Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Samaderin B, or (1R,2S,5R,5aR,7aS,11S,11aS,11bR,14S)-1,7,7a,11,11a,11b-hexa­hydro-1,11-di­hydroxy-8,11a,14-tri­methyl-2H-5a,2,5-(methan­oxy­metheno)­naphth­[1,2-d]­oxepine-4,6,10(5H)-trione, C19H22O7, and samaderin C, or (1R,2S,5R,5aR,7aS,10S,11S,11aS,11bR,14S)-7,7a,10,11,11a,11b-hexa­hydro-1,10,11-tri­hydroxy-8,11a,14-tri­methyl-2H-5a,2,5-(methan­oxy­metheno)­naphth­[1,2-d]­oxepine-4,6(1H,5H)-dione, C19H24O7, were isolated from the seed kernels of Samadera indica and were shown to exhibit antifeedant activity against Spodoptera litura third-instar larvae. The replacement of the carbonyl group in samaderin B by a hydroxy group in samaderin C causes conformational changes at the substitution site, but the overall conformation is not affected; however, the compounds pack differently in the crystal lattice.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103011983/ln1170sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103011983/ln1170Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103011983/ln1170IIsup3.hkl
Contains datablock II

CCDC references: 159666; 159667

Comment top

The title compounds, samaderine-B and C, (I) and (II), respectively, were extracted from the seed kernels of Samadera indica. Compounds (I) and (II) belong to the quassinoid class (Polonsky, 1973, 1985), a diverse group of structurally complex and highly oxygenated lactones (δ-lactones in the C20- and γ-lactones in the C19-compounds) that generally exhibit antifeedant and insecticidal (Leskinen et al., 1984) activities similar to those of limonoids from neem. Compounds (I) and (II) exhibit antifeedant activity against Spodoptera litura third instar larvae (Govindachari et al., 2001). We have taken up the crystallographic study of these compounds as part of our work on the structural studies of ecofriendly bioinsecticides. Chemically, (I) and (II) differ in the substitution at the C2-atom position, viz. a carbonyl group on atom C2 in samaderine-B and a hydroxyl group in samaderine-C. The compounds both crystallize in space group P212121 but have different unit-cell parameters.

The present study shows that the bond lengths and angles in both structures are close to those observed for other quassinoids (Onan et al., 1978; Suong et al., 1982; Chan et al., 1992; Zukerman-Schpector et al., 1994; Kabaleeswaran et al., 2000). In (II), the hydroxyl groups at atoms C1 and C2 are staggered with respect to one another, as described by the O1—C1—C2—O2 dihedral angle of 77.3 (2)°. The hydroxyl group at atom C1 is in a (-)-antiperiplanar conformation (Klyne & Prelog, 1960) with respect to the C2—C3 bond [C3—C2—C1—O1 = −156.5 (2)°], while the hydroxyl group at atom C2 is (+)-anticlinal with respect to the C3—C4 bond [C4—C3—C2—O2 = 131.9 (3)°]. In (I), the hydroxyl and carbonyl groups attached to atoms C1 and C2, respectively, are nearly in an eclipsed conformation [O1—C1—C2—O2 = 12.0 (9)°]. The hydroxyl group on atom C1 assumes a (-)-antiperiplanar conformation with respect to the C2—C3 bond [C3—C2—C1—O1 = −166.4 (6)°]. The hydroxyl groups on atoms C1 and C11 of both molecules are in the β orientation, and the hydroxyl group on atom C2 of (II) is in the α orientation. In both molecules?, the C19 methyl group is in a β orientation, while atom C17 is in an α orientation. The γ lactone ring, E, and the oxymethylene bridge attached to ring C are in α and β orientations, respectively. However, when both molecules are superimposed, the other parts of the molecules show negligible conformational differences.

Ring A of both molecules are in a sofa conformation [Cremer & Pople, 1975; QT = 0.495 (7) Å, θ = 46.5 (9)° and ϕ2 = −43 (1)° in (I), and QT = 0.491 (2) Å, θ = 46.6 (3)° and ϕ2= −54.5 (4)° in (II)]. Ring B is in a highly distorted chair conformation in both molecules [QT = 0.541 (7) Å, θ = 18.9 (8)° and ϕ2 = −32 (2)° in (I), and QT = 0.536 (2) Å, θ = 20.4 (2)° and ϕ2 = −47.2 (7)° in (II)]. Ring C assumes a distorted chair conformation in both molecules [QT = 0.733 (7) Å, θ = 22.5 (5)° and ϕ2 = −84 (1) ° in (I), and QT= 0.718 (2) Å, θ = 28.1 (2)° and ϕ2 = −80.8 (4)° in (II)]. The five-membered ring, D, takes up a half-chair conformation [q2 = 0.452 (7) Å and ϕ2 = −51.9 (8)° in (I), and q2 = 0.439 (2) Å and ϕ2 = 164.0 (3)° in (II)], with atoms C8 and C14 deviating from the least-squares plane of atoms C13, O13 and C16. The γ lactone ring, E, takes up a conformation intermediate between a half-chair and an envelope in both compounds [q2 = 0.434 (6) Å and ϕ2 = 149.7 (7) ° in (I), and q2 = 0.443 (2) Å and ϕ2 = 153.7 (3) ° in (II)]. In both molecules, the A/B, B/C and C/D rings are trans-fused.

The crystal packing is stabilized both by inter- and intramolecular hydrogen bonds. An intramolecular O11—H11···O13 hydrogen bond in (I) forms a ring graph-set motif (Berstein et al., 1995) of S(6), while an intramolecular O11—H11···O1 interaction in (II) forms a ring with the S(7) motif. In (I), an intermolecular O1—H1···O15(1/2 + x, 3/2 − y, 1 − z) hydrogen bond links the molecules into C(9) chains, which run along [100] and are generated by the 21 screw axis along (x, 3/4, 1/2). In addition, there are C—H···O hydrogen bonds involving methine atom H12 and methylene atom H17A, which interact with a common acceptor, namely atom O7 at (−1/2 − x, 1 − y, z − 1/2). This three-centered hydrogen bond generates a graph-set motif of R21(6). Compound (II) is similar to (I) in that an intermolecular O1—H1···O15(-x, y − 1/2, 1/2 − z) hydrogen bond links the molecules into chains, but these run along [010] and are generated by a 21 screw axis along (−1/2, y, 1/4). Another O2—H2···O11(x − 1, y, z) hydrogen bond links the molecules into chains that run along the [100] direction, with a graph-set motif of C(8). These two intermolecular O—H···O hydrogen bonds in combination generate a two-dimensional network in (II), in which the ring graph-set motif of R55(27) can be detected (Figs. 2a and 2 b).

Experimental top

Compounds (I) and (II) were isolated from the seed kernels of Samadera indica according to the procedure described by Govindachari et al. (2001).

Refinement top

In the absence of suitable anomalous scatters, Friedel equivalents could not be used to determine the absolute structure. Refinement of the Flack (1983) parameter led to inconclusive values (Flack & Bernadinelli, 2000) for this parameter [0.9 (8) for (I) and −0.2 (3) for (II)]. The enantiomer employed in the refined model was chosen to agree with the accepted configuration of quassinoids (Polonsky, 1985). The methyl and hydroxyl H atoms were constrained to an ideal geometry [C—H = 0.96 and O—H = 0.82 Å, with Uiso(H) = 1.5Ueq(parent atom)] but were allowed to rotate freely about the C—C and C—O bonds, respectively. All remaining H atoms were placed in idealized positions (C—H = 0.97–0.98 Å) and constrained to ride on their parent atoms with Uiso(H) values equal to 1.2Ueq(C).

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1]
[Figure 2]
Fig 1a ORTEP diagram of (I), showing displacement ellipsoids at the 30% probability level and the atomic numbering scheme.

Fig 1 b ORTEP diagram of (II), showing displacement ellipsoids at the 30% probability level and the atomic numbering scheme.

Fig 2a The packing of (I) in the crystal lattice. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), dollar sign ($) or hash (#) are at the symmetry positions (1 + x, y, z), (1/2 − x, 1 − y, z − 1/2) and (3/2 + x, 3/2 − y, 1 − z), respectively.

Fig 2 b The packing of (II) in crystal lattice. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (#) or plus sign (+) are at the symmetry positions (-x, y − 1/2, 1/2 − z), (x − 1, y, z) and (-x + 1, y − 1/2, 1/2 − z), respectively.
(I) top
Crystal data top
C19H22O7F(000) = 768
Mr = 362.37Dx = 1.460 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 10.342 (4) Åθ = 15–30°
b = 13.328 (7) ŵ = 0.94 mm1
c = 11.956 (9) ÅT = 293 K
V = 1648.0 (16) Å3Rod shaped, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf Nonius CAD4
diffractometer
Rint = 0.060
Radiation source: fine-focus sealed tubeθmax = 72.0°, θmin = 5.4°
Graphite monochromatorh = 1212
non–profiled ω/2θ scansk = 016
1807 measured reflectionsl = 014
1741 independent reflections3 standard reflections every 200 reflections
1203 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1269P)2 + 0.1667P]
where P = (Fo2 + 2Fc2)/3
1741 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C19H22O7V = 1648.0 (16) Å3
Mr = 362.37Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.342 (4) ŵ = 0.94 mm1
b = 13.328 (7) ÅT = 293 K
c = 11.956 (9) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf Nonius CAD4
diffractometer
Rint = 0.060
1807 measured reflections3 standard reflections every 200 reflections
1741 independent reflections intensity decay: 1%
1203 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
1741 reflectionsΔρmin = 0.42 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1276 (5)0.6090 (5)0.4430 (4)0.0507 (14)
H10.16210.63590.38910.076*
O20.3732 (5)0.6576 (5)0.4484 (4)0.0539 (15)
O70.0455 (6)0.6100 (6)0.9624 (5)0.085 (2)
O110.0691 (5)0.4558 (4)0.5223 (4)0.0519 (14)
H110.09660.41300.56540.078*
O120.2826 (4)0.6563 (4)0.6204 (5)0.0441 (13)
O130.1924 (4)0.4116 (3)0.7216 (4)0.0429 (12)
O150.2725 (5)0.7577 (4)0.7677 (5)0.0638 (16)
C10.1712 (6)0.6544 (5)0.5418 (6)0.0367 (15)
H1A0.13110.72090.54680.044*
C20.3205 (7)0.6694 (5)0.5369 (6)0.0423 (17)
C30.3821 (7)0.6936 (5)0.6399 (6)0.0414 (16)
H30.46680.71680.63710.050*
C40.3266 (7)0.6853 (5)0.7397 (6)0.0427 (17)
C50.1846 (7)0.6565 (5)0.7482 (6)0.0364 (15)
H50.13680.72000.74660.044*
C60.1507 (7)0.6073 (6)0.8611 (6)0.0424 (17)
H6A0.19290.54250.86590.051*
H6B0.18360.64890.92140.051*
C70.0071 (7)0.5937 (6)0.8756 (5)0.0428 (17)
C80.0682 (7)0.5538 (5)0.7748 (6)0.0352 (14)
C90.0187 (6)0.5945 (5)0.6608 (6)0.0322 (14)
H90.04170.66580.66300.039*
C100.1344 (6)0.5957 (5)0.6472 (6)0.0321 (13)
C110.1018 (7)0.5526 (6)0.5633 (5)0.0375 (16)
H11A0.09240.59940.50060.045*
C120.2456 (6)0.5538 (5)0.5971 (6)0.0357 (15)
H120.29930.52570.53730.043*
C130.2714 (6)0.4996 (5)0.7083 (5)0.0356 (15)
C140.2157 (6)0.5786 (5)0.7861 (6)0.0362 (16)
H140.24740.57220.86300.043*
C150.2586 (6)0.6751 (5)0.7305 (7)0.0430 (17)
C160.0777 (6)0.4399 (5)0.7815 (6)0.0406 (16)
H16A0.00210.40920.74790.049*
H16B0.08340.41850.85890.049*
C170.4116 (7)0.4726 (6)0.7257 (7)0.0463 (18)
H17A0.43670.42260.67210.070*
H17B0.46420.53130.71610.070*
H17C0.42320.44660.79990.070*
C190.1961 (6)0.4899 (5)0.6419 (6)0.0410 (16)
H19A0.17330.45280.70780.062*
H19B0.28840.49610.63750.062*
H19C0.16470.45520.57690.062*
C200.3979 (7)0.7058 (7)0.8466 (7)0.055 (2)
H20A0.41100.64400.88620.082*
H20B0.34820.75090.89200.082*
H20C0.48010.73560.82980.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.042 (3)0.078 (4)0.032 (2)0.002 (3)0.004 (2)0.005 (3)
O20.036 (3)0.083 (4)0.043 (3)0.005 (3)0.012 (2)0.008 (3)
O70.061 (4)0.158 (7)0.037 (3)0.032 (4)0.011 (3)0.027 (4)
O110.041 (3)0.064 (3)0.050 (3)0.002 (3)0.006 (3)0.020 (3)
O120.028 (3)0.047 (3)0.058 (3)0.003 (2)0.004 (2)0.017 (2)
O130.035 (2)0.039 (2)0.055 (3)0.004 (2)0.007 (2)0.005 (2)
O150.050 (3)0.045 (3)0.096 (4)0.002 (3)0.025 (3)0.007 (3)
C10.035 (4)0.040 (3)0.035 (3)0.007 (3)0.001 (3)0.005 (3)
C20.037 (4)0.044 (4)0.047 (4)0.006 (3)0.006 (3)0.009 (3)
C30.026 (3)0.046 (4)0.052 (4)0.001 (3)0.001 (3)0.001 (4)
C40.037 (4)0.048 (4)0.043 (4)0.006 (3)0.002 (3)0.009 (3)
C50.031 (3)0.038 (3)0.041 (4)0.004 (3)0.001 (3)0.002 (3)
C60.035 (4)0.059 (4)0.033 (3)0.010 (3)0.008 (3)0.002 (3)
C70.048 (4)0.061 (4)0.019 (3)0.007 (4)0.001 (3)0.005 (3)
C80.031 (3)0.044 (3)0.030 (3)0.005 (3)0.002 (3)0.005 (3)
C90.025 (3)0.031 (3)0.040 (3)0.001 (3)0.007 (3)0.002 (3)
C100.024 (3)0.036 (3)0.036 (3)0.003 (3)0.000 (3)0.001 (3)
C110.026 (3)0.055 (4)0.031 (3)0.005 (3)0.007 (3)0.004 (3)
C120.023 (3)0.044 (4)0.040 (4)0.002 (3)0.003 (3)0.006 (3)
C130.033 (4)0.036 (3)0.038 (3)0.004 (3)0.000 (3)0.002 (3)
C140.028 (3)0.046 (4)0.034 (3)0.009 (3)0.000 (3)0.001 (3)
C150.022 (3)0.046 (4)0.061 (4)0.001 (3)0.017 (4)0.001 (4)
C160.030 (3)0.044 (4)0.048 (4)0.003 (3)0.010 (3)0.015 (3)
C170.030 (4)0.060 (5)0.049 (4)0.004 (3)0.008 (4)0.006 (4)
C190.026 (3)0.040 (3)0.058 (4)0.005 (3)0.004 (3)0.002 (3)
C200.034 (4)0.074 (5)0.057 (5)0.005 (4)0.005 (4)0.001 (4)
Geometric parameters (Å, º) top
O1—C11.401 (8)C8—C161.523 (9)
O1—H10.8200C8—C91.554 (9)
O2—C21.200 (8)C8—C141.567 (10)
O7—C71.192 (8)C9—C111.552 (9)
O11—C111.421 (9)C9—C101.591 (9)
O11—H110.8200C9—H90.9800
O12—C151.363 (10)C10—C191.549 (8)
O12—C121.446 (8)C11—C121.540 (9)
O13—C161.436 (8)C11—H11A0.9800
O13—C131.438 (8)C12—C131.537 (9)
O15—C151.196 (8)C12—H120.9800
C1—C101.532 (9)C13—C171.509 (9)
C1—C21.558 (10)C13—C141.518 (9)
C1—H1A0.9800C14—C151.514 (10)
C2—C31.423 (10)C14—H140.9800
C3—C41.329 (10)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C201.501 (10)C17—H17A0.9600
C4—C51.521 (10)C17—H17B0.9600
C5—C61.542 (9)C17—H17C0.9600
C5—C101.544 (9)C19—H19A0.9600
C5—H50.9800C19—H19B0.9600
C6—C71.507 (10)C19—H19C0.9600
C6—H6A0.9700C20—H20A0.9600
C6—H6B0.9700C20—H20B0.9600
C7—C81.530 (9)C20—H20C0.9600
C1—O1—H1109.5O11—C11—C12109.2 (6)
C11—O11—H11109.5O11—C11—C9117.0 (6)
C15—O12—C12108.2 (5)C12—C11—C9109.5 (5)
C16—O13—C13108.0 (5)O11—C11—H11A106.9
O1—C1—C10113.1 (5)C12—C11—H11A106.9
O1—C1—C2110.1 (6)C9—C11—H11A106.9
C10—C1—C2110.1 (5)O12—C12—C13103.3 (5)
O1—C1—H1A107.8O12—C12—C11108.4 (5)
C10—C1—H1A107.8C13—C12—C11112.9 (5)
C2—C1—H1A107.8O12—C12—H12110.6
O2—C2—C3126.1 (7)C13—C12—H12110.6
O2—C2—C1117.8 (7)C11—C12—H12110.6
C3—C2—C1116.1 (6)O13—C13—C17109.6 (6)
C4—C3—C2124.4 (6)O13—C13—C14106.4 (5)
C4—C3—H3117.8C17—C13—C14116.5 (6)
C2—C3—H3117.8O13—C13—C12112.4 (5)
C3—C4—C20122.5 (6)C17—C13—C12113.5 (6)
C3—C4—C5119.9 (7)C14—C13—C1298.0 (5)
C20—C4—C5117.6 (6)C15—C14—C13102.0 (6)
C4—C5—C6112.6 (6)C15—C14—C8115.2 (5)
C4—C5—C10113.9 (6)C13—C14—C899.8 (5)
C6—C5—C10112.7 (5)C15—C14—H14112.8
C4—C5—H5105.6C13—C14—H14112.8
C6—C5—H5105.6C8—C14—H14112.8
C10—C5—H5105.6O15—C15—O12120.4 (7)
C7—C6—C5112.1 (6)O15—C15—C14130.9 (8)
C7—C6—H6A109.2O12—C15—C14108.7 (6)
C5—C6—H6A109.2O13—C16—C8106.8 (5)
C7—C6—H6B109.2O13—C16—H16A110.4
C5—C6—H6B109.2C8—C16—H16A110.4
H6A—C6—H6B107.9O13—C16—H16B110.4
O7—C7—C6121.9 (7)C8—C16—H16B110.4
O7—C7—C8121.2 (7)H16A—C16—H16B108.6
C6—C7—C8116.9 (6)C13—C17—H17A109.5
C16—C8—C7109.7 (6)C13—C17—H17B109.5
C16—C8—C9114.5 (6)H17A—C17—H17B109.5
C7—C8—C9113.7 (5)C13—C17—H17C109.5
C16—C8—C1498.2 (5)H17A—C17—H17C109.5
C7—C8—C14110.8 (6)H17B—C17—H17C109.5
C9—C8—C14108.9 (5)C10—C19—H19A109.5
C8—C9—C11110.5 (5)C10—C19—H19B109.5
C8—C9—C10114.9 (6)H19A—C19—H19B109.5
C11—C9—C10118.6 (6)C10—C19—H19C109.5
C8—C9—H9103.6H19A—C19—H19C109.5
C11—C9—H9103.6H19B—C19—H19C109.5
C10—C9—H9103.6C4—C20—H20A109.5
C1—C10—C5106.9 (5)C4—C20—H20B109.5
C1—C10—C19109.2 (5)H20A—C20—H20B109.5
C5—C10—C19111.8 (5)C4—C20—H20C109.5
C1—C10—C9109.7 (5)H20A—C20—H20C109.5
C5—C10—C9105.1 (5)H20B—C20—H20C109.5
C19—C10—C9113.9 (5)
O1—C1—C2—O212.0 (9)C8—C9—C10—C1967.6 (8)
C10—C1—C2—O2137.3 (7)C11—C9—C10—C1966.2 (8)
O1—C1—C2—C3166.4 (6)C8—C9—C11—O1183.5 (7)
C10—C1—C2—C341.1 (8)C10—C9—C11—O1152.2 (8)
O2—C2—C3—C4164.9 (8)C8—C9—C11—C1241.4 (7)
C1—C2—C3—C413.4 (10)C10—C9—C11—C12177.1 (5)
C2—C3—C4—C20176.2 (7)C15—O12—C12—C1331.3 (6)
C2—C3—C4—C55.3 (11)C15—O12—C12—C1188.8 (6)
C3—C4—C5—C6155.6 (7)O11—C11—C12—O12170.5 (5)
C20—C4—C5—C625.9 (9)C9—C11—C12—O1260.3 (7)
C3—C4—C5—C1025.7 (9)O11—C11—C12—C1375.7 (7)
C20—C4—C5—C10155.8 (6)C9—C11—C12—C1353.6 (8)
C4—C5—C6—C7171.3 (6)C16—O13—C13—C17139.8 (6)
C10—C5—C6—C758.2 (8)C16—O13—C13—C1413.1 (7)
C5—C6—C7—O7138.6 (8)C16—O13—C13—C1293.0 (6)
C5—C6—C7—C843.7 (10)O12—C12—C13—O13154.4 (5)
O7—C7—C8—C1685.2 (10)C11—C12—C13—O1337.5 (8)
C6—C7—C8—C1692.6 (8)O12—C12—C13—C1780.5 (7)
O7—C7—C8—C9145.1 (8)C11—C12—C13—C17162.6 (6)
C6—C7—C8—C937.2 (9)O12—C12—C13—C1443.0 (6)
O7—C7—C8—C1422.1 (11)C11—C12—C13—C1473.9 (7)
C6—C7—C8—C14160.1 (6)O13—C13—C14—C15154.8 (5)
C16—C8—C9—C1154.1 (7)C17—C13—C14—C1582.7 (7)
C7—C8—C9—C11178.7 (6)C12—C13—C14—C1538.6 (6)
C14—C8—C9—C1154.7 (7)O13—C13—C14—C836.2 (6)
C16—C8—C9—C1083.4 (7)C17—C13—C14—C8158.7 (6)
C7—C8—C9—C1043.9 (8)C12—C13—C14—C880.0 (6)
C14—C8—C9—C10167.9 (5)C16—C8—C14—C15151.9 (6)
O1—C1—C10—C5178.1 (6)C7—C8—C14—C1593.3 (7)
C2—C1—C10—C558.4 (6)C9—C8—C14—C1532.4 (8)
O1—C1—C10—C1960.7 (7)C16—C8—C14—C1343.5 (6)
C2—C1—C10—C1962.8 (7)C7—C8—C14—C13158.3 (6)
O1—C1—C10—C964.7 (7)C9—C8—C14—C1376.0 (6)
C2—C1—C10—C9171.8 (6)C12—O12—C15—O15174.4 (6)
C4—C5—C10—C151.7 (7)C12—O12—C15—C145.6 (7)
C6—C5—C10—C1178.4 (6)C13—C14—C15—O15157.5 (8)
C4—C5—C10—C1967.7 (7)C8—C14—C15—O1595.4 (9)
C6—C5—C10—C1962.1 (7)C13—C14—C15—O1222.5 (7)
C4—C5—C10—C9168.2 (6)C8—C14—C15—O1284.5 (7)
C6—C5—C10—C961.9 (7)C13—O13—C16—C816.8 (7)
C8—C9—C10—C1169.7 (5)C7—C8—C16—O13153.5 (6)
C11—C9—C10—C156.4 (8)C9—C8—C16—O1377.2 (7)
C8—C9—C10—C555.1 (7)C14—C8—C16—O1338.0 (7)
C11—C9—C10—C5171.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O130.822.112.766 (8)136
O1—H1···O15i0.822.453.252 (8)168
C12—H12···O7ii0.982.583.468 (10)151
C17—H17A···O7ii0.962.553.364 (11)143
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+1, z1/2.
(II) top
Crystal data top
C19H24O7F(000) = 776
Mr = 364.38Dx = 1.435 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.5278 (16) Åθ = 15–30°
b = 12.418 (3) ŵ = 0.91 mm1
c = 18.037 (4) ÅT = 293 K
V = 1686.2 (7) Å3Rod shaped, colourless
Z = 40.25 × 0.15 × 0.15 mm
Data collection top
Enraf Nonius CAD4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 71.8°, θmin = 4.3°
Graphite monochromatorh = 09
non–profiled ω/2θ scansk = 014
1846 measured reflectionsl = 022
1846 independent reflections3 standard reflections every 200 reflections
1660 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.2417P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1846 reflectionsΔρmax = 0.18 e Å3
240 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (5)
Crystal data top
C19H24O7V = 1686.2 (7) Å3
Mr = 364.38Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.5278 (16) ŵ = 0.91 mm1
b = 12.418 (3) ÅT = 293 K
c = 18.037 (4) Å0.25 × 0.15 × 0.15 mm
Data collection top
Enraf Nonius CAD4
diffractometer
Rint = 0.000
1846 measured reflections3 standard reflections every 200 reflections
1846 independent reflections intensity decay: 2%
1660 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
1846 reflectionsΔρmin = 0.15 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0358 (3)0.74913 (15)0.12065 (12)0.0476 (5)
H10.02880.69690.11400.071*
O20.3420 (3)0.77060 (17)0.07249 (11)0.0505 (5)
H20.39840.79600.10720.076*
O70.1916 (3)1.23757 (15)0.21800 (11)0.0606 (6)
O120.2523 (3)0.89710 (14)0.34958 (9)0.0433 (5)
O110.3663 (2)0.79653 (15)0.16733 (11)0.0448 (4)
H110.30280.76320.13840.067*
O130.5629 (2)0.98607 (16)0.21140 (10)0.0463 (5)
O150.1031 (3)1.04339 (16)0.38421 (9)0.0480 (5)
C10.0686 (3)0.84514 (19)0.12011 (13)0.0346 (5)
H1A0.13810.84780.16600.041*
C20.1973 (3)0.8406 (2)0.05457 (13)0.0410 (6)
H2A0.13310.80760.01310.049*
C30.2599 (4)0.9492 (2)0.02883 (13)0.0454 (6)
H30.34860.95120.00700.055*
C40.1978 (3)1.0422 (2)0.05350 (12)0.0422 (6)
C50.0632 (3)1.0448 (2)0.11609 (12)0.0354 (5)
H50.13341.04230.16180.042*
C60.0449 (4)1.1485 (2)0.12090 (14)0.0441 (6)
H6A0.11471.15590.07600.053*
H6B0.03641.20910.12310.053*
C70.1664 (4)1.15376 (19)0.18596 (12)0.0361 (5)
C80.2667 (3)1.05236 (19)0.20735 (11)0.0320 (5)
C90.1557 (3)0.94828 (19)0.19535 (11)0.0290 (4)
H90.05880.95500.23140.035*
C100.0574 (3)0.94349 (19)0.11860 (11)0.0311 (5)
C110.2590 (3)0.84709 (19)0.22193 (13)0.0354 (5)
H11A0.17030.79410.23770.043*
C120.3752 (4)0.8715 (2)0.28933 (13)0.0392 (6)
H120.44950.80940.30210.047*
C130.4869 (3)0.9741 (2)0.28349 (14)0.0410 (6)
C140.3357 (3)1.0556 (2)0.28895 (12)0.0353 (5)
H140.37641.12730.30400.042*
C150.2156 (3)1.0044 (2)0.34504 (12)0.0362 (5)
C160.4476 (3)1.0501 (2)0.16772 (14)0.0421 (6)
H16A0.43521.01940.11860.050*
H16B0.49451.12250.16290.050*
C170.6331 (4)0.9823 (3)0.34056 (18)0.0587 (8)
H17A0.69751.04820.33340.088*
H17B0.71260.92230.33520.088*
H17C0.58220.98160.38940.088*
C190.1746 (3)0.9384 (2)0.04852 (12)0.0397 (6)
H19A0.25000.87620.05100.060*
H19B0.24641.00220.04560.060*
H19C0.10030.93370.00540.060*
C200.2672 (4)1.1469 (3)0.02315 (16)0.0584 (8)
H20A0.36401.13280.01010.088*
H20B0.17391.18340.00300.088*
H20C0.30801.19140.06320.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (10)0.0338 (9)0.0689 (12)0.0033 (8)0.0053 (10)0.0079 (9)
O20.0384 (9)0.0578 (12)0.0553 (10)0.0110 (9)0.0008 (9)0.0147 (9)
O70.0849 (16)0.0357 (10)0.0612 (11)0.0045 (11)0.0190 (13)0.0097 (9)
O120.0528 (11)0.0390 (10)0.0381 (8)0.0069 (9)0.0029 (9)0.0033 (7)
O110.0359 (8)0.0437 (10)0.0547 (10)0.0057 (8)0.0008 (9)0.0151 (8)
O130.0299 (8)0.0570 (12)0.0518 (10)0.0030 (8)0.0048 (8)0.0042 (9)
O150.0525 (11)0.0487 (11)0.0428 (8)0.0097 (10)0.0092 (9)0.0000 (8)
C10.0297 (11)0.0368 (13)0.0372 (11)0.0033 (10)0.0027 (10)0.0041 (9)
C20.0328 (12)0.0535 (15)0.0366 (11)0.0042 (12)0.0001 (10)0.0104 (11)
C30.0370 (12)0.0672 (17)0.0321 (10)0.0000 (15)0.0035 (10)0.0027 (12)
C40.0385 (12)0.0551 (15)0.0330 (10)0.0078 (13)0.0016 (10)0.0053 (11)
C50.0355 (11)0.0377 (13)0.0328 (10)0.0013 (11)0.0010 (10)0.0016 (9)
C60.0526 (15)0.0348 (14)0.0448 (13)0.0038 (13)0.0060 (13)0.0037 (10)
C70.0391 (12)0.0334 (13)0.0358 (10)0.0026 (11)0.0072 (10)0.0013 (9)
C80.0309 (10)0.0324 (11)0.0328 (9)0.0032 (10)0.0026 (9)0.0014 (9)
C90.0270 (10)0.0298 (11)0.0304 (9)0.0009 (10)0.0030 (8)0.0011 (8)
C100.0313 (10)0.0316 (12)0.0303 (10)0.0017 (11)0.0029 (9)0.0015 (9)
C110.0311 (11)0.0339 (13)0.0413 (11)0.0030 (10)0.0026 (11)0.0015 (9)
C120.0375 (12)0.0402 (14)0.0399 (11)0.0105 (11)0.0020 (11)0.0008 (10)
C130.0309 (11)0.0476 (15)0.0446 (12)0.0013 (11)0.0029 (11)0.0083 (11)
C140.0346 (11)0.0335 (12)0.0377 (10)0.0013 (11)0.0032 (10)0.0037 (10)
C150.0378 (13)0.0382 (13)0.0326 (10)0.0055 (11)0.0028 (10)0.0002 (10)
C160.0325 (11)0.0464 (14)0.0473 (13)0.0083 (12)0.0063 (11)0.0044 (12)
C170.0463 (15)0.066 (2)0.0633 (16)0.0063 (15)0.0193 (15)0.0135 (15)
C190.0384 (13)0.0452 (14)0.0354 (10)0.0019 (12)0.0063 (10)0.0045 (10)
C200.0584 (18)0.0652 (19)0.0515 (15)0.0128 (17)0.0095 (15)0.0131 (14)
Geometric parameters (Å, º) top
O1—C11.428 (3)C7—C81.518 (3)
O1—H10.8200C8—C161.538 (3)
O2—C21.431 (3)C8—C91.554 (3)
O2—H20.8200C8—C141.561 (3)
O7—C71.205 (3)C9—C111.554 (3)
O12—C151.363 (3)C9—C101.571 (3)
O12—C121.462 (3)C9—H90.9800
O11—C111.420 (3)C10—C191.543 (3)
O11—H110.8200C11—C121.528 (3)
O13—C161.417 (3)C11—H11A0.9800
O13—C131.429 (3)C12—C131.529 (4)
O15—C151.204 (3)C12—H120.9800
C1—C21.529 (3)C13—C171.510 (3)
C1—C101.547 (3)C13—C141.527 (3)
C1—H1A0.9800C14—C151.499 (3)
C2—C31.503 (4)C14—H140.9800
C2—H2A0.9800C16—H16A0.9700
C3—C41.323 (4)C16—H16B0.9700
C3—H30.9300C17—H17A0.9600
C4—C201.504 (4)C17—H17B0.9600
C4—C51.517 (3)C17—H17C0.9600
C5—C61.526 (4)C19—H19A0.9600
C5—C101.552 (3)C19—H19B0.9600
C5—H50.9800C19—H19C0.9600
C6—C71.490 (4)C20—H20A0.9600
C6—H6A0.9700C20—H20B0.9600
C6—H6B0.9700C20—H20C0.9600
C1—O1—H1109.5C1—C10—C9107.65 (17)
C2—O2—H2109.5C5—C10—C9105.71 (17)
C15—O12—C12107.22 (18)O11—C11—C12108.30 (19)
C11—O11—H11109.5O11—C11—C9115.36 (18)
C16—O13—C13108.61 (18)C12—C11—C9111.8 (2)
O1—C1—C2108.84 (19)O11—C11—H11A107.0
O1—C1—C10108.79 (18)C12—C11—H11A107.0
C2—C1—C10113.82 (19)C9—C11—H11A107.0
O1—C1—H1A108.4O12—C12—C11105.8 (2)
C2—C1—H1A108.4O12—C12—C13102.60 (19)
C10—C1—H1A108.4C11—C12—C13115.2 (2)
O2—C2—C3112.1 (2)O12—C12—H12110.9
O2—C2—C1109.3 (2)C11—C12—H12110.9
C3—C2—C1113.8 (2)C13—C12—H12110.9
O2—C2—H2A107.1O13—C13—C17108.7 (2)
C3—C2—H2A107.1O13—C13—C14106.7 (2)
C1—C2—H2A107.1C17—C13—C14117.0 (2)
C4—C3—C2124.7 (2)O13—C13—C12111.7 (2)
C4—C3—H3117.6C17—C13—C12114.2 (2)
C2—C3—H3117.6C14—C13—C1297.95 (19)
C3—C4—C20120.6 (2)C15—C14—C13102.23 (19)
C3—C4—C5120.3 (2)C15—C14—C8115.1 (2)
C20—C4—C5119.0 (2)C13—C14—C899.79 (18)
C4—C5—C6114.6 (2)C15—C14—H14112.8
C4—C5—C10113.3 (2)C13—C14—H14112.8
C6—C5—C10111.7 (2)C8—C14—H14112.8
C4—C5—H5105.4O15—C15—O12120.0 (2)
C6—C5—H5105.4O15—C15—C14130.5 (2)
C10—C5—H5105.4O12—C15—C14109.5 (2)
C7—C6—C5114.2 (2)O13—C16—C8107.13 (19)
C7—C6—H6A108.7O13—C16—H16A110.3
C5—C6—H6A108.7C8—C16—H16A110.3
C7—C6—H6B108.7O13—C16—H16B110.3
C5—C6—H6B108.7C8—C16—H16B110.3
H6A—C6—H6B107.6H16A—C16—H16B108.5
O7—C7—C6120.8 (2)C13—C17—H17A109.5
O7—C7—C8121.1 (2)C13—C17—H17B109.5
C6—C7—C8118.0 (2)H17A—C17—H17B109.5
C7—C8—C16109.7 (2)C13—C17—H17C109.5
C7—C8—C9112.78 (19)H17A—C17—H17C109.5
C16—C8—C9113.33 (19)H17B—C17—H17C109.5
C7—C8—C14112.55 (19)C10—C19—H19A109.5
C16—C8—C1498.27 (19)C10—C19—H19B109.5
C9—C8—C14109.38 (18)H19A—C19—H19B109.5
C11—C9—C8111.14 (18)C10—C19—H19C109.5
C11—C9—C10118.50 (18)H19A—C19—H19C109.5
C8—C9—C10114.04 (17)H19B—C19—H19C109.5
C11—C9—H9103.7C4—C20—H20A109.5
C8—C9—H9103.7C4—C20—H20B109.5
C10—C9—H9103.7H20A—C20—H20B109.5
C19—C10—C1109.44 (18)C4—C20—H20C109.5
C19—C10—C5110.11 (19)H20A—C20—H20C109.5
C1—C10—C5106.37 (19)H20B—C20—H20C109.5
C19—C10—C9117.02 (18)
O1—C1—C2—O277.3 (2)C11—C9—C10—C5168.23 (19)
C10—C1—C2—O2161.17 (19)C8—C9—C10—C558.0 (2)
O1—C1—C2—C3156.5 (2)C8—C9—C11—O1190.3 (2)
C10—C1—C2—C335.0 (3)C10—C9—C11—O1144.7 (3)
O2—C2—C3—C4131.9 (3)C8—C9—C11—C1234.0 (2)
C1—C2—C3—C47.2 (3)C10—C9—C11—C12169.03 (19)
C2—C3—C4—C20178.9 (3)C15—O12—C12—C1186.9 (2)
C2—C3—C4—C54.7 (4)C15—O12—C12—C1334.2 (2)
C3—C4—C5—C6159.3 (2)O11—C11—C12—O12165.88 (18)
C20—C4—C5—C624.2 (3)C9—C11—C12—O1265.9 (2)
C3—C4—C5—C1029.4 (3)O11—C11—C12—C1381.6 (3)
C20—C4—C5—C10154.1 (2)C9—C11—C12—C1346.6 (3)
C4—C5—C6—C7175.4 (2)C16—O13—C13—C17139.8 (2)
C10—C5—C6—C754.0 (3)C16—O13—C13—C1412.7 (3)
C5—C6—C7—O7143.5 (3)C16—O13—C13—C1293.3 (2)
C5—C6—C7—C840.5 (3)O12—C12—C13—O13155.75 (19)
O7—C7—C8—C1684.7 (3)C11—C12—C13—O1341.3 (3)
C6—C7—C8—C1691.3 (3)O12—C12—C13—C1780.3 (2)
O7—C7—C8—C9148.0 (2)C11—C12—C13—C17165.3 (2)
C6—C7—C8—C936.1 (3)O12—C12—C13—C1444.1 (2)
O7—C7—C8—C1423.6 (3)C11—C12—C13—C1470.3 (2)
C6—C7—C8—C14160.4 (2)O13—C13—C14—C15153.77 (19)
C7—C8—C9—C11176.87 (18)C17—C13—C14—C1584.2 (3)
C16—C8—C9—C1157.7 (2)C12—C13—C14—C1538.2 (2)
C14—C8—C9—C1150.8 (2)O13—C13—C14—C835.2 (2)
C7—C8—C9—C1046.0 (2)C17—C13—C14—C8157.2 (2)
C16—C8—C9—C1079.4 (2)C12—C13—C14—C880.4 (2)
C14—C8—C9—C10172.10 (17)C7—C8—C14—C1594.2 (2)
O1—C1—C10—C1959.7 (2)C16—C8—C14—C15150.4 (2)
C2—C1—C10—C1961.8 (3)C9—C8—C14—C1532.0 (3)
O1—C1—C10—C5178.62 (19)C7—C8—C14—C13157.3 (2)
C2—C1—C10—C557.1 (2)C16—C8—C14—C1341.9 (2)
O1—C1—C10—C968.5 (2)C9—C8—C14—C1376.5 (2)
C2—C1—C10—C9170.00 (19)C12—O12—C15—O15172.6 (2)
C4—C5—C10—C1965.0 (3)C12—O12—C15—C148.9 (3)
C6—C5—C10—C1966.3 (2)C13—C14—C15—O15158.4 (3)
C4—C5—C10—C153.5 (2)C8—C14—C15—O1594.5 (3)
C6—C5—C10—C1175.25 (19)C13—C14—C15—O1219.9 (2)
C4—C5—C10—C9167.75 (18)C8—C14—C15—O1287.1 (2)
C6—C5—C10—C961.0 (2)C13—O13—C16—C816.2 (3)
C11—C9—C10—C1968.8 (3)C7—C8—C16—O13154.6 (2)
C8—C9—C10—C1965.0 (3)C9—C8—C16—O1378.4 (2)
C11—C9—C10—C154.9 (2)C14—C8—C16—O1336.9 (2)
C8—C9—C10—C1171.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O10.822.042.692 (3)136
O1—H1···O15i0.821.992.762 (3)158
O2—H2···O11ii0.822.082.802 (3)147
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H22O7C19H24O7
Mr362.37364.38
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)293293
a, b, c (Å)10.342 (4), 13.328 (7), 11.956 (9)7.5278 (16), 12.418 (3), 18.037 (4)
V3)1648.0 (16)1686.2 (7)
Z44
Radiation typeCu KαCu Kα
µ (mm1)0.940.91
Crystal size (mm)0.30 × 0.20 × 0.100.25 × 0.15 × 0.15
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
Enraf Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1807, 1741, 1203 1846, 1846, 1660
Rint0.0600.000
(sin θ/λ)max1)0.6170.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.208, 1.06 0.033, 0.103, 1.03
No. of reflections17411846
No. of parameters238240
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.420.18, 0.15

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O130.822.112.766 (8)136
O1—H1···O15i0.822.453.252 (8)168
C12—H12···O7ii0.982.583.468 (10)151
C17—H17A···O7ii0.962.553.364 (11)143
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O10.822.042.692 (3)136
O1—H1···O15i0.821.992.762 (3)158
O2—H2···O11ii0.822.082.802 (3)147
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds