metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-{2-[2-(2-Ammonio­ethyl­amino)ethyl­amino]ethyl­imino­meth­yl}-2-naphtholato-κ4O,N,N′,N′′)chloridocopper(II) chloride

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: niumeiju@163.com

(Received 17 November 2007; accepted 28 November 2007; online 6 December 2007)

In the square-pyramidal title complex, [CuCl(C17H24N4O)]Cl, the CuII atom is coordinated by three N atoms [Cu—N 1.946 (2), 2.010 (2), 2.085 (3) Å], one O atom [Cu—O 1.910 (2) Å] and one apical Cl atom [Cu—Cl 2.6437 (9) Å]. The three coordinated N and one O atom are almost coplanar, with a maximum deviation of 0.0268 Å. The tetra­dentate ligand forms two five-membered (N—Cu—N) and one six-membered (N—Cu—O) chelate rings with bite angles of 84.06 (10), 85.30 (10) and 91.70 (9)°, respectively. The two N—Cu—N chelate rings are non-planar.

Related literature

For the general role of Schiff bases, see: Gamovski et al. (1993[Gamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]). For the crystal structures of related complexes, see: Nanda et al. (2006[Nanda, P. K., Bera, M., Aromi, G. & Ray, D. (2006). Polyhedron, 25, 2791-2799.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C17H24N4O)]Cl

  • Mr = 434.84

  • Monoclinic, P 21 /c

  • a = 12.2687 (17) Å

  • b = 13.0277 (18) Å

  • c = 12.7118 (18) Å

  • β = 111.365 (2)°

  • V = 1892.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 298 (2) K

  • 0.48 × 0.40 × 0.37 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.543, Tmax = 0.616 (expected range = 0.515–0.585)

  • 9597 measured reflections

  • 3320 independent reflections

  • 2646 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.099

  • S = 1.00

  • 3320 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl2i 0.91 2.44 3.225 (3) 144
N3—H3⋯Cl1ii 0.91 2.50 3.388 (3) 165
N4—H4A⋯Cl1iii 0.89 2.31 3.204 (3) 177
N4—H4B⋯Cl2ii 0.89 2.25 3.079 (4) 156
N4—H4C⋯O1 0.89 1.83 2.703 (4) 167
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base complexes play an important role in coordination chemistry (Gamovski et al., 1993). In a continuation of a study of Schiff base ligands and their copper(II) complexes, we report here the title complex (Fig. 1), in which the ligand donor atoms consist of three nitrogen atoms (one imine and two amine) and one phenolic oxygen atom. Another CuII complex containing the same tetradentate ligand has been reported by Nanda et al. (2006). In the crystal structure of (I), intermolecular N—H···Cl hydrogen bonds involving all amine and the ammonium groups link the molecules into two-dimensional networks, which lie parallel to the (100) plane (Table 1, Fig. 2). The ammonium group also forms an intramolecular hydrogen bond with the phenolic O atom.

Related literature top

For the general role of Schiff bases, see: Gamovski et al. (1993). For thecrystal structures of related complexes, see: Nanda et al. (2006).

Experimental top

A solution of triethylenetetramine(1 mmol) in hot methanol (10 ml) was added dropwise to a methanol solution (5 ml) of 2-hydroxy-1-naphthaldehyde (2 mmol, 344.3 mg). The mixture was then stirred at 323 K for 2 h. An aqueous solution (2 ml) of cupric chloride dihydrate (1 mmol, 170.8 mg) was then added dropwise and the mixture stirred for another 5 h. The solution was held at room temperature for about one week, whereupon green prism-shaped crystals suitable for X-ray diffraction analysis were obtained (m.p. > 573 K).

Refinement top

All H atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic, methenyl), N—H = 0.91 Å (imine) or 0.89 Å (ammonium) and with with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N).

Structure description top

Schiff base complexes play an important role in coordination chemistry (Gamovski et al., 1993). In a continuation of a study of Schiff base ligands and their copper(II) complexes, we report here the title complex (Fig. 1), in which the ligand donor atoms consist of three nitrogen atoms (one imine and two amine) and one phenolic oxygen atom. Another CuII complex containing the same tetradentate ligand has been reported by Nanda et al. (2006). In the crystal structure of (I), intermolecular N—H···Cl hydrogen bonds involving all amine and the ammonium groups link the molecules into two-dimensional networks, which lie parallel to the (100) plane (Table 1, Fig. 2). The ammonium group also forms an intramolecular hydrogen bond with the phenolic O atom.

For the general role of Schiff bases, see: Gamovski et al. (1993). For thecrystal structures of related complexes, see: Nanda et al. (2006).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title complex showing the hydrogen bonding interactions as dashed lines.
(1-{2-[2-(2-Ammonioethylamino)ethylamino]ethyliminomethyl}-2-naphtholato- κ4O,N,N',N'')chloridocopper(II) chloride top
Crystal data top
[CuCl(C17H24N4O)]ClF(000) = 900
Mr = 434.84Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.2687 (17) ÅCell parameters from 3813 reflections
b = 13.0277 (18) Åθ = 2.5–26.7°
c = 12.7118 (18) ŵ = 1.45 mm1
β = 111.365 (2)°T = 298 K
V = 1892.1 (5) Å3Block, green
Z = 40.48 × 0.40 × 0.37 mm
Data collection top
Bruker CCD area-detector
diffractometer
3320 independent reflections
Radiation source: fine-focus sealed tube2646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.543, Tmax = 0.616k = 1512
9597 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0538P)2 + 1.3872P]
where P = (Fo2 + 2Fc2)/3
3320 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[CuCl(C17H24N4O)]ClV = 1892.1 (5) Å3
Mr = 434.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2687 (17) ŵ = 1.45 mm1
b = 13.0277 (18) ÅT = 298 K
c = 12.7118 (18) Å0.48 × 0.40 × 0.37 mm
β = 111.365 (2)°
Data collection top
Bruker CCD area-detector
diffractometer
3320 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2646 reflections with I > 2σ(I)
Tmin = 0.543, Tmax = 0.616Rint = 0.027
9597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
3320 reflectionsΔρmin = 0.40 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.70712 (3)0.22917 (3)0.92710 (3)0.03282 (14)
Cl10.59641 (8)0.15391 (7)0.72264 (7)0.0511 (2)
Cl20.26659 (9)0.14202 (8)0.07523 (10)0.0662 (3)
N10.8689 (2)0.22822 (18)0.9363 (2)0.0327 (6)
N20.7491 (2)0.09353 (18)1.0070 (2)0.0342 (6)
H20.72610.04260.95450.041*
N30.5626 (2)0.22573 (19)0.9765 (2)0.0377 (6)
H30.58090.26671.03850.045*
N40.4596 (3)0.4130 (2)0.8025 (3)0.0599 (8)
H4A0.44620.48030.79850.090*
H4B0.42060.38440.73580.090*
H4C0.53590.40170.82120.090*
O10.69138 (17)0.37176 (15)0.88974 (19)0.0406 (5)
C10.9272 (3)0.3033 (2)0.9185 (2)0.0328 (7)
H11.00570.29180.93080.039*
C20.8815 (2)0.4046 (2)0.8810 (2)0.0304 (6)
C30.7695 (3)0.4344 (2)0.8753 (2)0.0328 (7)
C40.7349 (3)0.5390 (2)0.8524 (3)0.0400 (7)
H40.66220.55970.85190.048*
C50.8061 (3)0.6090 (2)0.8313 (3)0.0418 (8)
H50.78160.67690.81810.050*
C60.9163 (3)0.5815 (2)0.8290 (3)0.0372 (7)
C70.9567 (3)0.4795 (2)0.8561 (2)0.0332 (7)
C81.0697 (3)0.4563 (2)0.8560 (3)0.0438 (8)
H81.09870.39000.87280.053*
C91.1367 (3)0.5298 (3)0.8319 (3)0.0502 (9)
H91.21080.51270.83330.060*
C101.0955 (3)0.6301 (3)0.8050 (3)0.0499 (9)
H101.14180.67940.78870.060*
C110.9881 (3)0.6547 (3)0.8030 (3)0.0471 (8)
H110.96050.72130.78420.057*
C120.9279 (3)0.1298 (2)0.9797 (3)0.0411 (8)
H12A1.01160.14031.01630.049*
H12B0.91450.08150.91820.049*
C130.8775 (3)0.0893 (2)1.0628 (3)0.0395 (7)
H13A0.90290.01921.08360.047*
H13B0.90290.13101.13070.047*
C140.6823 (3)0.0837 (3)1.0821 (3)0.0460 (8)
H14A0.71720.12581.14900.055*
H14B0.68200.01291.10550.055*
C150.5603 (3)0.1189 (2)1.0168 (3)0.0470 (8)
H15A0.52440.07380.95270.056*
H15B0.51400.11631.06440.056*
C160.4418 (3)0.2538 (3)0.9023 (4)0.0547 (10)
H16A0.38730.22430.93330.066*
H16B0.42550.22360.82840.066*
C170.4203 (4)0.3678 (3)0.8885 (4)0.0680 (12)
H17A0.33730.38080.86780.082*
H17B0.46090.40120.96040.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0285 (2)0.0288 (2)0.0378 (2)0.00173 (14)0.00819 (16)0.00456 (15)
Cl10.0517 (5)0.0531 (5)0.0416 (5)0.0067 (4)0.0088 (4)0.0052 (4)
Cl20.0524 (6)0.0529 (6)0.0853 (7)0.0006 (4)0.0156 (5)0.0208 (5)
N10.0287 (13)0.0297 (13)0.0362 (14)0.0036 (10)0.0075 (11)0.0021 (11)
N20.0332 (14)0.0299 (13)0.0334 (14)0.0002 (10)0.0048 (11)0.0015 (11)
N30.0373 (14)0.0330 (14)0.0456 (16)0.0008 (11)0.0183 (12)0.0041 (11)
N40.0419 (17)0.0528 (19)0.077 (2)0.0075 (14)0.0127 (16)0.0175 (17)
O10.0283 (11)0.0320 (12)0.0581 (14)0.0030 (9)0.0117 (10)0.0069 (10)
C10.0287 (15)0.0347 (16)0.0330 (16)0.0019 (12)0.0087 (13)0.0028 (13)
C20.0323 (15)0.0295 (15)0.0249 (15)0.0011 (12)0.0050 (12)0.0033 (12)
C30.0349 (16)0.0288 (15)0.0304 (16)0.0018 (13)0.0066 (13)0.0024 (12)
C40.0362 (17)0.0326 (17)0.047 (2)0.0045 (13)0.0108 (15)0.0005 (14)
C50.048 (2)0.0275 (16)0.0448 (19)0.0033 (14)0.0114 (16)0.0015 (14)
C60.0415 (18)0.0325 (16)0.0332 (17)0.0052 (13)0.0083 (14)0.0007 (13)
C70.0345 (16)0.0344 (16)0.0258 (15)0.0035 (13)0.0051 (13)0.0055 (12)
C80.0436 (19)0.0414 (19)0.047 (2)0.0032 (15)0.0172 (16)0.0012 (15)
C90.042 (2)0.057 (2)0.054 (2)0.0056 (16)0.0204 (17)0.0024 (17)
C100.053 (2)0.051 (2)0.047 (2)0.0159 (17)0.0193 (18)0.0033 (16)
C110.058 (2)0.0377 (18)0.0417 (19)0.0077 (16)0.0135 (17)0.0023 (15)
C120.0310 (17)0.0336 (17)0.054 (2)0.0074 (13)0.0098 (15)0.0043 (14)
C130.0352 (17)0.0320 (17)0.0422 (18)0.0044 (13)0.0032 (14)0.0063 (13)
C140.048 (2)0.0414 (19)0.049 (2)0.0008 (15)0.0181 (17)0.0124 (16)
C150.047 (2)0.0382 (18)0.060 (2)0.0022 (15)0.0240 (18)0.0106 (16)
C160.0349 (19)0.059 (2)0.070 (3)0.0065 (16)0.0185 (18)0.0179 (19)
C170.061 (3)0.067 (3)0.083 (3)0.026 (2)0.035 (2)0.021 (2)
Geometric parameters (Å, º) top
Cu1—O11.910 (2)C5—H50.9300
Cu1—N11.946 (2)C6—C71.415 (4)
Cu1—N22.010 (2)C6—C111.417 (4)
Cu1—N32.085 (3)C7—C81.420 (4)
Cu1—Cl12.6437 (9)C8—C91.367 (5)
N1—C11.280 (4)C8—H80.9300
N1—C121.477 (4)C9—C101.398 (5)
N2—C141.472 (4)C9—H90.9300
N2—C131.475 (4)C10—C111.347 (5)
N2—H20.9100C10—H100.9300
N3—C161.484 (4)C11—H110.9300
N3—C151.487 (4)C12—C131.502 (5)
N3—H30.9100C12—H12A0.9700
N4—C171.470 (5)C12—H12B0.9700
N4—H4A0.8900C13—H13A0.9700
N4—H4B0.8900C13—H13B0.9700
N4—H4C0.8900C14—C151.495 (5)
O1—C31.321 (3)C14—H14A0.9700
C1—C21.445 (4)C14—H14B0.9700
C1—H10.9300C15—H15A0.9700
C2—C31.404 (4)C15—H15B0.9700
C2—C71.455 (4)C16—C171.507 (5)
C3—C41.426 (4)C16—H16A0.9700
C4—C51.355 (4)C16—H16B0.9700
C4—H40.9300C17—H17A0.9700
C5—C61.410 (4)C17—H17B0.9700
O1—Cu1—N191.70 (9)C6—C7—C2119.3 (3)
O1—Cu1—N2164.83 (10)C8—C7—C2123.6 (3)
N1—Cu1—N284.06 (10)C9—C8—C7121.2 (3)
O1—Cu1—N394.34 (9)C9—C8—H8119.4
N1—Cu1—N3160.46 (11)C7—C8—H8119.4
N2—Cu1—N385.30 (10)C8—C9—C10121.0 (3)
O1—Cu1—Cl198.46 (7)C8—C9—H9119.5
N1—Cu1—Cl1101.77 (8)C10—C9—H9119.5
N2—Cu1—Cl196.66 (7)C11—C10—C9119.5 (3)
N3—Cu1—Cl195.70 (8)C11—C10—H10120.3
C1—N1—C12120.0 (3)C9—C10—H10120.3
C1—N1—Cu1127.5 (2)C10—C11—C6121.4 (3)
C12—N1—Cu1112.23 (19)C10—C11—H11119.3
C14—N2—C13115.7 (2)C6—C11—H11119.3
C14—N2—Cu1107.68 (18)N1—C12—C13107.3 (2)
C13—N2—Cu1107.95 (18)N1—C12—H12A110.3
C14—N2—H2108.4C13—C12—H12A110.3
C13—N2—H2108.4N1—C12—H12B110.3
Cu1—N2—H2108.4C13—C12—H12B110.3
C16—N3—C15108.0 (2)H12A—C12—H12B108.5
C16—N3—Cu1124.5 (2)N2—C13—C12106.9 (2)
C15—N3—Cu1104.42 (18)N2—C13—H13A110.4
C16—N3—H3106.3C12—C13—H13A110.4
C15—N3—H3106.3N2—C13—H13B110.4
Cu1—N3—H3106.3C12—C13—H13B110.4
C17—N4—H4A109.5H13A—C13—H13B108.6
C17—N4—H4B109.5N2—C14—C15107.1 (3)
H4A—N4—H4B109.5N2—C14—H14A110.3
C17—N4—H4C109.5C15—C14—H14A110.3
H4A—N4—H4C109.5N2—C14—H14B110.3
H4B—N4—H4C109.5C15—C14—H14B110.3
C3—O1—Cu1128.49 (18)H14A—C14—H14B108.6
N1—C1—C2125.5 (3)N3—C15—C14109.7 (3)
N1—C1—H1117.2N3—C15—H15A109.7
C2—C1—H1117.2C14—C15—H15A109.7
C3—C2—C1121.6 (3)N3—C15—H15B109.7
C3—C2—C7119.3 (3)C14—C15—H15B109.7
C1—C2—C7118.9 (3)H15A—C15—H15B108.2
O1—C3—C2124.6 (3)N3—C16—C17114.1 (3)
O1—C3—C4116.2 (3)N3—C16—H16A108.7
C2—C3—C4119.2 (3)C17—C16—H16A108.7
C5—C4—C3121.2 (3)N3—C16—H16B108.7
C5—C4—H4119.4C17—C16—H16B108.7
C3—C4—H4119.4H16A—C16—H16B107.6
C4—C5—C6121.7 (3)N4—C17—C16113.0 (3)
C4—C5—H5119.1N4—C17—H17A109.0
C6—C5—H5119.1C16—C17—H17A109.0
C5—C6—C7119.1 (3)N4—C17—H17B109.0
C5—C6—C11121.1 (3)C16—C17—H17B109.0
C7—C6—C11119.8 (3)H17A—C17—H17B107.8
C6—C7—C8117.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl2i0.912.443.225 (3)144
N3—H3···Cl1ii0.912.503.388 (3)165
N4—H4A···Cl1iii0.892.313.204 (3)177
N4—H4B···Cl2ii0.892.253.079 (4)156
N4—H4C···O10.891.832.703 (4)167
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CuCl(C17H24N4O)]Cl
Mr434.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.2687 (17), 13.0277 (18), 12.7118 (18)
β (°) 111.365 (2)
V3)1892.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.48 × 0.40 × 0.37
Data collection
DiffractometerBruker CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.543, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
9597, 3320, 2646
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.00
No. of reflections3320
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.40

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl2i0.912.443.225 (3)144
N3—H3···Cl1ii0.912.503.388 (3)165
N4—H4A···Cl1iii0.892.313.204 (3)177
N4—H4B···Cl2ii0.892.253.079 (4)156
N4—H4C···O10.891.832.703 (4)167
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

References

First citationGamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef Web of Science Google Scholar
First citationNanda, P. K., Bera, M., Aromi, G. & Ray, D. (2006). Polyhedron, 25, 2791–2799.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds