 (6)0.0166 (5)0.0063 (4)0.0073 (4)0.0064 (4)
C50.0146 (7)0.0155 (7)0.0153 (7)0.0036 (6)0.0033 (5)0.0003 (6)
C60.0134 (7)0.0124 (7)0.0152 (7)0.0022 (5)0.0022 (5)0.0017 (5)
C610.0135 (7)0.0166 (7)0.0140 (7)0.0000 (5)0.0033 (5)0.0033 (5)
O610.0178 (5)0.0218 (6)0.0174 (5)0.0033 (4)0.0072 (4)0.0021 (4)
O620.0205 (6)0.0201 (6)0.0210 (6)0.0079 (5)0.0065 (4)0.0003 (4)
Geometric parameters (Å, º) top
Be1—O121.612 (2)C2—C31.344 (2)
Be1—O131.614 (2)C2—C211.523 (2)
Be1—O111.614 (2)C21—O221.2413 (18)
Be1—O141.636 (2)C21—O211.2549 (18)
O11—H11A0.8652C3—C41.443 (2)
O11—H11B0.9418C3—H30.95
O12—H12A0.8635C4—O41.2579 (18)
O12—H12B0.8908C4—C51.445 (2)
O13—H13A0.8802C5—C61.347 (2)
O13—H13B0.8906C5—H50.95
O14—H14A0.8911C6—C611.520 (2)
O14—H14B0.9810C61—O621.2437 (19)
O1—C21.3535 (17)C61—O611.2572 (19)
O1—C61.3540 (18)
O12—Be1—O13109.76 (13)C3—C2—C21124.90 (13)
O12—Be1—O11104.00 (13)O1—C2—C21112.10 (12)
O13—Be1—O11114.53 (13)O22—C21—O21127.43 (14)
O12—Be1—O14114.22 (13)O22—C21—C2116.19 (13)
O13—Be1—O14104.24 (12)O21—C21—C2116.37 (13)
O11—Be1—O14110.41 (13)C2—C3—C4119.86 (13)
Be1—O11—H11A115.4C2—C3—H3120.1
Be1—O11—H11B125.8C4—C3—H3120.1
H11A—O11—H11B114.3O4—C4—C3122.54 (13)
Be1—O12—H12A124.9O4—C4—C5121.93 (14)
Be1—O12—H12B122.7C3—C4—C5115.53 (13)
H12A—O12—H12B108.0C6—C5—C4119.95 (14)
Be1—O13—H13A111.9C6—C5—H5120.0
Be1—O13—H13B118.6C4—C5—H5120.0
H13A—O13—H13B99.3C5—C6—O1122.70 (13)
Be1—O14—H14A115.7C5—C6—C61124.55 (13)
Be1—O14—H14B114.1O1—C6—C61112.75 (12)
H14A—O14—H14B96.2O62—C61—O61127.53 (14)
C2—O1—C6118.96 (12)O62—C61—C6115.08 (13)
C3—C2—O1123.00 (13)O61—C61—C6117.38 (13)
C6—O1—C2—C30.6 (2)O4—C4—C5—C6179.82 (14)
C6—O1—C2—C21178.87 (12)C3—C4—C5—C60.2 (2)
C3—C2—C21—O221.3 (2)C4—C5—C6—O10.2 (2)
O1—C2—C21—O22179.20 (13)C4—C5—C6—C61179.90 (13)
C3—C2—C21—O21179.51 (14)C2—O1—C6—C50.2 (2)
O1—C2—C21—O210.02 (19)C2—O1—C6—C61179.50 (12)
O1—C2—C3—C40.6 (2)C5—C6—C61—O621.0 (2)
C21—C2—C3—C4178.87 (13)O1—C6—C61—O62179.29 (12)
C2—C3—C4—O4179.82 (14)C5—C6—C61—O61179.98 (14)
C2—C3—C4—C50.1 (2)O1—C6—C61—O610.28 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O210.861.742.6073 (16)179
O11—H11B···O61i0.941.732.6501 (16)165
O12—H12A···O220.861.742.6003 (16)178
O12—H12B···O4ii0.891.732.6187 (16)174
O13—H13A···O21iii0.881.762.6353 (15)171
O13—H13B···O61iii0.891.752.6360 (15)170
O14—H14A···O4iv0.891.792.6672 (16)168
O14—H14B···O62v0.981.602.5788 (16)177
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z.
(II) hydrazinium(2+) diaqua(4-oxo-4H-pyran-2,6-dicarboxylato)calcate top
Crystal data top
(N2H6)[Ca(C7H2O6)2(H2O)2]F(000) = 488
Mr = 474.35Dx = 1.843 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 1953 reflections
a = 6.4669 (2) Åθ = 3.1–27.5°
b = 7.0797 (3) ŵ = 0.46 mm1
c = 18.8278 (6) ÅT = 120 K
β = 97.372 (2)°Lath, yellow
V = 854.88 (5) Å30.26 × 0.18 × 0.08 mm
Z = 2
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1953 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 87
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.909, Tmax = 0.964l = 2424
9031 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.060P)2 + 0.7277P]
where P = (Fo2 + 2Fc2)/3
1953 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
(N2H6)[Ca(C7H2O6)2(H2O)2]V = 854.88 (5) Å3
Mr = 474.35Z = 2
Monoclinic, P2/cMo Kα radiation
a = 6.4669 (2) ŵ = 0.46 mm1
b = 7.0797 (3) ÅT = 120 K
c = 18.8278 (6) Å0.26 × 0.18 × 0.08 mm
β = 97.372 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1953 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1876 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.964Rint = 0.030
9031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.20Δρmax = 0.68 e Å3
1953 reflectionsΔρmin = 0.54 e Å3
141 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.50000.85706 (7)0.25000.01039 (17)
O10.51583 (19)0.74693 (18)0.11779 (6)0.0101 (3)
C20.6593 (3)0.8198 (2)0.07852 (9)0.0096 (3)
C210.8291 (3)0.9236 (3)0.12590 (9)0.0118 (3)
O210.7934 (2)0.95232 (19)0.18942 (7)0.0138 (3)
O220.9825 (2)0.9765 (2)0.09744 (7)0.0162 (3)
C30.6390 (3)0.8098 (2)0.00668 (9)0.0108 (3)
C40.4521 (3)0.7278 (2)0.03265 (9)0.0102 (3)
O40.4236 (2)0.71664 (19)0.09930 (6)0.0133 (3)
C50.3012 (3)0.6570 (2)0.01138 (9)0.0103 (4)
C60.3415 (3)0.6643 (2)0.08294 (9)0.0093 (3)
C610.2130 (3)0.5782 (2)0.13619 (9)0.0102 (3)
O610.2756 (2)0.60581 (19)0.20161 (7)0.0133 (3)
O620.0588 (2)0.4825 (2)0.11096 (7)0.0153 (3)
N30.0905 (2)0.3231 (2)0.27702 (8)0.0130 (3)
O20.3223 (2)1.09917 (19)0.18032 (7)0.0129 (3)
H30.74680.85620.01840.013*
H50.17310.60530.01050.012*
H3A0.19820.37940.26230.016*
H3B0.05100.36600.32180.016*
H3C0.13000.20460.27770.016*
H2A0.38471.16750.15380.019*
H2B0.21181.05820.15000.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0120 (3)0.0114 (3)0.0075 (3)0.0000.00036 (18)0.000
O10.0094 (6)0.0130 (6)0.0082 (5)0.0044 (5)0.0020 (4)0.0016 (4)
C20.0099 (8)0.0087 (7)0.0109 (8)0.0014 (6)0.0038 (6)0.0007 (6)
C210.0121 (8)0.0119 (8)0.0110 (8)0.0009 (6)0.0006 (6)0.0010 (6)
O210.0151 (6)0.0161 (7)0.0104 (6)0.0034 (5)0.0022 (5)0.0025 (5)
O220.0124 (6)0.0222 (7)0.0144 (6)0.0066 (5)0.0035 (5)0.0025 (5)
C30.0119 (8)0.0107 (8)0.0104 (8)0.0009 (6)0.0032 (6)0.0004 (6)
C40.0129 (8)0.0083 (7)0.0093 (8)0.0010 (6)0.0013 (6)0.0004 (6)
O40.0165 (6)0.0164 (7)0.0072 (6)0.0016 (5)0.0017 (5)0.0008 (5)
C50.0097 (8)0.0110 (8)0.0102 (8)0.0009 (6)0.0011 (6)0.0002 (6)
C60.0077 (7)0.0093 (8)0.0112 (8)0.0016 (6)0.0020 (6)0.0008 (6)
C610.0105 (7)0.0112 (8)0.0093 (8)0.0017 (6)0.0027 (6)0.0007 (6)
O610.0147 (6)0.0174 (7)0.0078 (6)0.0057 (5)0.0013 (5)0.0008 (5)
O620.0141 (6)0.0213 (7)0.0104 (6)0.0093 (5)0.0003 (5)0.0007 (5)
N30.0146 (8)0.0144 (7)0.0099 (7)0.0019 (6)0.0012 (6)0.0005 (6)
O20.0129 (6)0.0158 (6)0.0102 (6)0.0005 (5)0.0017 (5)0.0034 (5)
Geometric parameters (Å, º) top
Ca1—O2i2.3649 (13)C3—H30.95
Ca1—O22.3649 (13)C4—O41.247 (2)
Ca1—O612.4002 (13)C4—C51.449 (2)
Ca1—O61i2.4002 (13)C5—C61.340 (2)
Ca1—O212.4314 (13)C5—H50.95
Ca1—O21i2.4314 (13)C6—C611.510 (2)
Ca1—O12.6230 (12)C61—O621.248 (2)
Ca1—O1i2.6231 (12)C61—O611.261 (2)
O1—C21.360 (2)N3—N3ii1.449 (3)
O1—C61.362 (2)N3—H3A0.8774
C2—C31.344 (2)N3—H3B0.9617
C2—C211.513 (2)N3—H3C0.8768
C21—O221.244 (2)O2—H2A0.8356
C21—O211.263 (2)O2—H2B0.9040
C3—C41.455 (2)
O2i—Ca1—O287.09 (7)C3—C2—C21126.06 (16)
O2i—Ca1—O61167.11 (4)O1—C2—C21110.97 (14)
O2—Ca1—O6195.71 (5)O22—C21—O21127.74 (17)
O2i—Ca1—O61i95.71 (5)O22—C21—C2116.78 (15)
O2—Ca1—O61i167.11 (4)O21—C21—C2115.42 (15)
O61—Ca1—O61i84.35 (7)C21—O21—Ca1130.38 (11)
O2i—Ca1—O2172.92 (4)C2—C3—C4120.05 (16)
O2—Ca1—O2183.78 (5)C2—C3—H3120.0
O61—Ca1—O21119.85 (4)C4—C3—H3120.0
O61i—Ca1—O2185.03 (5)O4—C4—C5122.03 (16)
O2i—Ca1—O21i83.78 (4)O4—C4—C3122.91 (16)
O2—Ca1—O21i72.92 (4)C5—C4—C3115.05 (15)
O61—Ca1—O21i85.03 (5)C6—C5—C4120.23 (15)
O61i—Ca1—O21i119.85 (4)C6—C5—H5119.9
O21—Ca1—O21i147.79 (7)C4—C5—H5119.9
O2i—Ca1—O1131.80 (4)C5—C6—O1122.90 (15)
O2—Ca1—O176.37 (4)C5—C6—C61126.81 (15)
O61—Ca1—O160.97 (4)O1—C6—C61110.23 (14)
O61i—Ca1—O192.56 (4)O62—C61—O61126.62 (16)
O21—Ca1—O160.62 (4)O62—C61—C6116.57 (15)
O21i—Ca1—O1130.95 (4)O61—C61—C6116.78 (15)
O2i—Ca1—O1i76.37 (4)C61—O61—Ca1126.03 (11)
O2—Ca1—O1i131.80 (4)N3ii—N3—H3A112.4
O61—Ca1—O1i92.56 (4)N3ii—N3—H3B109.6
O61i—Ca1—O1i60.97 (4)H3A—N3—H3B116.3
O21—Ca1—O1i130.95 (4)N3ii—N3—H3C102.6
O21i—Ca1—O1i60.62 (4)H3A—N3—H3C101.4
O1—Ca1—O1i145.42 (6)H3B—N3—H3C113.5
C2—O1—C6118.79 (13)Ca1—O2—H2A120.9
C2—O1—Ca1121.03 (10)Ca1—O2—H2B114.0
C6—O1—Ca1117.02 (10)H2A—O2—H2B102.2
C3—C2—O1122.80 (15)
O2i—Ca1—O1—C27.11 (14)O21i—Ca1—O21—C21117.74 (16)
O2—Ca1—O1—C280.44 (12)O1—Ca1—O21—C213.43 (14)
O61—Ca1—O1—C2174.98 (13)O1i—Ca1—O21—C21143.11 (14)
O61i—Ca1—O1—C292.88 (12)O1—C2—C3—C43.6 (3)
O21—Ca1—O1—C210.04 (11)C21—C2—C3—C4171.27 (16)
O21i—Ca1—O1—C2132.81 (12)C2—C3—C4—O4179.16 (16)
O1i—Ca1—O1—C2130.62 (12)C2—C3—C4—C51.6 (2)
O2i—Ca1—O1—C6152.55 (10)O4—C4—C5—C6177.13 (17)
O2—Ca1—O1—C679.22 (11)C3—C4—C5—C62.1 (2)
O61—Ca1—O1—C625.36 (11)C4—C5—C6—O14.2 (3)
O61i—Ca1—O1—C6107.46 (11)C4—C5—C6—C61172.81 (16)
O21—Ca1—O1—C6169.71 (13)C2—O1—C6—C52.3 (2)
O21i—Ca1—O1—C626.85 (13)Ca1—O1—C6—C5157.79 (14)
O1i—Ca1—O1—C669.72 (11)C2—O1—C6—C61175.08 (14)
C6—O1—C2—C31.7 (2)Ca1—O1—C6—C6124.78 (17)
Ca1—O1—C2—C3160.98 (13)C5—C6—C61—O623.8 (3)
C6—O1—C2—C21173.86 (14)O1—C6—C61—O62173.46 (15)
Ca1—O1—C2—C2114.55 (18)C5—C6—C61—O61178.12 (17)
C3—C2—C21—O2213.2 (3)O1—C6—C61—O614.6 (2)
O1—C2—C21—O22171.45 (16)O62—C61—O61—Ca1160.20 (14)
C3—C2—C21—O21164.21 (18)C6—C61—O61—Ca122.0 (2)
O1—C2—C21—O2111.1 (2)O2i—Ca1—O61—C61147.9 (2)
O22—C21—O21—Ca1179.72 (14)O2—Ca1—O61—C6145.89 (15)
C2—C21—O21—Ca12.6 (2)O61i—Ca1—O61—C61121.16 (16)
O2i—Ca1—O21—C21163.27 (16)O21—Ca1—O61—C6140.20 (16)
O2—Ca1—O21—C2174.41 (16)O21i—Ca1—O61—C61118.13 (15)
O61—Ca1—O21—C2118.62 (17)O1—Ca1—O61—C6125.06 (13)
O61i—Ca1—O21—C2199.19 (16)O1i—Ca1—O61—C61178.34 (14)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4iii0.841.892.7149 (18)167
O2—H2B···O22iv0.901.772.6717 (19)175
N3—H3A···O610.882.072.8091 (19)142
N3—H3B···O62ii0.961.742.679 (2)166
N3—H3C···O21v0.881.932.781 (2)162
Symmetry codes: (ii) x, y, z+1/2; (iii) x+1, y+2, z; (iv) x1, y, z; (v) x+1, y1, z+1/2.
(III) bis(µ-4-oxo-4H-pyran-2,6-dicarboxylato)bis[tetraaquamanganese(II)] tetrahydrate top
Crystal data top
[Mn2(C7H2O6)2(H2O)8]·4H2OZ = 1
Mr = 690.24F(000) = 354
Triclinic, P1Dx = 1.809 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4343 (2) ÅCell parameters from 2877 reflections
b = 10.1176 (3) Åθ = 1.0–27.5°
c = 10.2290 (3) ŵ = 1.11 mm1
α = 61.935 (2)°T = 120 K
β = 78.219 (3)°Block, colourless
γ = 69.061 (2)°0.47 × 0.21 × 0.10 mm
V = 633.49 (3) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2914 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 2.3°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.625, Tmax = 0.898l = 1313
14668 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.4478P]
where P = (Fo2 + 2Fc2)/3
2914 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Mn2(C7H2O6)2(H2O)8]·4H2Oγ = 69.061 (2)°
Mr = 690.24V = 633.49 (3) Å3
Triclinic, P1Z = 1
a = 7.4343 (2) ÅMo Kα radiation
b = 10.1176 (3) ŵ = 1.11 mm1
c = 10.2290 (3) ÅT = 120 K
α = 61.935 (2)°0.47 × 0.21 × 0.10 mm
β = 78.219 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2914 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2423 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.898Rint = 0.037
14668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.08Δρmax = 0.45 e Å3
2914 reflectionsΔρmin = 0.40 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.31863 (4)0.76085 (3)0.36918 (3)0.01098 (9)
O110.10413 (19)0.67707 (15)0.54233 (14)0.0155 (3)
O120.54328 (18)0.84672 (14)0.20661 (14)0.0137 (3)
O130.11232 (19)0.85552 (15)0.19602 (14)0.0152 (3)
O140.20426 (19)0.98191 (15)0.37900 (15)0.0180 (3)
O10.72562 (18)0.44480 (14)0.87582 (14)0.0115 (3)
C20.6253 (2)0.5879 (2)0.77498 (19)0.0104 (4)
C210.5665 (3)0.5768 (2)0.6477 (2)0.0115 (4)
O210.5760 (2)0.44477 (15)0.66593 (15)0.0170 (3)
O220.50595 (18)0.70582 (14)0.53764 (14)0.0132 (3)
C30.5743 (3)0.7197 (2)0.7926 (2)0.0119 (4)
C40.6237 (3)0.7147 (2)0.9248 (2)0.0122 (4)
O40.5717 (2)0.83307 (15)0.94879 (14)0.0169 (3)
C50.7341 (3)0.5617 (2)1.0273 (2)0.0119 (4)
C60.7787 (2)0.4361 (2)0.99952 (19)0.0106 (4)
C610.8887 (3)0.2688 (2)1.1021 (2)0.0127 (4)
O610.9128 (2)0.16511 (15)1.06153 (15)0.0195 (3)
O620.9432 (2)0.25253 (15)1.21799 (15)0.0175 (3)
O150.1088 (2)0.37608 (17)0.67361 (18)0.0278 (4)
O160.2782 (2)1.07386 (16)0.57159 (15)0.0194 (3)
H11A0.10930.58310.58520.023*
H11B0.09380.69220.61650.023*
H12A0.55320.83470.11950.021*
H12B0.51910.94170.17940.021*
H13A0.04220.95890.15910.023*
H13B0.14670.82830.12400.023*
H14A0.23591.00630.44290.027*
H14B0.12321.07060.32280.027*
H30.50550.81670.71810.014*
H50.77550.54971.11520.014*
H15A0.22120.31160.70360.042*
H15B0.02240.31840.71180.042*
H16A0.35081.13630.54160.029*
H16B0.15651.15330.55810.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01369 (15)0.00878 (15)0.01055 (15)0.00173 (11)0.00393 (10)0.00411 (11)
O110.0219 (7)0.0143 (7)0.0123 (7)0.0071 (5)0.0002 (5)0.0067 (6)
O120.0210 (7)0.0091 (6)0.0109 (6)0.0039 (5)0.0016 (5)0.0042 (5)
O130.0190 (7)0.0120 (6)0.0135 (7)0.0005 (5)0.0067 (5)0.0061 (5)
O140.0242 (7)0.0103 (6)0.0188 (7)0.0037 (6)0.0113 (6)0.0082 (6)
O10.0143 (6)0.0092 (6)0.0103 (6)0.0010 (5)0.0046 (5)0.0039 (5)
C20.0097 (8)0.0084 (8)0.0102 (8)0.0012 (7)0.0023 (7)0.0020 (7)
C210.0111 (8)0.0115 (9)0.0112 (9)0.0012 (7)0.0025 (7)0.0053 (7)
O210.0266 (8)0.0096 (6)0.0168 (7)0.0017 (6)0.0078 (6)0.0074 (6)
O220.0169 (7)0.0111 (6)0.0111 (6)0.0032 (5)0.0060 (5)0.0031 (5)
C30.0132 (9)0.0104 (9)0.0098 (9)0.0025 (7)0.0026 (7)0.0024 (7)
C40.0148 (9)0.0109 (9)0.0117 (9)0.0055 (7)0.0002 (7)0.0046 (7)
O40.0277 (8)0.0107 (6)0.0129 (7)0.0039 (6)0.0038 (6)0.0059 (5)
C50.0142 (9)0.0122 (9)0.0097 (9)0.0042 (7)0.0011 (7)0.0046 (7)
C60.0107 (8)0.0128 (9)0.0073 (8)0.0036 (7)0.0018 (7)0.0030 (7)
C610.0139 (9)0.0104 (9)0.0108 (9)0.0003 (7)0.0022 (7)0.0039 (7)
O610.0285 (8)0.0111 (6)0.0167 (7)0.0017 (6)0.0100 (6)0.0063 (6)
O620.0233 (7)0.0139 (7)0.0141 (7)0.0006 (5)0.0091 (6)0.0064 (6)
O150.0189 (8)0.0178 (7)0.0398 (9)0.0065 (6)0.0054 (7)0.0048 (7)
O160.0222 (7)0.0176 (7)0.0219 (7)0.0079 (6)0.0024 (6)0.0093 (6)
Geometric parameters (Å, º) top
Mn1—O21i2.1199 (13)C2—C211.517 (2)
Mn1—O142.1337 (13)C21—O211.237 (2)
Mn1—O222.1775 (12)C21—O221.256 (2)
Mn1—O112.1905 (13)O21—Mn1i2.1199 (13)
Mn1—O122.2030 (13)C3—C41.447 (2)
Mn1—O132.2068 (13)C3—H30.95
O11—H11A0.8286C4—O41.246 (2)
O11—H11B0.8254C4—C51.444 (2)
O12—H12A0.9395C5—C61.343 (3)
O12—H12B0.8240C5—H50.95
O13—H13A0.9097C6—C611.525 (2)
O13—H13B0.8645C61—O611.245 (2)
O14—H14A0.8941C61—O621.249 (2)
O14—H14B0.8765O15—H15A0.8632
O1—C61.356 (2)O15—H15B0.9256
O1—C21.361 (2)O16—H16A0.8823
C2—C31.338 (3)O16—H16B0.9536
O21i—Mn1—O14173.56 (5)C6—O1—C2118.14 (14)
O21i—Mn1—O22102.25 (5)C3—C2—O1123.42 (16)
O14—Mn1—O2283.30 (5)C3—C2—C21124.58 (16)
O21i—Mn1—O1194.50 (5)O1—C2—C21111.85 (14)
O14—Mn1—O1188.72 (5)O21—C21—O22127.61 (17)
O22—Mn1—O1190.12 (5)O21—C21—C2117.13 (15)
O21i—Mn1—O1287.64 (5)O22—C21—C2115.19 (15)
O14—Mn1—O1289.50 (5)C21—O21—Mn1i156.82 (13)
O22—Mn1—O1286.04 (5)C21—O22—Mn1127.91 (11)
O11—Mn1—O12175.93 (5)C2—C3—C4120.14 (16)
O21i—Mn1—O1386.92 (5)C2—C3—H3119.9
O14—Mn1—O1387.46 (5)C4—C3—H3119.9
O22—Mn1—O13170.70 (5)O4—C4—C5122.98 (16)
O11—Mn1—O1390.69 (5)O4—C4—C3122.24 (16)
O12—Mn1—O1392.89 (5)C5—C4—C3114.77 (15)
Mn1—O11—H11A121.7C6—C5—C4120.63 (16)
Mn1—O11—H11B117.0C6—C5—H5119.7
H11A—O11—H11B98.1C4—C5—H5119.7
Mn1—O12—H12A114.3C5—C6—O1122.86 (16)
Mn1—O12—H12B109.9C5—C6—C61124.97 (16)
H12A—O12—H12B105.5O1—C6—C61112.16 (15)
Mn1—O13—H13A119.3O61—C61—O62127.79 (17)
Mn1—O13—H13B118.9O61—C61—C6116.70 (16)
H13A—O13—H13B108.6O62—C61—C6115.50 (16)
Mn1—O14—H14A126.0H15A—O15—H15B107.3
Mn1—O14—H14B131.2H16A—O16—H16B97.1
H14A—O14—H14B102.7
C6—O1—C2—C30.9 (3)O1—C2—C3—C40.7 (3)
C6—O1—C2—C21176.66 (15)C21—C2—C3—C4174.50 (17)
C3—C2—C21—O21160.11 (18)C2—C3—C4—O4176.72 (17)
O1—C2—C21—O2115.6 (2)C2—C3—C4—C52.1 (3)
C3—C2—C21—O2217.1 (3)O4—C4—C5—C6176.80 (18)
O1—C2—C21—O22167.24 (15)C3—C4—C5—C62.0 (3)
O22—C21—O21—Mn1i71.4 (4)C4—C5—C6—O10.5 (3)
C2—C21—O21—Mn1i111.9 (3)C4—C5—C6—C61177.98 (16)
O21—C21—O22—Mn120.1 (3)C2—O1—C6—C51.0 (3)
C2—C21—O22—Mn1156.77 (12)C2—O1—C6—C61179.68 (14)
O21i—Mn1—O22—C2139.88 (15)C5—C6—C61—O61177.81 (18)
O14—Mn1—O22—C21143.45 (15)O1—C6—C61—O610.8 (2)
O11—Mn1—O22—C2154.75 (15)C5—C6—C61—O621.8 (3)
O12—Mn1—O22—C21126.59 (15)O1—C6—C61—O62179.55 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O150.831.852.6784 (19)176
O11—H11B···O62ii0.831.962.7846 (18)175
O12—H12A···O4iii0.941.732.6670 (18)174
O12—H12B···O4iv0.821.952.7356 (18)158
O13—H13A···O61v0.911.812.7133 (18)172
O13—H13B···O61i0.862.002.7866 (18)151
O14—H14A···O160.891.862.7532 (19)174
O14—H14B···O62v0.881.822.6908 (18)176
O15—H15A···O12i0.861.932.7930 (19)173
O15—H15B···O13vi0.932.072.9814 (19)166
O16—H16A···O22iv0.882.002.8765 (19)175
O16—H16B···O11vii0.952.133.0423 (19)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1, y+2, z+1; (v) x1, y+1, z1; (vi) x, y+1, z+1; (vii) x, y+2, z+1.
(IV) tetraaqua(4-oxo-4H-pyran-2,6-dicarboxylato)copper(II) top
Crystal data top
[Cu(C7H2O6)(H2O)4]Z = 2
Mr = 317.70F(000) = 322
Triclinic, P1Dx = 2.086 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9593 (6) ÅCell parameters from 2264 reflections
b = 9.8973 (14) Åθ = 3.0–27.7°
c = 10.4697 (12) ŵ = 2.21 mm1
α = 94.237 (9)°T = 120 K
β = 94.955 (9)°Block, green
γ = 97.353 (6)°0.12 × 0.12 × 0.10 mm
V = 505.88 (11) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2264 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.0°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.777, Tmax = 0.809l = 1313
6400 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0763P)2 + 2.2295P]
where P = (Fo2 + 2Fc2)/3
2264 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 1.42 e Å3
Crystal data top
[Cu(C7H2O6)(H2O)4]γ = 97.353 (6)°
Mr = 317.70V = 505.88 (11) Å3
Triclinic, P1Z = 2
a = 4.9593 (6) ÅMo Kα radiation
b = 9.8973 (14) ŵ = 2.21 mm1
c = 10.4697 (12) ÅT = 120 K
α = 94.237 (9)°0.12 × 0.12 × 0.10 mm
β = 94.955 (9)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2264 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2043 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.809Rint = 0.034
6400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.12Δρmax = 1.42 e Å3
2264 reflectionsΔρmin = 1.42 e Å3
167 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.50000.0106 (2)
O1A0.2978 (6)0.0275 (3)0.6286 (3)0.0144 (6)
O1B0.1358 (8)0.1487 (3)0.3266 (4)0.0238 (8)
Cu20.50000.00000.00000.0108 (2)
O2A0.3739 (7)0.1700 (3)0.0507 (3)0.0175 (7)
O2B0.2379 (6)0.0106 (3)0.1229 (3)0.0179 (7)
O10.5368 (6)0.2869 (3)0.2755 (3)0.0132 (6)
C20.3774 (8)0.3563 (4)0.3476 (4)0.0119 (8)
C210.2055 (9)0.2683 (4)0.4303 (4)0.0143 (8)
O210.2528 (6)0.1442 (3)0.4337 (3)0.0140 (6)
O220.0323 (8)0.3231 (4)0.4846 (4)0.0273 (8)
C30.3702 (9)0.4924 (4)0.3446 (4)0.0150 (8)
C40.5389 (10)0.5700 (4)0.2643 (5)0.0172 (9)
O40.5466 (9)0.6975 (4)0.2634 (4)0.0292 (9)
C50.7043 (9)0.4922 (5)0.1875 (5)0.0167 (9)
C60.6990 (8)0.3571 (4)0.1981 (4)0.0122 (8)
C610.8765 (8)0.2673 (4)0.1289 (4)0.0119 (8)
O610.8556 (6)0.1442 (3)0.1577 (3)0.0149 (6)
O621.0274 (7)0.3210 (3)0.0545 (3)0.0179 (7)
H11A0.44420.06150.60640.022*
H12A0.25310.06960.69630.022*
H11B0.02030.20280.30910.036*
H12B0.28080.19030.34010.036*
H21A0.23060.20250.02290.026*
H22A0.42150.20720.12060.026*
H21B0.10920.04280.12540.027*
H22B0.19850.07130.17810.027*
H30.25270.53640.39590.018*
H50.81650.53640.12960.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0075 (3)0.0116 (4)0.0133 (4)0.0006 (3)0.0033 (3)0.0042 (3)
O1A0.0110 (13)0.0164 (15)0.0167 (15)0.0024 (11)0.0022 (11)0.0058 (12)
O1B0.0273 (18)0.0173 (16)0.029 (2)0.0019 (14)0.0126 (15)0.0036 (14)
Cu20.0090 (3)0.0124 (4)0.0123 (4)0.0028 (3)0.0042 (3)0.0032 (3)
O2A0.0182 (15)0.0187 (16)0.0192 (17)0.0081 (12)0.0096 (13)0.0070 (13)
O2B0.0155 (15)0.0210 (16)0.0211 (17)0.0093 (13)0.0078 (12)0.0098 (13)
O10.0124 (14)0.0129 (14)0.0153 (15)0.0026 (11)0.0056 (12)0.0010 (12)
C20.0120 (18)0.015 (2)0.0095 (19)0.0011 (15)0.0035 (15)0.0017 (15)
C210.0140 (19)0.014 (2)0.015 (2)0.0009 (15)0.0058 (16)0.0019 (16)
O210.0123 (13)0.0136 (14)0.0172 (16)0.0022 (11)0.0039 (11)0.0047 (12)
O220.0300 (19)0.0164 (16)0.041 (2)0.0063 (14)0.0256 (17)0.0076 (15)
C30.0152 (19)0.016 (2)0.015 (2)0.0053 (16)0.0036 (16)0.0017 (16)
C40.023 (2)0.0099 (19)0.020 (2)0.0034 (16)0.0066 (18)0.0036 (16)
O40.050 (2)0.0136 (16)0.029 (2)0.0093 (16)0.0218 (18)0.0053 (14)
C50.019 (2)0.016 (2)0.016 (2)0.0031 (17)0.0083 (17)0.0033 (17)
C60.0113 (18)0.014 (2)0.012 (2)0.0017 (15)0.0036 (15)0.0027 (15)
C610.0100 (18)0.016 (2)0.010 (2)0.0041 (15)0.0015 (15)0.0009 (15)
O610.0150 (14)0.0150 (15)0.0164 (16)0.0034 (12)0.0069 (12)0.0042 (12)
O620.0205 (16)0.0170 (16)0.0190 (17)0.0048 (12)0.0122 (13)0.0047 (12)
Geometric parameters (Å, º) top
Cu1—O1A1.970 (3)O2B—H21B0.8801
Cu1—O1Ai1.970 (3)O2B—H22B0.88
Cu1—O211.982 (3)O1—C21.353 (5)
Cu1—O21i1.982 (3)O1—C61.357 (5)
Cu1—O1B2.447 (4)C2—C31.355 (6)
Cu1—O1Bi2.447 (4)C2—C211.511 (6)
O1A—H11A0.8797C21—O221.230 (6)
O1A—H12A0.8794C21—O211.282 (5)
O1B—H11B0.88C3—C41.432 (6)
O1B—H12B0.8798C3—H30.95
Cu2—O2Aii1.961 (3)C4—O41.258 (6)
Cu2—O2A1.961 (3)C4—C51.449 (6)
Cu2—O2B1.906 (3)C5—C61.346 (6)
Cu2—O2Bii1.906 (3)C5—H50.95
Cu2—O612.525 (3)C6—C611.518 (6)
Cu2—O61ii2.525 (3)C61—O621.228 (6)
O2A—H21A0.88C61—O611.271 (5)
O2A—H22A0.8801
O1A—Cu1—O1Ai180.0O1—C2—C3122.9 (4)
O1A—Cu1—O2188.68 (13)O1—C2—C21114.1 (4)
O1Ai—Cu1—O2191.32 (13)C3—C2—C21123.0 (4)
O1A—Cu1—O21i91.32 (13)O22—C21—O21127.4 (4)
O1Ai—Cu1—O21i88.68 (13)O22—C21—C2116.3 (4)
O21—Cu1—O21i180.00 (13)O21—C21—C2116.3 (4)
Cu1—O1A—H11A121.8C21—O21—Cu1123.0 (3)
Cu1—O1A—H12A117.6C2—C3—C4120.2 (4)
H11A—O1A—H12A104.6C2—C3—H3119.9
H11B—O1B—H12B115.4C4—C3—H3119.9
O2B—Cu2—O2Bii180.0 (3)O4—C4—C3122.0 (4)
O2B—Cu2—O2Aii91.08 (13)O4—C4—C5122.7 (4)
O2Bii—Cu2—O2Aii88.92 (13)C3—C4—C5115.3 (4)
O2B—Cu2—O2A88.92 (13)C6—C5—C4120.0 (4)
O2Bii—Cu2—O2A91.08 (13)C6—C5—H5120.0
O2Aii—Cu2—O2A180.00 (19)C4—C5—H5120.0
Cu2—O2A—H21A124.2C5—C6—O1123.0 (4)
Cu2—O2A—H22A122.0C5—C6—C61124.5 (4)
H21A—O2A—H22A111.2O1—C6—C61112.4 (3)
Cu2—O2B—H21B122.9O62—C61—O61127.3 (4)
Cu2—O2B—H22B131.3O62—C61—C6117.4 (4)
H21B—O2B—H22B105.2O61—C61—C6115.3 (4)
C2—O1—C6118.5 (3)
C6—O1—C2—C30.9 (6)C2—C3—C4—O4176.8 (5)
C6—O1—C2—C21179.9 (4)C2—C3—C4—C51.6 (7)
O1—C2—C21—O22171.0 (4)O4—C4—C5—C6176.2 (5)
C3—C2—C21—O228.2 (7)C3—C4—C5—C62.2 (7)
O1—C2—C21—O217.6 (6)C4—C5—C6—O12.3 (7)
C3—C2—C21—O21173.2 (4)C4—C5—C6—C61176.0 (4)
O22—C21—O21—Cu113.4 (7)C2—O1—C6—C51.5 (6)
C2—C21—O21—Cu1165.0 (3)C2—O1—C6—C61176.9 (3)
O1A—Cu1—O21—C21121.0 (3)C5—C6—C61—O622.9 (6)
O1Ai—Cu1—O21—C2159.0 (3)O1—C6—C61—O62178.7 (4)
O1—C2—C3—C41.0 (7)C5—C6—C61—O61175.4 (4)
C21—C2—C3—C4179.8 (4)O1—C6—C61—O613.0 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H11A···O21iii0.881.862.743 (4)176
O1A—H12A···O61iii0.881.842.715 (4)175
O1B—H11B···O4iv0.882.243.110 (6)169
O1B—H12B···O4v0.882.012.790 (5)147
O2A—H21A···O62vi0.881.832.672 (4)160
O2A—H22A···O4vii0.881.832.699 (5)168
O2B—H21B···O61vi0.881.752.618 (4)170
O2B—H22B···O1B0.881.822.666 (5)162
Symmetry codes: (iii) x+1, y, z+1; (iv) x1, y1, z; (v) x, y1, z; (vi) x1, y, z; (vii) x+1, y+1, z.
(V) diaqua(4-oxo-4H-pyran-2,6-dicarboxylato)cadmium monohydrate top
Crystal data top
[Cd(C7H2O6)(H2O)2]·H2OZ = 1
Mr = 348.53F(000) = 170
Triclinic, P1Dx = 2.434 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3262 (2) ÅCell parameters from 2108 reflections
b = 6.2885 (2) Åθ = 3.6–27.7°
c = 8.1008 (3) ŵ = 2.34 mm1
α = 97.733 (2)°T = 120 K
β = 105.0554 (17)°Block, colourless
γ = 110.4356 (18)°0.10 × 0.04 × 0.04 mm
V = 237.80 (2) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2108 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.6°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 88
Tmin = 0.781, Tmax = 0.912l = 1010
7006 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0114P)2 + 0.0048P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
2108 reflectionsΔρmax = 0.58 e Å3
136 parametersΔρmin = 0.98 e Å3
3 restraintsAbsolute structure: Flack (1983), with 1003 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (17)
Crystal data top
[Cd(C7H2O6)(H2O)2]·H2Oγ = 110.4356 (18)°
Mr = 348.53V = 237.80 (2) Å3
Triclinic, P1Z = 1
a = 5.3262 (2) ÅMo Kα radiation
b = 6.2885 (2) ŵ = 2.34 mm1
c = 8.1008 (3) ÅT = 120 K
α = 97.733 (2)°0.10 × 0.04 × 0.04 mm
β = 105.0554 (17)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2108 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2108 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.912Rint = 0.050
7006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.042Δρmax = 0.58 e Å3
S = 1.15Δρmin = 0.98 e Å3
2108 reflectionsAbsolute structure: Flack (1983), with 1003 Friedel pairs
136 parametersAbsolute structure parameter: 0.002 (17)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000 (1)0.50000 (1)0.00000 (1)0.00988 (6)
O110.0137 (5)0.7926 (4)0.1443 (3)0.0143 (4)
O120.4494 (4)0.2331 (4)0.1384 (3)0.0162 (4)
O130.4510 (7)0.7778 (6)0.6771 (4)0.0165 (7)
O10.5050 (4)0.0405 (3)0.2331 (3)0.0096 (3)
C20.5019 (10)0.2251 (8)0.3401 (6)0.0097 (5)
C210.2943 (6)0.3182 (5)0.2507 (4)0.0104 (5)
O210.1374 (5)0.2152 (4)0.0927 (3)0.0116 (4)
O220.2975 (4)0.4995 (4)0.3360 (3)0.0142 (4)
C30.6760 (6)0.3164 (5)0.5079 (4)0.0099 (4)
C40.8828 (6)0.2263 (5)0.5826 (4)0.0096 (3)
O41.0493 (6)0.3090 (5)0.7377 (4)0.0131 (6)
C50.8833 (6)0.0358 (5)0.4631 (4)0.0097 (5)
C60.6983 (6)0.0471 (5)0.2967 (4)0.0099 (4)
C610.6863 (6)0.2438 (5)0.1608 (4)0.0097 (5)
O610.4763 (4)0.3306 (4)0.0227 (3)0.0120 (4)
O620.8958 (6)0.2957 (5)0.2016 (4)0.0138 (6)
H11A0.17700.77580.19360.021*
H11B0.05950.91650.06870.021*
H12A0.47890.09750.18110.024*
H12B0.60660.23660.15970.024*
H13A0.33960.70170.72170.025*
H13B0.38410.71350.57140.025*
H30.66290.44270.57880.012*
H51.01480.03230.50150.012*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01116 (9)0.01089 (9)0.00812 (9)0.00639 (6)0.00209 (6)0.00079 (6)
O110.0189 (11)0.0092 (10)0.0119 (11)0.0060 (8)0.0013 (9)0.0003 (8)
O120.0101 (9)0.0134 (10)0.0216 (12)0.0053 (8)0.0018 (9)0.0019 (9)
O130.0201 (15)0.0155 (12)0.0102 (13)0.0035 (11)0.0059 (10)0.0002 (10)
O10.0103 (7)0.0103 (8)0.0068 (8)0.0053 (6)0.0002 (6)0.0006 (6)
C20.0106 (10)0.0105 (11)0.0102 (11)0.0069 (8)0.0036 (8)0.0020 (9)
C210.0110 (12)0.0092 (13)0.0103 (13)0.0046 (10)0.0018 (10)0.0025 (10)
O210.0134 (10)0.0124 (10)0.0085 (10)0.0080 (8)0.0004 (8)0.0012 (8)
O220.0159 (10)0.0151 (11)0.0138 (11)0.0105 (8)0.0036 (8)0.0015 (8)
C30.0108 (9)0.0093 (10)0.0103 (10)0.0056 (8)0.0033 (8)0.0010 (8)
C40.0103 (7)0.0103 (8)0.0068 (8)0.0053 (6)0.0002 (6)0.0006 (6)
O40.0120 (12)0.0147 (12)0.0095 (14)0.0077 (10)0.0014 (11)0.0034 (11)
C50.0106 (10)0.0105 (11)0.0102 (11)0.0069 (8)0.0036 (8)0.0020 (9)
C60.0108 (9)0.0093 (10)0.0103 (10)0.0056 (8)0.0033 (8)0.0010 (8)
C610.0129 (13)0.0093 (13)0.0074 (13)0.0052 (11)0.0037 (11)0.0007 (10)
O610.0099 (9)0.0137 (10)0.0077 (10)0.0031 (8)0.0002 (8)0.0021 (8)
O620.0127 (13)0.0177 (13)0.0104 (15)0.0096 (10)0.0002 (11)0.0010 (11)
Geometric parameters (Å, º) top
Cd1—O62i2.242 (3)C2—C31.341 (6)
Cd1—O122.258 (2)C2—C211.497 (6)
Cd1—O212.302 (2)C21—O221.243 (4)
Cd1—O112.320 (2)C21—O211.265 (4)
Cd1—O61ii2.3284 (19)C3—C41.443 (4)
Cd1—O4iii2.419 (3)C3—H30.95
O11—H11A0.82C4—O41.249 (4)
O11—H11B0.82C4—C51.436 (4)
O12—H12A0.82C5—C61.350 (4)
O12—H12B0.82C5—H50.95
O13—H13A0.82C6—C611.512 (4)
O13—H13B0.82C61—O621.246 (4)
O1—C61.351 (3)C61—O611.249 (4)
O1—C21.360 (5)
O62i—Cd1—O1295.60 (9)C3—C2—C21124.2 (4)
O62i—Cd1—O21113.93 (9)O1—C2—C21113.5 (4)
O12—Cd1—O2190.83 (8)O22—C21—O21124.4 (3)
O62i—Cd1—O1183.99 (9)O22—C21—C2117.0 (3)
O12—Cd1—O1199.26 (8)O21—C21—C2118.6 (3)
O21—Cd1—O11158.60 (7)C21—O21—Cd1102.03 (17)
O62i—Cd1—O61ii112.34 (9)C2—C3—C4121.2 (3)
O12—Cd1—O61ii151.83 (7)C2—C3—H3119.4
O21—Cd1—O61ii81.34 (8)C4—C3—H3119.4
O11—Cd1—O61ii80.92 (8)O4—C4—C5122.9 (3)
O62i—Cd1—O4iii167.51 (8)O4—C4—C3122.7 (3)
O12—Cd1—O4iii79.30 (9)C5—C4—C3114.4 (2)
O21—Cd1—O4iii77.76 (9)C4—O4—Cd1iv131.0 (2)
O11—Cd1—O4iii85.59 (9)C6—C5—C4120.5 (3)
O61ii—Cd1—O4iii72.61 (9)C6—C5—H5119.8
Cd1—O11—H11A111.7C4—C5—H5119.8
Cd1—O11—H11B107.2C5—C6—O1123.1 (3)
H11A—O11—H11B106.1C5—C6—C61124.3 (3)
Cd1—O12—H12A120.0O1—C6—C61112.7 (2)
Cd1—O12—H12B134.7O62—C61—O61128.1 (3)
H12A—O12—H12B105.3O62—C61—C6114.3 (3)
H13A—O13—H13B105.7O61—C61—C6117.7 (2)
C6—O1—C2118.5 (3)C61—O61—Cd1v127.30 (17)
C3—C2—O1122.3 (4)C61—O62—Cd1vi121.8 (2)
C6—O1—C2—C32.7 (6)C5—C4—O4—Cd1iv151.7 (2)
C6—O1—C2—C21175.5 (3)C3—C4—O4—Cd1iv29.1 (5)
C3—C2—C21—O224.2 (6)O4—C4—C5—C6179.9 (3)
O1—C2—C21—O22173.9 (3)C3—C4—C5—C60.8 (4)
C3—C2—C21—O21178.8 (4)C4—C5—C6—O10.2 (4)
O1—C2—C21—O213.0 (5)C4—C5—C6—C61178.9 (2)
O22—C21—O21—Cd116.8 (3)C2—O1—C6—C51.9 (5)
C2—C21—O21—Cd1159.9 (3)C2—O1—C6—C61177.3 (3)
O62i—Cd1—O21—C2140.9 (2)C5—C6—C61—O6213.3 (4)
O12—Cd1—O21—C21137.45 (18)O1—C6—C61—O62165.9 (3)
O11—Cd1—O21—C21104.0 (3)C5—C6—C61—O61168.0 (3)
O61ii—Cd1—O21—C2169.73 (18)O1—C6—C61—O6112.8 (4)
O4iii—Cd1—O21—C21143.69 (19)O62—C61—O61—Cd1v124.3 (3)
O1—C2—C3—C41.7 (6)C6—C61—O61—Cd1v57.2 (3)
C21—C2—C3—C4176.3 (3)O61—C61—O62—Cd1vi16.7 (5)
C2—C3—C4—O4179.3 (4)C6—C61—O62—Cd1vi161.86 (19)
C2—C3—C4—C50.1 (4)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x1, y, z1; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O13iii0.821.992.805 (4)172
O11—H11B···O21ii0.821.982.780 (3)165
O12—H12A···O13vii0.822.032.844 (4)171
O12—H12B···O4viii0.822.042.827 (3)162
O13—H13A···O61ix0.822.422.950 (4)124
O13—H13A···O4x0.822.463.169 (5)146
O13—H13B···O220.822.022.809 (4)162
Symmetry codes: (ii) x, y+1, z; (iii) x1, y, z1; (vii) x1, y1, z1; (viii) x2, y, z1; (ix) x, y+1, z+1; (x) x1, y, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula[Be(H2O)4](C7H2O6)(N2H6)[Ca(C7H2O6)2(H2O)2][Mn2(C7H2O6)2(H2O)8]·4H2O[Cu(C7H2O6)(H2O)4]
Mr263.16474.35690.24317.70
Crystal system, space groupMonoclinic, P21/nMonoclinic, P2/cTriclinic, P1Triclinic, P1
Temperature (K)120120120120
a, b, c (Å)5.4331 (2), 10.6173 (4), 19.1890 (5)6.4669 (2), 7.0797 (3), 18.8278 (6)7.4343 (2), 10.1176 (3), 10.2290 (3)4.9593 (6), 9.8973 (14), 10.4697 (12)
α, β, γ (°)90, 97.771 (2), 9090, 97.372 (2), 9061.935 (2), 78.219 (3), 69.061 (2)94.237 (9), 94.955 (9), 97.353 (6)
V3)1096.75 (6)854.88 (5)633.49 (3)505.88 (11)
Z4212
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.150.461.112.21
Crystal size (mm)0.28 × 0.24 × 0.110.26 × 0.18 × 0.080.47 × 0.21 × 0.100.12 × 0.12 × 0.10
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.968, 0.9840.909, 0.9640.625, 0.8980.777, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
11511, 2504, 2180 9031, 1953, 1876 14668, 2914, 2423 6400, 2264, 2043
Rint0.0340.0300.0370.034
(sin θ/λ)max1)0.6500.6500.6510.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.118, 1.15 0.036, 0.116, 1.20 0.030, 0.074, 1.08 0.052, 0.156, 1.12
No. of reflections2504195329142264
No. of parameters163141181167
No. of restraints0000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.340.68, 0.540.45, 0.401.42, 1.42
Absolute structure????
Absolute structure parameter????


(V)
Crystal data
Chemical formula[Cd(C7H2O6)(H2O)2]·H2O
Mr348.53
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.3262 (2), 6.2885 (2), 8.1008 (3)
α, β, γ (°)97.733 (2), 105.0554 (17), 110.4356 (18)
V3)237.80 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.10 × 0.04 × 0.04
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.781, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
7006, 2108, 2108
Rint0.050
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.042, 1.15
No. of reflections2108
No. of parameters136
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.98
Absolute structureFlack (1983), with 1003 Friedel pairs
Absolute structure parameter0.002 (17)

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O210.861.742.6073 (16)179
O11—H11B···O61i0.941.732.6501 (16)165
O12—H12A···O220.861.742.6003 (16)178
O12—H12B···O4ii0.891.732.6187 (16)174
O13—H13A···O21iii0.881.762.6353 (15)171
O13—H13B···O61iii0.891.752.6360 (15)170
O14—H14A···O4iv0.891.792.6672 (16)168
O14—H14B···O62v0.981.602.5788 (16)177
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.841.892.7149 (18)167
O2—H2B···O22ii0.901.772.6717 (19)175
N3—H3A···O610.882.072.8091 (19)142
N3—H3B···O62iii0.961.742.679 (2)166
N3—H3C···O21iv0.881.932.781 (2)162
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x, y, z+1/2; (iv) x+1, y1, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O150.831.852.6784 (19)176
O11—H11B···O62i0.831.962.7846 (18)175
O12—H12A···O4ii0.941.732.6670 (18)174
O12—H12B···O4iii0.821.952.7356 (18)158
O13—H13A···O61iv0.911.812.7133 (18)172
O13—H13B···O61v0.862.002.7866 (18)151
O14—H14A···O160.891.862.7532 (19)174
O14—H14B···O62iv0.881.822.6908 (18)176
O15—H15A···O12v0.861.932.7930 (19)173
O15—H15B···O13vi0.932.072.9814 (19)166
O16—H16A···O22iii0.882.002.8765 (19)175
O16—H16B···O11vii0.952.133.0423 (19)160
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z1; (iii) x+1, y+2, z+1; (iv) x1, y+1, z1; (v) x+1, y+1, z+1; (vi) x, y+1, z+1; (vii) x, y+2, z+1.
Selected bond lengths (Å) for (IV) top
Cu1—O1A1.970 (3)Cu2—O2A1.961 (3)
Cu1—O211.982 (3)Cu2—O2B1.906 (3)
Cu1—O1B2.447 (4)Cu2—O612.525 (3)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O1A—H11A···O21i0.881.862.743 (4)176
O1A—H12A···O61i0.881.842.715 (4)175
O1B—H11B···O4ii0.882.243.110 (6)169
O1B—H12B···O4iii0.882.012.790 (5)147
O2A—H21A···O62iv0.881.832.672 (4)160
O2A—H22A···O4v0.881.832.699 (5)168
O2B—H21B···O61iv0.881.752.618 (4)170
O2B—H22B···O1B0.881.822.666 (5)162
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y1, z; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O13i0.821.992.805 (4)172
O11—H11B···O21ii0.821.982.780 (3)165
O12—H12A···O13iii0.822.032.844 (4)171
O12—H12B···O4iv0.822.042.827 (3)162
O13—H13A···O61v0.822.422.950 (4)124
O13—H13A···O4vi0.822.463.169 (5)146
O13—H13B···O220.822.022.809 (4)162
Symmetry codes: (i) x1, y, z1; (ii) x, y+1, z; (iii) x1, y1, z1; (iv) x2, y, z1; (v) x, y+1, z+1; (vi) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds