Download citation
Download citation
link to html
In 2,4-di­hydroxy­benz­aldehyde 2,4-di­nitro­phenyl­hydrazone N,N-di­methyl­form­amide solvate {or 4-[(2,4-di­nitro­phenyl)­hydrazono­methyl]­benzene-1,3-diol N,N-di­methyl­form­amide solvate}, C13H10N4O6·C3H7NO, (X), 2,4-di­hydroxy­aceto­phenone 2,4-di­nitro­phenyl­hydrazone N,N-di­methyl­form­am­ide solvate (or 4-{1-[(2,4-di­nitro­phenyl)hydrazono]ethyl}benzene-1,3-diol N,N-di­methyl­form­amide solvate), C14H12N4O6·C3H7NO, (XI), and 2,4-di­hydroxy­benzo­phenone 2,4-di­nitro­phenyl­hydrazone N,N-di­methyl­acet­amide solvate (or 4-­{[(2,4-di­nitro­phenyl)hydrazono]phenyl­methyl}benzene-1,3-diol N,N-di­methyl­acet­amide solvate), C19H14N4O6·C4H9NO, (XII), the molecules all lack a center of symmetry, crystallize in centrosymmetric space groups and have been observed to exhibit non-linear optical activity. In each case, the hydrazone skeleton is fairly planar, facilitated by the presence of two intramolecular hydrogen bonds and some partial N-N double-bond character. Each molecule is hydrogen bonded to one solvent mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103027197/ln1175sup1.cif
Contains datablocks X, XI, XII, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027197/ln1175Xsup2.hkl
Contains datablock X

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027197/ln1175XIsup3.hkl
Contains datablock XI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027197/ln1175XIIsup4.hkl
Contains datablock XII

CCDC references: 233119; 233120; 233121

Comment top

Hydrazone derivatives are an attractive class of nonlinear optical (NLO) crystalline materials because of their large molecular nonlinearities and their remarkable propensity to form noncentrosymmetric crystal systems (Serbutoviez et al., 1995). The current approach to the development of practical NLO materials has focused on the use of a dihydroxy functionalized hydrazone chromophore that can be easily synthesized and subsequently incorporated into a commercial epoxy polymer system. The preliminary goal was to provide for a systematic variation of the chromophore structure to study the resulting structure-property relationships. To this end, three hydrazones were synthesized by coupling 2,4-dinitrophenylhydrazine (2,4-DNPH) with three carbonyl compounds, namely, 2,4-dihydroxybenzaldehyde, 2,4-dihydroxyacetophenone and 2,4-dihydroxybenzophenone, to yield hydrazones (X), (XI) and (XII), respectively. \sch

To confirm the structures of the three hydrazones, which are part of a series of related compounds currently under investigation (including compounds I—IX which are still in progress), the single-crystal data for these compounds are given here. While each of the three compounds demonstrates NLO properties, it should be noted that each crystallizes in a centrosymmetric space group and that each molecule lacks a center of symmetry.

As seen in Figs. 1–3, all three compounds crystallize in a 1:1 ratio with solvent molecules [N,N-dimethylformamide (DMF) for (X) and (XI), and N,N-dimethylacetamide (DMAc) for (XII)], which accept a hydrogen bond at atom O7 from atom H1A of the para-hydroxy group of the hydrazone. In each case, across the C7N1 bond, N2 is E to C4; simultaneously, each R substituent on C7 is Z to N2. In each molecule, two intramolecular hydrogen bonds, H2A···N1 and H2B···O3, help to facilitate the planarity of each hydrazone.

The 23-atom hydrazone skeleton [atoms O1—O6, N1—N4 and C1—C13, plus C14 for (XI) and (XII)] of (X) is the most planar of the three compounds, as it has an r.m.s. deviation of 0.061 Å, with atoms O2 and C5 having the largest deviations [0.137 (3) and 0.117 (3) Å, respectively] from the plane. On the other hand, (XI) and (XII) display some buckling. They have larger r.m.s. deviations [0.190 and 0.122 Å, respectively], in part due to atoms with larger deviations from the plane of the skeleton. For example, in (XI), atoms O2 and O6 have deviations of 0.488 (2) and 0.491 (2) Å, respectively, while in (XII), atoms O5 and C5 have deviations of 0.330 (3) and 0.180 (3) Å, respectively, from the 23-atom plane of the skeleton.

In the case of compound (X), even the solvent molecule is coplanar with the plane of the hydrazone molecule; the r.m.s. deviation for all non-H atoms is 0.081 Å. However, neither solvent molecule in compounds (XI) and (XII) is coplanar with the hydrazone molecule (Figs. 2 and 3; Tables 3 and 5). The phenyl substituent (C14—C19) in compound (XII) is nearly perpendicular (Table 5) to the plane of the hydrazone skeleton, likely due in large part to steric problems around C7.

While the intramolecular hydrogen bonding minimizes the rotational freedom about the C4—C7 and N2—C8 bonds, rotation about N1—N2 is also reduced. The average of the C7N1 bond lengths (Table 6) is ~3σ longer than the average of 13 CN bond lengths (in PhCNH coordination compounds) gleaned from the Cambridge Structural Database (CSD, Version?; Allen, 2002). Similarly, the average of the N1—N2 bond lengths (Table 6) is ~20σ shorter than the average of five N—N bond lengths in hydrazine-solvated compounds in the CSD. This likely implies some N1—N2 double-bond character, thus reducing rotational mobility. The extent of this character changes as substituents vary on C7. The range of C7N1 bond lengths is 0.020 Å (~7σ), while N1—N2 is 0.015 Å (~5σ).

As seen in Table 6, some bond lengths near C7 are affected significantly (>= 3σ) by changes in the R substituent on C7. Specifically, increases in bond lengths are noted for C7N1, C4—C7 and C4C5, concomitant with decreases in the N1—N2 and O2—C3 bond lengths as the R substituent goes from –H to –CH3 to –Ph. The effect of going from H to alkyl to aromatic groups is felt as much as three bonds away from the C7—R bond.

Table 1. Hydrogen-bonding geometry (Å, °) for (X).

Table 2. Hydrogen-bonding geometry (Å, °) for (XI).

Table 3. Selected RMS deviations (Å) and dihedral angle (°) for (XI).

Table 4. Hydrogen-bonding geometry (Å, °) for (XII).

Table 5. Selected RMS deviations (Å) and dihedral angles (°) for (XII).

Table 6. Selected interatomic distances (Å) for compounds (X)-(XII): the effects of changing C7—R = –H to –CH3 to –Ph.

Experimental top

The three hydrazones were synthesized according to a known procedure (Vogel, 1989) by mixing a solution of 2,4-DNPH in an ethanol-tetrahydrofuran solvent mixture [1:1 for (X), 3:1 for (XI) and 2:1 for (XII)] with the three dihydroxy carbonyl compounds in a 1:1.05 mole ratio with concentrated HCl as a catalyst. The decomposition points (>523 K for each of the three hydrazones) were determined on a Thermal Analysis differential scanning calorimeter at a heating rate of 10 K min−1. Crystals suitable for diffraction were grown by slow evaporation of a saturated solution, in DMF for hydrazones (X) and (XI), and in DMAc for hydrazone (XII). Each crystal was placed into a capillary and sealed with mother liquor.

Refinement top

In all three cases, the approximate positions of the two hydroxy H atoms were first obtained from a difference map. These atoms were then placed in `ideal' positions and refined as a rotating group. Bond lengths were constrained (AFIX 43) at 0.93 Å for aromatic C—H, 0.96 Å (AFIX 137) for methyl C—H, 0.86 Å (AFIX 43) for N—H and 0.82 Å (AFIX 147) for O—H. Uiso(H) values were fixed at 1.5Ueq for OH and methyl H atoms, and 1.2 Ueq for all other H atoms. In the final stages of refinement for all three compounds, a few very small or negative Fo values were deemed to be in strong disagreement with their Fc values. The corresponding nine, 12, and 22 reflections for (X), (XI), and (XII), respectively, were eliminated from the final refinement. The percentage decay of the three standards was calculated as the average of their σ(I) values.

Computing details top

For all compounds, data collection: P3/P4-PC Diffractometer Program (Siemens, 1991); cell refinement: P3/P4-PC Diffractometer Program; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990b); software used to prepare material for publication: SHELXTL/PC and SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (X), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, and significant H atoms are labeled and drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the asymmetric unit of (XI), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, and significant H atoms are labeled and drawn as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of the asymmetric unit of (XII), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, and significant H atoms are labeled and drawn as small spheres of arbitrary radii.
(X) 2,4-dihydroxybenzaldehyde 2,4-dinitrophenylhydrazone N,N-dimethylformamide solvate top
Crystal data top
C13H10N4O6·C3H7NOF(000) = 816
Mr = 391.35Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 49 reflections
a = 19.697 (4) Åθ = 7.8–17.5°
b = 7.152 (1) ŵ = 0.12 mm1
c = 12.949 (3) ÅT = 293 K
β = 100.34 (2)°Block cut from larger crystal, red-orange
V = 1794.5 (6) Å30.50 × 0.39 × 0.13 mm
Z = 4
Data collection top
Siemens P4
diffractometer
Rint = 0.013
Radiation source: normal-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 2323
θ/2θ scansk = 82
3504 measured reflectionsl = 015
3119 independent reflections3 standard reflections every 50 reflections
1774 reflections with I > 2σ(I) intensity decay: 2.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0658P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3110 reflectionsΔρmax = 0.21 e Å3
258 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0059 (11)
Crystal data top
C13H10N4O6·C3H7NOV = 1794.5 (6) Å3
Mr = 391.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.697 (4) ŵ = 0.12 mm1
b = 7.152 (1) ÅT = 293 K
c = 12.949 (3) Å0.50 × 0.39 × 0.13 mm
β = 100.34 (2)°
Data collection top
Siemens P4
diffractometer
Rint = 0.013
3504 measured reflections3 standard reflections every 50 reflections
3119 independent reflections intensity decay: 2.3%
1774 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
3110 reflectionsΔρmin = 0.16 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20622 (9)0.4970 (3)0.63510 (14)0.0618 (6)
H1A0.23930.52320.58930.093*
O20.01956 (10)0.2631 (4)0.68351 (14)0.0707 (7)
H2A0.04940.22880.65090.106*
O30.16439 (11)0.0749 (3)0.27547 (15)0.0693 (7)
O40.26547 (12)0.0371 (4)0.27488 (17)0.0992 (10)
O50.41862 (12)0.2099 (4)0.5822 (2)0.0946 (9)
O60.38850 (12)0.1867 (4)0.7335 (2)0.1021 (10)
N10.07225 (11)0.1772 (3)0.51162 (16)0.0425 (6)
N20.12061 (11)0.1243 (3)0.45155 (17)0.0447 (6)
H2B0.11030.13320.38430.054*
N30.22003 (13)0.0131 (4)0.32216 (19)0.0594 (7)
N40.37704 (13)0.1689 (4)0.6381 (3)0.0692 (8)
C10.15366 (13)0.4325 (4)0.5899 (2)0.0442 (7)
C20.09374 (14)0.3789 (4)0.6552 (2)0.0489 (7)
H20.09060.38780.72760.059*
C30.03840 (13)0.3122 (4)0.6147 (2)0.0452 (7)
C40.04186 (12)0.2989 (4)0.50534 (19)0.0378 (6)
C50.10279 (13)0.3554 (4)0.4422 (2)0.0439 (7)
H50.10610.34800.36970.053*
C60.15855 (13)0.4217 (4)0.4815 (2)0.0456 (7)
H60.19860.45850.43670.055*
C70.01475 (13)0.2344 (4)0.4583 (2)0.0413 (7)
H70.00940.23420.38550.050*
C80.18308 (13)0.0594 (4)0.4956 (2)0.0403 (7)
C90.20271 (13)0.0459 (4)0.6059 (2)0.0491 (8)
H90.17260.08850.64850.059*
C100.26483 (14)0.0283 (4)0.6514 (2)0.0526 (8)
H100.27640.03740.72410.063*
C110.31078 (13)0.0903 (4)0.5886 (2)0.0505 (8)
C120.29525 (14)0.0766 (4)0.4821 (2)0.0519 (8)
H120.32660.11750.44110.062*
C130.23262 (13)0.0015 (4)0.43541 (19)0.0440 (7)
O70.32368 (12)0.6028 (4)0.5204 (2)0.0875 (8)
N50.40595 (14)0.6777 (4)0.3823 (3)0.0777 (9)
C140.34287 (19)0.6195 (5)0.4276 (3)0.0757 (10)
H140.31180.58990.38380.091*
C150.45853 (19)0.7223 (7)0.4422 (3)0.1127 (16)
H15A0.44300.68800.51420.169*
H15B0.49990.65470.41460.169*
H15C0.46780.85410.43770.169*
C160.4236 (2)0.6872 (6)0.2695 (4)0.1119 (15)
H16A0.38320.66420.23960.168*
H16B0.44150.80910.24890.168*
H16C0.45800.59450.24480.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (12)0.0895 (17)0.0494 (12)0.0104 (12)0.0189 (10)0.0009 (12)
O20.0580 (12)0.114 (2)0.0399 (11)0.0272 (13)0.0068 (10)0.0106 (12)
O30.0648 (14)0.0999 (19)0.0434 (12)0.0031 (14)0.0098 (10)0.0029 (12)
O40.0826 (16)0.167 (3)0.0586 (14)0.0218 (18)0.0405 (13)0.0050 (16)
O50.0561 (14)0.115 (2)0.114 (2)0.0212 (15)0.0206 (15)0.0033 (18)
O60.0678 (16)0.149 (3)0.0830 (19)0.0151 (17)0.0043 (14)0.0246 (19)
N10.0437 (12)0.0447 (14)0.0423 (12)0.0024 (11)0.0160 (11)0.0004 (11)
N20.0467 (13)0.0514 (15)0.0379 (12)0.0008 (12)0.0131 (10)0.0036 (11)
N30.0584 (16)0.079 (2)0.0446 (14)0.0084 (15)0.0194 (13)0.0093 (14)
N40.0452 (15)0.076 (2)0.084 (2)0.0042 (15)0.0040 (15)0.0018 (18)
C10.0445 (15)0.0491 (18)0.0404 (15)0.0061 (14)0.0115 (12)0.0004 (13)
C20.0527 (16)0.064 (2)0.0320 (14)0.0014 (15)0.0121 (13)0.0049 (13)
C30.0451 (16)0.0533 (19)0.0372 (15)0.0001 (14)0.0073 (12)0.0073 (14)
C40.0412 (14)0.0374 (16)0.0353 (14)0.0057 (12)0.0085 (12)0.0007 (12)
C50.0491 (16)0.0490 (18)0.0340 (14)0.0059 (14)0.0083 (12)0.0034 (13)
C60.0429 (15)0.0517 (19)0.0404 (15)0.0048 (14)0.0030 (12)0.0025 (13)
C70.0475 (16)0.0409 (17)0.0356 (14)0.0060 (14)0.0074 (13)0.0019 (12)
C80.0420 (15)0.0356 (16)0.0448 (16)0.0071 (13)0.0119 (12)0.0045 (13)
C90.0440 (16)0.060 (2)0.0453 (16)0.0016 (15)0.0135 (13)0.0040 (15)
C100.0516 (17)0.062 (2)0.0450 (16)0.0054 (16)0.0093 (13)0.0029 (15)
C110.0369 (15)0.0509 (19)0.064 (2)0.0047 (14)0.0097 (14)0.0006 (16)
C120.0446 (16)0.055 (2)0.0604 (19)0.0031 (15)0.0206 (14)0.0087 (16)
C130.0451 (15)0.0478 (18)0.0416 (15)0.0067 (14)0.0142 (12)0.0053 (14)
O70.0690 (16)0.102 (2)0.0882 (19)0.0046 (14)0.0040 (14)0.0070 (16)
N50.0511 (16)0.072 (2)0.104 (2)0.0023 (15)0.0003 (16)0.0019 (19)
C140.066 (2)0.068 (3)0.094 (3)0.006 (2)0.014 (2)0.012 (2)
C150.075 (3)0.127 (4)0.140 (4)0.008 (3)0.030 (3)0.014 (3)
C160.097 (3)0.121 (4)0.107 (4)0.008 (3)0.010 (3)0.009 (3)
Geometric parameters (Å, º) top
O1—C11.358 (3)C6—H60.9300
O1—H1A0.8200C7—H70.9300
O2—C31.362 (3)C8—C91.414 (4)
O2—H2A0.8200C8—C131.422 (3)
O3—N31.234 (3)C9—C101.366 (4)
O4—N31.225 (3)C9—H90.9300
O5—N41.223 (3)C10—C111.393 (4)
O6—N41.221 (3)C10—H100.9300
N1—C71.283 (3)C11—C121.362 (4)
N1—N21.386 (3)C12—C131.381 (4)
N2—C81.343 (3)C12—H120.9300
N2—H2B0.8600O7—C141.200 (4)
N3—C131.447 (3)N5—C141.341 (4)
N4—C111.459 (4)N5—C151.436 (4)
C1—C21.377 (4)N5—C161.442 (5)
C1—C61.392 (3)C14—H140.9300
C2—C31.377 (4)C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.408 (3)C15—H15C0.9600
C4—C51.386 (3)C16—H16A0.9600
C4—C71.439 (3)C16—H16B0.9600
C5—C61.375 (3)C16—H16C0.9600
C5—H50.9300
C1—O1—H1A109.5C9—C8—C13116.3 (2)
C3—O2—H2A109.5C10—C9—C8121.6 (2)
C7—N1—N2114.5 (2)C10—C9—H9119.2
C8—N2—N1121.7 (2)C8—C9—H9119.2
C8—N2—H2B119.2C9—C10—C11119.8 (3)
N1—N2—H2B119.2C9—C10—H10120.1
O4—N3—O3121.6 (3)C11—C10—H10120.1
O4—N3—C13118.5 (3)C12—C11—C10121.1 (3)
O3—N3—C13119.9 (2)C12—C11—N4119.5 (3)
O6—N4—O5123.5 (3)C10—C11—N4119.3 (3)
O6—N4—C11118.2 (3)C11—C12—C13119.5 (3)
O5—N4—C11118.3 (3)C11—C12—H12120.3
O1—C1—C2117.8 (2)C13—C12—H12120.3
O1—C1—C6122.2 (2)C12—C13—C8121.7 (2)
C2—C1—C6120.0 (3)C12—C13—N3116.7 (2)
C1—C2—C3120.8 (2)C8—C13—N3121.6 (2)
C1—C2—H2119.6C14—N5—C15122.3 (4)
C3—C2—H2119.6C14—N5—C16119.6 (4)
O2—C3—C2117.9 (2)C15—N5—C16118.0 (3)
O2—C3—C4121.6 (2)O7—C14—N5124.7 (4)
C2—C3—C4120.5 (2)O7—C14—H14117.7
C5—C4—C3117.0 (2)N5—C14—H14117.7
C5—C4—C7119.9 (2)N5—C15—H15A109.5
C3—C4—C7123.1 (2)N5—C15—H15B109.5
C6—C5—C4123.1 (2)H15A—C15—H15B109.5
C6—C5—H5118.4N5—C15—H15C109.5
C4—C5—H5118.4H15A—C15—H15C109.5
C5—C6—C1118.5 (3)H15B—C15—H15C109.5
C5—C6—H6120.7N5—C16—H16A109.5
C1—C6—H6120.7N5—C16—H16B109.5
N1—C7—C4123.4 (2)H16A—C16—H16B109.5
N1—C7—H7118.3N5—C16—H16C109.5
C4—C7—H7118.3H16A—C16—H16C109.5
N2—C8—C9121.1 (2)H16B—C16—H16C109.5
N2—C8—C13122.6 (2)
C7—N1—N2—C8179.3 (2)C8—C9—C10—C110.9 (4)
O1—C1—C2—C3180.0 (3)C9—C10—C11—C120.7 (4)
C6—C1—C2—C30.7 (4)C9—C10—C11—N4179.9 (3)
C1—C2—C3—O2179.4 (3)O6—N4—C11—C12177.0 (3)
C1—C2—C3—C40.5 (4)O5—N4—C11—C124.4 (5)
O2—C3—C4—C5178.9 (3)O6—N4—C11—C103.8 (5)
C2—C3—C4—C50.0 (4)O5—N4—C11—C10174.8 (3)
O2—C3—C4—C70.3 (4)C10—C11—C12—C130.6 (4)
C2—C3—C4—C7178.6 (3)N4—C11—C12—C13179.7 (3)
C3—C4—C5—C60.1 (4)C11—C12—C13—C81.1 (4)
C7—C4—C5—C6178.8 (3)C11—C12—C13—N3178.6 (3)
C4—C5—C6—C10.1 (4)N2—C8—C13—C12176.7 (3)
O1—C1—C6—C5179.8 (3)C9—C8—C13—C122.5 (4)
C2—C1—C6—C50.5 (4)N2—C8—C13—N33.7 (4)
N2—N1—C7—C4178.8 (2)C9—C8—C13—N3177.1 (3)
C5—C4—C7—N1178.8 (3)O4—N3—C13—C121.6 (4)
C3—C4—C7—N12.6 (4)O3—N3—C13—C12178.3 (3)
N1—N2—C8—C91.3 (4)O4—N3—C13—C8178.0 (3)
N1—N2—C8—C13177.8 (2)O3—N3—C13—C82.1 (4)
N2—C8—C9—C10176.8 (3)C15—N5—C14—O71.7 (6)
C13—C8—C9—C102.4 (4)C16—N5—C14—O7178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.821.832.626 (3)163
O2—H2A···N10.821.972.691 (3)146
N2—H2B···O30.861.962.603 (3)131
(XI) 2,4-dihydroxyacetophenone 2,4-dinitrophenylhydrazone N,N-dimethylformamide solvate top
Crystal data top
C14H12N4O6·C3H7NOZ = 2
Mr = 405.37F(000) = 424
Triclinic, P1Dx = 1.418 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.928 (1) ÅCell parameters from 50 reflections
b = 9.146 (1) Åθ = 9.6–18.8°
c = 14.362 (2) ŵ = 0.11 mm1
α = 104.45 (1)°T = 293 K
β = 91.04 (1)°Block cut from larger crystal, red-orange
γ = 108.80 (1)°0.54 × 0.43 × 0.31 mm
V = 949.1 (2) Å3
Data collection top
Siemens Bruker P4
diffractometer
Rint = 0.011
Radiation source: normal-focus sealed tubeθmax = 25.1°, θmin = 2.4°
Graphite monochromatorh = 39
θ/2θ scansk = 1010
4336 measured reflectionsl = 1717
3310 independent reflections3 standard reflections every 50 reflections
2207 reflections with I > 2σ(I) intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.1707P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3298 reflectionsΔρmax = 0.18 e Å3
268 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (4)
Crystal data top
C14H12N4O6·C3H7NOγ = 108.80 (1)°
Mr = 405.37V = 949.1 (2) Å3
Triclinic, P1Z = 2
a = 7.928 (1) ÅMo Kα radiation
b = 9.146 (1) ŵ = 0.11 mm1
c = 14.362 (2) ÅT = 293 K
α = 104.45 (1)°0.54 × 0.43 × 0.31 mm
β = 91.04 (1)°
Data collection top
Siemens Bruker P4
diffractometer
Rint = 0.011
4336 measured reflections3 standard reflections every 50 reflections
3310 independent reflections intensity decay: 1.5%
2207 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
3298 reflectionsΔρmin = 0.16 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9344 (3)1.0729 (2)0.25434 (15)0.0768 (6)
H1A0.88571.11360.28650.115*
O20.8256 (2)0.7735 (2)0.02812 (13)0.0605 (5)
H2A0.75220.74180.00820.091*
O30.0896 (2)0.5561 (2)0.16163 (12)0.0587 (5)
O40.0454 (2)0.4155 (2)0.26474 (14)0.0677 (5)
O50.5254 (3)0.3544 (2)0.43731 (14)0.0751 (6)
O60.7907 (3)0.5222 (3)0.44086 (15)0.0835 (7)
N10.5179 (2)0.7115 (2)0.04011 (13)0.0455 (5)
N20.4009 (2)0.6433 (2)0.09896 (13)0.0475 (5)
H2B0.28860.62790.08810.057*
N30.1458 (3)0.4964 (2)0.21849 (14)0.0488 (5)
N40.6333 (3)0.4564 (3)0.40639 (15)0.0586 (6)
C10.8128 (4)0.9926 (3)0.20335 (17)0.0543 (6)
C20.8725 (3)0.9207 (3)0.14189 (17)0.0531 (6)
H20.99140.92540.13860.064*
C30.7567 (3)0.8418 (3)0.08513 (15)0.0449 (5)
C40.5752 (3)0.8332 (2)0.08865 (14)0.0420 (5)
C50.5206 (3)0.9046 (3)0.15349 (16)0.0518 (6)
H50.40140.89880.15870.062*
C60.6347 (4)0.9830 (3)0.20983 (17)0.0569 (6)
H60.59291.02920.25200.068*
C70.4505 (3)0.7573 (2)0.02643 (15)0.0411 (5)
C80.4583 (3)0.5995 (2)0.17369 (15)0.0410 (5)
C90.6413 (3)0.6257 (3)0.19676 (16)0.0477 (6)
H90.72530.67470.15980.057*
C100.6973 (3)0.5810 (3)0.27173 (16)0.0496 (6)
H100.81890.60200.28670.060*
C110.5733 (3)0.5038 (3)0.32605 (15)0.0466 (6)
C120.3934 (3)0.4741 (3)0.30675 (16)0.0474 (6)
H120.31120.42120.34300.057*
C130.3364 (3)0.5241 (2)0.23255 (15)0.0420 (5)
C140.2557 (3)0.7358 (3)0.04015 (18)0.0570 (6)
H8A0.22810.81190.01100.086*
H8B0.18550.62890.03910.086*
H8C0.22840.75260.10120.086*
O70.7850 (3)1.2001 (2)0.36761 (14)0.0889 (7)
N50.7922 (3)1.1047 (3)0.52750 (15)0.0649 (6)
C150.8120 (4)1.2182 (3)0.44816 (18)0.0595 (7)
H150.85051.32290.45340.071*
C160.8313 (6)1.1434 (6)0.6188 (2)0.1163 (15)
H16A0.87111.25760.60840.174*
H16B0.72491.09480.66380.174*
H16C0.92351.10320.64450.174*
C170.7288 (7)0.9375 (4)0.5270 (3)0.1239 (15)
H17A0.69830.92960.46360.186*
H17B0.82130.89220.54390.186*
H17C0.62480.88010.57310.186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0817 (14)0.0814 (14)0.0867 (14)0.0332 (11)0.0406 (11)0.0471 (11)
O20.0495 (10)0.0771 (12)0.0691 (12)0.0273 (9)0.0118 (8)0.0363 (10)
O30.0433 (10)0.0763 (12)0.0596 (10)0.0209 (9)0.0044 (8)0.0230 (9)
O40.0473 (10)0.0772 (12)0.0839 (13)0.0161 (9)0.0228 (9)0.0364 (10)
O50.0892 (15)0.0759 (13)0.0760 (13)0.0311 (12)0.0191 (11)0.0434 (11)
O60.0645 (13)0.1172 (18)0.0811 (14)0.0315 (12)0.0039 (11)0.0480 (13)
N10.0470 (11)0.0475 (10)0.0434 (10)0.0164 (9)0.0085 (8)0.0138 (8)
N20.0413 (11)0.0549 (11)0.0495 (11)0.0163 (9)0.0080 (9)0.0191 (9)
N30.0401 (11)0.0508 (11)0.0523 (11)0.0135 (9)0.0105 (9)0.0102 (9)
N40.0673 (15)0.0657 (14)0.0550 (12)0.0332 (12)0.0110 (11)0.0230 (11)
C10.0635 (16)0.0493 (13)0.0510 (13)0.0190 (12)0.0175 (12)0.0145 (11)
C20.0487 (14)0.0542 (14)0.0612 (14)0.0224 (12)0.0149 (11)0.0166 (11)
C30.0471 (13)0.0425 (12)0.0444 (12)0.0161 (10)0.0039 (10)0.0094 (10)
C40.0452 (13)0.0411 (11)0.0381 (11)0.0151 (10)0.0044 (9)0.0074 (9)
C50.0503 (14)0.0601 (14)0.0479 (13)0.0228 (12)0.0026 (11)0.0144 (11)
C60.0683 (17)0.0630 (15)0.0492 (13)0.0289 (13)0.0111 (12)0.0235 (12)
C70.0409 (12)0.0403 (11)0.0382 (11)0.0138 (10)0.0010 (9)0.0038 (9)
C80.0435 (12)0.0376 (11)0.0409 (11)0.0155 (9)0.0067 (9)0.0063 (9)
C90.0436 (13)0.0529 (13)0.0466 (12)0.0145 (11)0.0124 (10)0.0152 (10)
C100.0447 (13)0.0562 (14)0.0511 (13)0.0216 (11)0.0057 (11)0.0139 (11)
C110.0546 (15)0.0467 (13)0.0432 (12)0.0227 (11)0.0081 (10)0.0128 (10)
C120.0538 (14)0.0413 (12)0.0464 (12)0.0153 (11)0.0154 (10)0.0109 (10)
C130.0400 (12)0.0407 (12)0.0442 (12)0.0140 (10)0.0079 (9)0.0089 (9)
C140.0441 (14)0.0728 (16)0.0526 (14)0.0161 (12)0.0007 (11)0.0190 (12)
O70.146 (2)0.0820 (14)0.0552 (11)0.0520 (14)0.0239 (12)0.0291 (10)
N50.0743 (15)0.0663 (14)0.0563 (13)0.0305 (12)0.0104 (11)0.0112 (11)
C150.0704 (18)0.0541 (14)0.0565 (15)0.0206 (13)0.0074 (13)0.0201 (12)
C160.164 (4)0.170 (4)0.0591 (19)0.107 (3)0.038 (2)0.041 (2)
C170.163 (4)0.059 (2)0.127 (3)0.028 (2)0.018 (3)0.003 (2)
Geometric parameters (Å, º) top
O1—C11.358 (3)C7—C141.496 (3)
O1—H1A0.8200C8—C91.411 (3)
O2—C31.347 (3)C8—C131.420 (3)
O2—H2A0.8200C9—C101.358 (3)
O3—N31.237 (2)C9—H90.9300
O4—N31.228 (2)C10—C111.388 (3)
O5—N41.227 (3)C10—H100.9300
O6—N41.229 (3)C11—C121.373 (3)
N1—C71.303 (3)C12—C131.381 (3)
N1—N21.372 (2)C12—H120.9300
N2—C81.354 (3)C14—H8A0.9600
N2—H2B0.8600C14—H8B0.9600
N3—C131.450 (3)C14—H8C0.9600
N4—C111.452 (3)O7—C151.222 (3)
C1—C21.382 (3)N5—C151.303 (3)
C1—C61.386 (4)N5—C171.449 (4)
C2—C31.386 (3)N5—C161.455 (4)
C2—H20.9300C15—H150.9300
C3—C41.415 (3)C16—H16A0.9600
C4—C51.397 (3)C16—H16B0.9600
C4—C71.469 (3)C16—H16C0.9600
C5—C61.373 (3)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C1—O1—H1A109.5C8—C9—H9119.3
C3—O2—H2A109.5C9—C10—C11120.1 (2)
C7—N1—N2116.62 (19)C9—C10—H10119.9
C8—N2—N1121.46 (19)C11—C10—H10119.9
C8—N2—H2B119.3C12—C11—C10121.2 (2)
N1—N2—H2B119.3C12—C11—N4118.7 (2)
O4—N3—O3121.99 (19)C10—C11—N4120.1 (2)
O4—N3—C13118.6 (2)C11—C12—C13118.9 (2)
O3—N3—C13119.41 (18)C11—C12—H12120.6
O5—N4—O6123.0 (2)C13—C12—H12120.6
O5—N4—C11119.0 (2)C12—C13—C8121.6 (2)
O6—N4—C11117.9 (2)C12—C13—N3116.44 (19)
O1—C1—C2117.7 (2)C8—C13—N3121.92 (19)
O1—C1—C6122.5 (2)C7—C14—H8A109.5
C2—C1—C6119.8 (2)C7—C14—H8B109.5
C1—C2—C3120.6 (2)H8A—C14—H8B109.5
C1—C2—H2119.7C7—C14—H8C109.5
C3—C2—H2119.7H8A—C14—H8C109.5
O2—C3—C2116.7 (2)H8B—C14—H8C109.5
O2—C3—C4122.5 (2)C15—N5—C17120.8 (3)
C2—C3—C4120.8 (2)C15—N5—C16120.5 (3)
C5—C4—C3116.3 (2)C17—N5—C16118.6 (3)
C5—C4—C7121.2 (2)O7—C15—N5126.2 (3)
C3—C4—C7122.48 (19)O7—C15—H15116.9
C6—C5—C4123.1 (2)N5—C15—H15116.9
C6—C5—H5118.5N5—C16—H16A109.5
C4—C5—H5118.5N5—C16—H16B109.5
C5—C6—C1119.4 (2)H16A—C16—H16B109.5
C5—C6—H6120.3N5—C16—H16C109.5
C1—C6—H6120.3H16A—C16—H16C109.5
N1—C7—C4117.0 (2)H16B—C16—H16C109.5
N1—C7—C14122.6 (2)N5—C17—H17A109.5
C4—C7—C14120.38 (19)N5—C17—H17B109.5
N2—C8—C9121.9 (2)H17A—C17—H17B109.5
N2—C8—C13121.4 (2)N5—C17—H17C109.5
C9—C8—C13116.72 (19)H17A—C17—H17C109.5
C10—C9—C8121.4 (2)H17B—C17—H17C109.5
C10—C9—H9119.3
C7—N1—N2—C8176.36 (19)C13—C8—C9—C100.1 (3)
O1—C1—C2—C3177.7 (2)C8—C9—C10—C111.7 (3)
C6—C1—C2—C31.3 (4)C9—C10—C11—C121.3 (3)
C1—C2—C3—O2179.3 (2)C9—C10—C11—N4179.8 (2)
C1—C2—C3—C40.1 (3)O5—N4—C11—C1220.2 (3)
O2—C3—C4—C5177.8 (2)O6—N4—C11—C12159.2 (2)
C2—C3—C4—C51.5 (3)O5—N4—C11—C10161.3 (2)
O2—C3—C4—C73.6 (3)O6—N4—C11—C1019.4 (3)
C2—C3—C4—C7177.1 (2)C10—C11—C12—C130.8 (3)
C3—C4—C5—C61.6 (3)N4—C11—C12—C13177.74 (19)
C7—C4—C5—C6177.0 (2)C11—C12—C13—C82.5 (3)
C4—C5—C6—C10.2 (4)C11—C12—C13—N3177.15 (19)
O1—C1—C6—C5177.6 (2)N2—C8—C13—C12177.70 (19)
C2—C1—C6—C51.3 (4)C9—C8—C13—C122.1 (3)
N2—N1—C7—C4178.92 (17)N2—C8—C13—N32.7 (3)
N2—N1—C7—C140.8 (3)C9—C8—C13—N3177.56 (19)
C5—C4—C7—N1171.7 (2)O4—N3—C13—C128.1 (3)
C3—C4—C7—N16.8 (3)O3—N3—C13—C12170.96 (19)
C5—C4—C7—C148.0 (3)O4—N3—C13—C8172.25 (19)
C3—C4—C7—C14173.4 (2)O3—N3—C13—C88.7 (3)
N1—N2—C8—C91.8 (3)C17—N5—C15—O71.5 (5)
N1—N2—C8—C13177.93 (18)C16—N5—C15—O7179.3 (3)
N2—C8—C9—C10179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.821.862.677 (3)175
O2—H2A···N10.821.882.590 (2)146
N2—H2B···O30.861.942.590 (2)131
(XII) 2,4-dihydroxybenzophenone 2,4-dinitrophenylhydrazone N,N-dimethylformamide solvate top
Crystal data top
C19H14N4O6·C4H9NOZ = 2
Mr = 481.46F(000) = 504
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8155 (9) ÅCell parameters from 50 reflections
b = 11.549 (2) Åθ = 6.3–20.7°
c = 13.904 (2) ŵ = 0.10 mm1
α = 100.38 (1)°T = 293 K
β = 95.80 (1)°Parallelepiped, red-orange
γ = 102.74 (1)°0.50 × 0.38 × 0.38 mm
V = 1191.0 (3) Å3
Data collection top
Siemens Bruker P4
diffractometer
Rint = 0.013
Radiation source: normal-focus sealed tubeθmax = 25.1°, θmin = 1.9°
Graphite monochromatorh = 19
θ/2θ scansk = 1313
5472 measured reflectionsl = 1616
4175 independent reflections3 standard reflections every 50 reflections
2517 reflections with I > 2σ(I) intensity decay: 1.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0921P)2 + 0.1171P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4153 reflectionsΔρmax = 0.51 e Å3
322 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (4)
Crystal data top
C19H14N4O6·C4H9NOγ = 102.74 (1)°
Mr = 481.46V = 1191.0 (3) Å3
Triclinic, P1Z = 2
a = 7.8155 (9) ÅMo Kα radiation
b = 11.549 (2) ŵ = 0.10 mm1
c = 13.904 (2) ÅT = 293 K
α = 100.38 (1)°0.50 × 0.38 × 0.38 mm
β = 95.80 (1)°
Data collection top
Siemens Bruker P4
diffractometer
Rint = 0.013
5472 measured reflections3 standard reflections every 50 reflections
4175 independent reflections intensity decay: 1.7%
2517 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.04Δρmax = 0.51 e Å3
4153 reflectionsΔρmin = 0.25 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0917 (2)0.85518 (18)0.88073 (15)0.0696 (6)
H1A0.14080.78560.85160.104*
O20.3744 (2)0.75907 (14)0.71470 (15)0.0600 (5)
H2A0.46680.79190.69730.090*
O31.0752 (3)1.16489 (18)0.68486 (17)0.0780 (6)
O41.2959 (3)1.1313 (2)0.61352 (18)0.0860 (7)
O51.3489 (4)0.7414 (3)0.47710 (19)0.1036 (9)
O61.1203 (5)0.5896 (3)0.4476 (3)0.1322 (12)
N10.6439 (3)0.93863 (18)0.71068 (15)0.0504 (5)
N20.8051 (3)0.98722 (18)0.68505 (16)0.0536 (5)
H2B0.84951.06420.70260.064*
N31.1508 (3)1.0953 (2)0.63832 (18)0.0607 (6)
N41.1946 (5)0.6961 (3)0.4824 (2)0.0863 (9)
C10.0719 (3)0.8868 (2)0.85512 (18)0.0518 (6)
C20.1461 (3)0.8052 (2)0.79855 (18)0.0495 (6)
H20.08450.72420.77850.059*
C30.3120 (3)0.8436 (2)0.77159 (18)0.0466 (6)
C40.4087 (3)0.9661 (2)0.80232 (17)0.0457 (6)
C50.3297 (3)1.0445 (2)0.86099 (19)0.0547 (7)
H50.39121.12530.88310.066*
C60.1655 (4)1.0074 (3)0.8873 (2)0.0597 (7)
H60.11691.06230.92640.072*
C70.5811 (3)1.0113 (2)0.77263 (17)0.0448 (6)
C80.8960 (3)0.9176 (2)0.63307 (17)0.0467 (6)
C90.8263 (4)0.7911 (2)0.59983 (19)0.0566 (7)
H90.71350.75570.61160.068*
C100.9212 (4)0.7200 (3)0.5508 (2)0.0631 (7)
H100.87380.63680.53020.076*
C111.0894 (4)0.7723 (3)0.5317 (2)0.0608 (7)
C121.1614 (4)0.8936 (3)0.56060 (19)0.0584 (7)
H121.27390.92700.54720.070*
C131.0668 (3)0.9669 (2)0.60987 (18)0.0486 (6)
C140.6808 (3)1.1406 (2)0.81436 (18)0.0465 (6)
C150.6833 (4)1.2285 (2)0.7587 (2)0.0575 (7)
H150.62041.20850.69510.069*
C160.7792 (4)1.3461 (3)0.7976 (2)0.0692 (8)
H160.78001.40530.76020.083*
C170.8731 (4)1.3761 (3)0.8906 (2)0.0748 (9)
H170.93771.45550.91630.090*
C180.8721 (5)1.2890 (3)0.9462 (2)0.0808 (10)
H180.93611.30971.00950.097*
C190.7766 (4)1.1711 (2)0.9087 (2)0.0645 (8)
H190.77651.11220.94640.077*
O70.2812 (3)0.63959 (19)0.78644 (17)0.0800 (7)
N50.5480 (4)0.5175 (3)0.7565 (3)0.1017 (11)
C200.4245 (5)0.5980 (3)0.8137 (3)0.0830 (10)
C210.4541 (6)0.6467 (4)0.9208 (3)0.1134 (14)
H21A0.34210.68870.96020.170*
H21B0.50850.58000.94880.170*
H21C0.53020.70150.91970.170*
C220.5264 (6)0.4805 (3)0.6525 (3)0.1085 (14)
H22A0.40410.50780.64500.163*
H22B0.59810.51600.61190.163*
H22C0.56280.39370.63270.163*
C230.7257 (6)0.4719 (4)0.7852 (5)0.158 (2)
H23A0.72440.50560.85370.237*
H23B0.75250.38500.77490.237*
H23C0.81430.49580.74560.237*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0572 (12)0.0733 (13)0.0722 (13)0.0057 (10)0.0248 (10)0.0035 (10)
O20.0555 (11)0.0406 (9)0.0846 (13)0.0124 (8)0.0235 (10)0.0068 (9)
O30.0700 (14)0.0516 (12)0.1065 (17)0.0032 (10)0.0221 (12)0.0106 (11)
O40.0540 (12)0.0851 (15)0.1169 (18)0.0049 (11)0.0223 (12)0.0372 (13)
O50.0955 (19)0.128 (2)0.1073 (19)0.0483 (17)0.0591 (16)0.0259 (16)
O60.162 (3)0.0796 (19)0.169 (3)0.0409 (19)0.095 (2)0.0092 (19)
N10.0414 (11)0.0461 (12)0.0605 (13)0.0055 (9)0.0099 (10)0.0073 (10)
N20.0460 (12)0.0435 (11)0.0668 (14)0.0049 (9)0.0124 (10)0.0049 (10)
N30.0487 (14)0.0606 (14)0.0705 (16)0.0008 (12)0.0034 (12)0.0260 (12)
N40.105 (2)0.092 (2)0.0827 (19)0.0447 (19)0.0479 (18)0.0266 (17)
C10.0466 (14)0.0626 (17)0.0458 (14)0.0088 (12)0.0110 (11)0.0139 (12)
C20.0508 (15)0.0438 (13)0.0520 (14)0.0055 (11)0.0068 (12)0.0129 (11)
C30.0469 (14)0.0474 (14)0.0480 (13)0.0138 (11)0.0069 (11)0.0137 (11)
C40.0460 (14)0.0438 (13)0.0443 (13)0.0071 (11)0.0040 (11)0.0076 (10)
C50.0558 (16)0.0457 (14)0.0575 (16)0.0070 (12)0.0131 (13)0.0011 (12)
C60.0597 (17)0.0605 (17)0.0557 (16)0.0145 (14)0.0176 (13)0.0014 (13)
C70.0438 (13)0.0446 (13)0.0454 (13)0.0111 (11)0.0026 (11)0.0096 (11)
C80.0451 (14)0.0512 (14)0.0446 (13)0.0117 (11)0.0051 (11)0.0126 (11)
C90.0526 (15)0.0519 (15)0.0607 (16)0.0056 (12)0.0119 (13)0.0072 (13)
C100.0743 (19)0.0537 (16)0.0596 (17)0.0161 (14)0.0148 (15)0.0042 (13)
C110.0695 (18)0.0697 (19)0.0544 (16)0.0293 (15)0.0255 (14)0.0173 (14)
C120.0514 (16)0.078 (2)0.0550 (16)0.0204 (14)0.0163 (13)0.0273 (14)
C130.0450 (13)0.0566 (15)0.0482 (14)0.0118 (12)0.0061 (11)0.0221 (12)
C140.0419 (13)0.0442 (13)0.0506 (14)0.0089 (10)0.0058 (11)0.0048 (11)
C150.0597 (17)0.0495 (15)0.0606 (16)0.0113 (13)0.0024 (13)0.0103 (13)
C160.077 (2)0.0491 (16)0.081 (2)0.0128 (15)0.0115 (17)0.0166 (15)
C170.077 (2)0.0504 (17)0.079 (2)0.0050 (15)0.0074 (18)0.0051 (15)
C180.089 (2)0.070 (2)0.0605 (18)0.0067 (18)0.0072 (17)0.0023 (16)
C190.0702 (19)0.0559 (16)0.0592 (17)0.0029 (14)0.0014 (14)0.0122 (13)
O70.0623 (13)0.0670 (13)0.1046 (17)0.0009 (10)0.0322 (12)0.0091 (11)
N50.077 (2)0.0558 (16)0.169 (3)0.0126 (15)0.015 (2)0.0208 (19)
C200.075 (2)0.0539 (18)0.122 (3)0.0144 (17)0.013 (2)0.0262 (19)
C210.118 (3)0.120 (3)0.104 (3)0.015 (3)0.055 (3)0.026 (3)
C220.119 (3)0.076 (2)0.111 (3)0.025 (2)0.006 (3)0.022 (2)
C230.076 (3)0.103 (3)0.280 (7)0.014 (2)0.056 (4)0.027 (4)
Geometric parameters (Å, º) top
O1—C11.352 (3)C10—H100.9300
O1—H1A0.8200C11—C121.358 (4)
O2—C31.351 (3)C12—C131.380 (4)
O2—H2A0.8200C12—H120.9300
O3—N31.230 (3)C14—C151.381 (4)
O4—N31.225 (3)C14—C191.387 (4)
O5—N41.219 (4)C15—C161.380 (4)
O6—N41.225 (4)C15—H150.9300
N1—C71.302 (3)C16—C171.366 (4)
N1—N21.371 (3)C16—H160.9300
N2—C81.348 (3)C17—C181.374 (4)
N2—H2B0.8600C17—H170.9300
N3—C131.447 (3)C18—C191.379 (4)
N4—C111.461 (4)C18—H180.9300
C1—C21.382 (3)C19—H190.9300
C1—C61.391 (4)O7—C201.242 (4)
C2—C31.386 (3)N5—C201.268 (4)
C2—H20.9300N5—C221.470 (5)
C3—C41.414 (3)N5—C231.494 (5)
C4—C51.396 (3)C20—C211.554 (5)
C4—C71.462 (3)C21—H21A0.9600
C5—C61.369 (4)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—H60.9300C22—H22A0.9600
C7—C141.502 (3)C22—H22B0.9600
C8—C91.415 (4)C22—H22C0.9600
C8—C131.424 (3)C23—H23A0.9600
C9—C101.363 (4)C23—H23B0.9600
C9—H90.9300C23—H23C0.9600
C10—C111.393 (4)
C1—O1—H1A109.5C13—C12—H12120.2
C3—O2—H2A109.5C12—C13—C8121.3 (2)
C7—N1—N2116.17 (19)C12—C13—N3116.8 (2)
C8—N2—N1121.8 (2)C8—C13—N3121.9 (2)
C8—N2—H2B119.1C15—C14—C19119.6 (2)
N1—N2—H2B119.1C15—C14—C7120.8 (2)
O4—N3—O3122.0 (2)C19—C14—C7119.5 (2)
O4—N3—C13118.1 (3)C16—C15—C14119.9 (3)
O3—N3—C13119.9 (2)C16—C15—H15120.1
O5—N4—O6123.7 (3)C14—C15—H15120.1
O5—N4—C11119.1 (3)C17—C16—C15120.4 (3)
O6—N4—C11117.2 (3)C17—C16—H16119.8
O1—C1—C2122.7 (2)C15—C16—H16119.8
O1—C1—C6117.3 (2)C16—C17—C18120.0 (3)
C2—C1—C6120.0 (2)C16—C17—H17120.0
C1—C2—C3120.3 (2)C18—C17—H17120.0
C1—C2—H2119.9C17—C18—C19120.4 (3)
C3—C2—H2119.9C17—C18—H18119.8
O2—C3—C2116.9 (2)C19—C18—H18119.8
O2—C3—C4122.4 (2)C18—C19—C14119.7 (3)
C2—C3—C4120.8 (2)C18—C19—H19120.2
C5—C4—C3116.8 (2)C14—C19—H19120.2
C5—C4—C7120.6 (2)C20—N5—C22118.7 (3)
C3—C4—C7122.5 (2)C20—N5—C23123.1 (4)
C6—C5—C4122.7 (2)C22—N5—C23117.5 (4)
C6—C5—H5118.7O7—C20—N5122.1 (4)
C4—C5—H5118.7O7—C20—C21119.0 (3)
C5—C6—C1119.4 (2)N5—C20—C21119.0 (4)
C5—C6—H6120.3C20—C21—H21A109.5
C1—C6—H6120.3C20—C21—H21B109.5
N1—C7—C4119.2 (2)H21A—C21—H21B109.5
N1—C7—C14121.8 (2)C20—C21—H21C109.5
C4—C7—C14119.1 (2)H21A—C21—H21C109.5
N2—C8—C9121.3 (2)H21B—C21—H21C109.5
N2—C8—C13122.1 (2)N5—C22—H22A109.5
C9—C8—C13116.7 (2)N5—C22—H22B109.5
C10—C9—C8121.3 (3)H22A—C22—H22B109.5
C10—C9—H9119.4N5—C22—H22C109.5
C8—C9—H9119.4H22A—C22—H22C109.5
C9—C10—C11119.8 (3)H22B—C22—H22C109.5
C9—C10—H10120.1N5—C23—H23A109.5
C11—C10—H10120.1N5—C23—H23B109.5
C12—C11—C10121.3 (3)H23A—C23—H23B109.5
C12—C11—N4118.5 (3)N5—C23—H23C109.5
C10—C11—N4120.2 (3)H23A—C23—H23C109.5
C11—C12—C13119.6 (3)H23B—C23—H23C109.5
C11—C12—H12120.2
C7—N1—N2—C8170.4 (2)O6—N4—C11—C109.6 (4)
O1—C1—C2—C3177.8 (2)C10—C11—C12—C130.0 (4)
C6—C1—C2—C31.6 (4)N4—C11—C12—C13178.1 (2)
C1—C2—C3—O2178.8 (2)C11—C12—C13—C81.4 (4)
C1—C2—C3—C40.8 (4)C11—C12—C13—N3179.8 (2)
O2—C3—C4—C5180.0 (2)N2—C8—C13—C12177.0 (2)
C2—C3—C4—C50.5 (4)C9—C8—C13—C122.3 (4)
O2—C3—C4—C71.8 (4)N2—C8—C13—N31.8 (4)
C2—C3—C4—C7177.7 (2)C9—C8—C13—N3178.9 (2)
C3—C4—C5—C61.0 (4)O4—N3—C13—C123.0 (3)
C7—C4—C5—C6177.3 (2)O3—N3—C13—C12178.0 (2)
C4—C5—C6—C10.2 (4)O4—N3—C13—C8178.2 (2)
O1—C1—C6—C5178.3 (2)O3—N3—C13—C80.8 (4)
C2—C1—C6—C51.1 (4)N1—C7—C14—C1577.5 (3)
N2—N1—C7—C4179.3 (2)C4—C7—C14—C15102.4 (3)
N2—N1—C7—C140.6 (3)N1—C7—C14—C19100.2 (3)
C5—C4—C7—N1173.8 (2)C4—C7—C14—C1979.9 (3)
C3—C4—C7—N14.4 (4)C19—C14—C15—C160.7 (4)
C5—C4—C7—C146.1 (3)C7—C14—C15—C16178.4 (2)
C3—C4—C7—C14175.7 (2)C14—C15—C16—C170.5 (5)
N1—N2—C8—C91.9 (4)C15—C16—C17—C180.1 (5)
N1—N2—C8—C13177.3 (2)C16—C17—C18—C190.0 (5)
N2—C8—C9—C10177.3 (2)C17—C18—C19—C140.2 (5)
C13—C8—C9—C102.0 (4)C15—C14—C19—C180.6 (4)
C8—C9—C10—C110.7 (4)C7—C14—C19—C18178.3 (3)
C9—C10—C11—C120.3 (4)C22—N5—C20—O75.5 (5)
C9—C10—C11—N4177.8 (3)C23—N5—C20—O7175.9 (4)
O5—N4—C11—C126.9 (4)C22—N5—C20—C21174.0 (3)
O6—N4—C11—C12172.2 (3)C23—N5—C20—C213.6 (5)
O5—N4—C11—C10171.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.821.822.630 (3)172
O2—H2A···N10.821.902.623 (3)146
N2—H2B···O30.861.952.600 (3)131

Experimental details

(X)(XI)(XII)
Crystal data
Chemical formulaC13H10N4O6·C3H7NOC14H12N4O6·C3H7NOC19H14N4O6·C4H9NO
Mr391.35405.37481.46
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Triclinic, P1
Temperature (K)293293293
a, b, c (Å)19.697 (4), 7.152 (1), 12.949 (3)7.928 (1), 9.146 (1), 14.362 (2)7.8155 (9), 11.549 (2), 13.904 (2)
α, β, γ (°)90, 100.34 (2), 90104.45 (1), 91.04 (1), 108.80 (1)100.38 (1), 95.80 (1), 102.74 (1)
V3)1794.5 (6)949.1 (2)1191.0 (3)
Z422
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.120.110.10
Crystal size (mm)0.50 × 0.39 × 0.130.54 × 0.43 × 0.310.50 × 0.38 × 0.38
Data collection
DiffractometerSiemens P4
diffractometer
Siemens Bruker P4
diffractometer
Siemens Bruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3504, 3119, 1774 4336, 3310, 2207 5472, 4175, 2517
Rint0.0130.0110.013
(sin θ/λ)max1)0.5960.5970.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.137, 1.01 0.047, 0.142, 1.01 0.057, 0.171, 1.04
No. of reflections311032984153
No. of parameters258268322
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.160.18, 0.160.51, 0.25

Computer programs: P3/P4-PC Diffractometer Program (Siemens, 1991), P3/P4-PC Diffractometer Program, XDISK (Siemens, 1991), SHELXS86 (Sheldrick, 1990a), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990b), SHELXTL/PC and SHELXL97.

Hydrogen-bond geometry (Å, º) for (X) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.821.832.626 (3)163
O2—H2A···N10.821.972.691 (3)146
N2—H2B···O30.861.962.603 (3)131
Hydrogen-bond geometry (Å, º) for (XI) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.821.862.677 (3)175
O2—H2A···N10.821.882.590 (2)146
N2—H2B···O30.861.942.590 (2)131
Selected r.m.s. deviations (Å) and dihedral angle (°) for (XI) top
Plane 1r.m.s. deviationPlane 2r.m.s. deviationAngle
Hydrazone0.194
Hydrazone + C140.190DMF0.00485.3 (1)
Hydrogen-bond geometry (Å, º) for (XII) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.821.822.630 (3)172
O2—H2A···N10.821.902.623 (3)146
N2—H2B···O30.861.952.600 (3)131
Selected r.m.s. deviations (Å) and dihedral angles (°) for (XII) top
Plane 1r.m.s. deviationPlane 2r.m.s. deviationAngle
Hydrazone0.109C14-C190.00284.04 (7)
Hydrazone0.109DMAc0.03144.7 (1)
Hydrazone+C140.122
Selected interatomic distances (Å) for compounds (X)-(XII); the effects of changing R at C7 from –H to –CH3 to –Ph top
Bond(X)(XI)(XII)ChangeaΔ/SU(X)RangedR/SU(X)
Δ (Å)R (Å)
O1-C11.358 (3)1.358 (3)1.352 (3)-0.0062.00.0062.0
O2-C31.362 (3)1.347 (3)1.351 (3)-0.0093.00.0155.0
C3C41.408 (3)1.415 (3)1.414 (4)0.0062.00.0072.3
C4C51.386 (3)1.397 (3)1.396 (3)0.0103.30.0113.7
C4-C71.439 (3)1.469 (3)1.462 (3)0.0237.70.03010.0
C7-C141.496 (3)1.502 (3)0.006b2.0c0.0062.0
C7N11.283 (3)1.303 (3)1.302 (3)0.0196.30.0206.7
N1-N21.386 (3)1.372 (2)1.371 (3)-0.0155.00.0155.0
N2-C81.343 (3)1.354 (3)1.348 (3)0.0051.70.0113.7
N3-C131.447 (3)1.450 (3)1.447 (3)-0.0000.00.0031.0
N4-C111.459 (4)1.452 (3)1.461 (4)0.0020.50.0092.3
Notes: (a) Δ for (XII)–(X); (b) Δ for (XII)-(XI); (c) Δ/SU(XI); (d) range = max - min value.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds