Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title di­sulfonyl-stabilized pyridinium yl­ide, C5H5N+-C-(SO2C6H5)2 or C18H15NO4S2, contains a near planar NCS2 core. The structure suggests that the formal negative charge of the yl­ide C atom is delocalized to the S atoms rather than the N atom. Structural features of pyridinium yl­ides are briefly discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103010655/ln1169sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010655/ln1169Isup2.hkl
Contains datablock I

CCDC reference: 217144

Comment top

The title compound, (I), provides the first structural example of a pyridinium ylide in which the negative charge on the ylide C atom is stabilized by electron-withdrawing sulfonyl groups.

In (I), ylide atom C13 is bonded to the pyridinium N atom and to two S atoms; it lies only 0.053 (2) Å from the NS2 plane (Fig. 1). The bond lengths and the molecular conformation indicate that C13—N1 is essentially a single bond and that the negative charge formally associated with atom C13 is substantially delocalized to atoms S1 and S2. Thus, significant pπ–pπ overlap across N1—C13 is precluded by the near orthogonality of the relevant p-orbitals of atoms N1 and C13 [the C14—N1—C13—S1 torsion angle is 73.2 (3)°]. Consistent with this, the N1—C13 distance is 0.09 Å longer than the aromatic N1—Cpy bond lengths; indeed, the N1—C13 bond length of 1.445 (3) Å is substantially longer than any mean value for an Csp2—N3 bond in the compilation of Orpen et al. (1992). The C13—S bonds are, on average, 0.08 Å shorter than the S—CPh distances, signalling the transfer of charge from atom C13 to the S atoms. This conclusion is consistent with hydrogen-bond basicity and IR spectroscopic studies on sulfonyl-stabilized nitrogen ylides: these have shown that sulfonamidates, –SO2N(-)N(+)Me3, are amongst the strongest sulfonyl bases known as a result of electron release from the negatively charged N atom to the sulfonyl group. The mechanism of this electron release is thought to be mainly inductive (see Chardin et al., 1996, and references therein).

The closest comparison to (I) among known structures is provided by the acridinium ylide, (II) (Ning et al., 1976), in which a chlorosulfinyl substituent is one of the two stabilizing groups. The S—C(ylide) distance in (II) of 1.668 (8) Å is only slightly shorter than the corresponding distances in (I), while the N—Cylide distance (1.447 Å) is nearly identical with that in (I).

A search of the Cambridge Structural Database (Allen, 2002; in the subsequent discussion geometric parameters not given explicitly in the primary source have been recalculated using the program QUEST) reveals that in the other pyridinium ylides, (IIIa)–(IIIe) (see Scheme), which have been characterized by diffraction methods, the ylide C atom participates in two C—C bonds. In these structures, the bonds radiating from the ylide C atom are nearly coplanar, the pyridinium (py) and ylide planes are roughly normal to one another (Cpy—N—Cylide—C torsion angles 61–84°), the N—Cylide distances (1.454–1.474 Å) are on average slightly longer than the corresponding values in (I) and (II), and the C—Cylide—C bond angles (127.4–129.6°) are all much larger than 120°. This last feature may have a steric origin: the corresponding angles in (I) [124.7 (1)°] and (II) [123.3 (1)°] deviate less from 120°.

Finally, we note that the structures of 1,1-dicyano-1-pyridiniomethanide compounds differ from those of (I)–(III) in that the angle between the C(CN)2 and pyridinium planes is close to zero, permitting conjugation across the N—C(ylide) bonds. These, in consequence, are shorter (1.416–1.427 Å) than those in (I)–(III) (see, for example, Matsumoto et al., 1998; Baert et al., 1982). The angles at the ylide C atom in these dicyano compounds do not show the large deviations from 120° typical of (III).

Experimental top

The sample was prepared by Professor A. Vargvolis, University of Thessaloniki, Greece, and was recrystallized from ethyl acetate.

Refinement top

H atoms were located initially in difference maps. In the final refinement, their positions were determined by the HFIX instruction in SHELXL97 (Sheldrick, 1997) and they were then allowed to ride on their parent C atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The data set used in these calculations contains 3980 unique reflections when Friedel pairs are averaged.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I), with ellipsoids drawn at the 20% probability level.
(I) top
Crystal data top
C18H15NO4S2F(000) = 776
Mr = 373.43Dx = 1.416 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3666 reflections
a = 8.9402 (2) Åθ = 1.0–35.0°
b = 17.2777 (5) ŵ = 0.33 mm1
c = 11.3437 (4) ÅT = 100 K
V = 1752.22 (9) Å3Needle, yellow
Z = 40.33 × 0.12 × 0.07 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5207 reflections with I > 2σ(I)
thick–slice ϕ scansRint = 0.061
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 35.0°, θmin = 3.7°
Tmin = 0.924, Tmax = 0.977h = 014
13541 measured reflectionsk = 270
6736 independent reflectionsl = 1817
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0305P)2 + 1.561P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.056(Δ/σ)max < 0.001
wR(F2) = 0.116Δρmax = 0.45 e Å3
S = 1.02Δρmin = 0.46 e Å3
6736 reflectionsAbsolute structure: Flack & Bernardinelli, (2000); 2756 Friedel pairs
226 parametersAbsolute structure parameter: 0.15 (7)
1 restraint
Crystal data top
C18H15NO4S2V = 1752.22 (9) Å3
Mr = 373.43Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 8.9402 (2) ŵ = 0.33 mm1
b = 17.2777 (5) ÅT = 100 K
c = 11.3437 (4) Å0.33 × 0.12 × 0.07 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6736 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
5207 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.977Rint = 0.061
13541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.45 e Å3
S = 1.02Δρmin = 0.46 e Å3
6736 reflectionsAbsolute structure: Flack & Bernardinelli, (2000); 2756 Friedel pairs
226 parametersAbsolute structure parameter: 0.15 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59299 (6)0.18345 (3)0.68268 (5)0.01505 (10)
S20.61196 (6)0.32860 (3)0.82693 (5)0.01561 (10)
O10.7022 (2)0.13850 (10)0.61757 (16)0.0222 (4)
O20.47125 (19)0.21676 (10)0.61553 (16)0.0203 (3)
O30.45636 (19)0.31041 (10)0.84803 (17)0.0207 (4)
O40.7055 (2)0.34871 (10)0.92688 (15)0.0212 (4)
N10.8510 (2)0.24646 (11)0.7548 (2)0.0151 (3)
C10.5054 (3)0.11925 (13)0.7833 (2)0.0176 (4)
C20.4084 (3)0.06413 (15)0.7361 (3)0.0278 (6)
H20.38890.06290.65380.033*
C30.3404 (4)0.01105 (16)0.8111 (3)0.0362 (7)
H30.2750.02710.77960.043*
C40.3673 (4)0.01330 (16)0.9317 (3)0.0324 (7)
H40.31940.02280.98240.039*
C50.4638 (3)0.06810 (15)0.9780 (3)0.0275 (6)
H50.48240.06941.06040.033*
C60.5337 (3)0.12138 (14)0.9038 (2)0.0208 (5)
H60.60020.15890.93550.025*
C70.6178 (3)0.40977 (14)0.7306 (2)0.0196 (5)
C80.5503 (3)0.40518 (15)0.6214 (2)0.0251 (5)
H80.50520.35820.59620.03*
C90.5489 (4)0.46998 (17)0.5486 (3)0.0309 (6)
H90.5020.46760.47350.037*
C100.6161 (4)0.53818 (16)0.5859 (3)0.0333 (7)
H100.61410.58250.53640.04*
C110.6861 (3)0.54205 (15)0.6950 (3)0.0332 (7)
H110.7330.58870.71940.04*
C120.6878 (3)0.47758 (14)0.7687 (3)0.0273 (6)
H120.73560.47970.84340.033*
C130.6897 (2)0.25108 (14)0.7588 (2)0.0154 (4)
C140.9228 (3)0.26726 (13)0.6543 (2)0.0180 (5)
H140.86760.28740.58960.022*
C151.0756 (3)0.25929 (14)0.6458 (2)0.0219 (5)
H151.12570.27180.57450.026*
C161.1560 (3)0.23278 (16)0.7423 (3)0.0252 (5)
H161.26170.22820.73810.03*
C171.0811 (3)0.21314 (17)0.8442 (2)0.0268 (5)
H171.13520.19530.9110.032*
C180.9274 (3)0.21949 (15)0.8490 (2)0.0217 (5)
H180.87530.20490.91860.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0138 (2)0.0183 (2)0.0131 (2)0.00146 (19)0.0009 (2)0.0016 (2)
S20.0168 (2)0.0164 (2)0.0137 (2)0.00046 (19)0.0015 (2)0.0000 (2)
O10.0194 (8)0.0233 (8)0.0239 (10)0.0009 (7)0.0057 (7)0.0078 (7)
O20.0178 (8)0.0271 (8)0.0160 (8)0.0015 (7)0.0022 (7)0.0033 (7)
O30.0152 (7)0.0241 (8)0.0227 (9)0.0009 (6)0.0039 (7)0.0015 (7)
O40.0266 (9)0.0216 (8)0.0155 (8)0.0025 (7)0.0030 (7)0.0005 (7)
N10.0136 (8)0.0169 (8)0.0148 (8)0.0009 (7)0.0011 (8)0.0004 (7)
C10.0158 (10)0.0156 (9)0.0214 (11)0.0011 (8)0.0016 (9)0.0006 (8)
C20.0295 (14)0.0260 (12)0.0280 (14)0.0119 (11)0.0033 (11)0.0001 (10)
C30.0410 (17)0.0278 (13)0.0397 (19)0.0183 (12)0.0030 (14)0.0044 (13)
C40.0342 (16)0.0282 (14)0.0347 (16)0.0093 (12)0.0027 (13)0.0109 (12)
C50.0329 (15)0.0248 (12)0.0247 (13)0.0016 (11)0.0034 (11)0.0064 (11)
C60.0224 (12)0.0200 (11)0.0201 (12)0.0014 (9)0.0007 (10)0.0007 (9)
C70.0181 (11)0.0186 (10)0.0221 (12)0.0049 (9)0.0049 (9)0.0027 (9)
C80.0322 (14)0.0232 (11)0.0200 (12)0.0044 (10)0.0022 (11)0.0018 (10)
C90.0365 (16)0.0311 (14)0.0250 (14)0.0108 (12)0.0040 (12)0.0053 (11)
C100.0378 (17)0.0256 (13)0.0366 (17)0.0086 (12)0.0095 (14)0.0127 (12)
C110.0374 (15)0.0202 (11)0.0422 (18)0.0002 (11)0.0034 (14)0.0059 (12)
C120.0283 (13)0.0209 (11)0.0326 (15)0.0004 (10)0.0012 (12)0.0033 (11)
C130.0113 (8)0.0167 (9)0.0183 (10)0.0016 (8)0.0008 (9)0.0018 (8)
C140.0180 (10)0.0208 (10)0.0152 (11)0.0035 (8)0.0027 (9)0.0034 (8)
C150.0189 (11)0.0255 (11)0.0213 (12)0.0062 (9)0.0042 (9)0.0022 (9)
C160.0152 (11)0.0340 (13)0.0264 (14)0.0010 (10)0.0002 (10)0.0047 (11)
C170.0160 (11)0.0446 (15)0.0197 (13)0.0053 (10)0.0019 (10)0.0017 (11)
C180.0182 (11)0.0313 (12)0.0157 (12)0.0026 (9)0.0001 (9)0.0030 (9)
Geometric parameters (Å, º) top
S1—O21.4477 (18)C6—H60.95
S1—O11.4497 (18)C7—C81.380 (4)
S1—C131.691 (2)C7—C121.397 (4)
S1—C11.774 (2)C8—C91.391 (4)
S2—O31.4461 (18)C8—H80.95
S2—O41.4510 (18)C9—C101.389 (4)
S2—C131.695 (2)C9—H90.95
S2—C71.778 (2)C10—C111.389 (4)
N1—C181.352 (3)C10—H100.95
N1—C141.357 (3)C11—C121.393 (4)
N1—C131.445 (3)C11—H110.95
C1—C61.391 (4)C12—H120.95
C1—C21.395 (3)C14—C151.376 (3)
C2—C31.391 (4)C14—H140.95
C2—H20.95C15—C161.387 (4)
C3—C41.389 (4)C15—H150.95
C3—H30.95C16—C171.378 (4)
C4—C51.384 (4)C16—H160.95
C4—H40.95C17—C181.380 (4)
C5—C61.395 (4)C17—H170.95
C5—H50.95C18—H180.95
O2—S1—O1116.82 (11)C12—C7—S2119.0 (2)
O2—S1—C13112.24 (11)C7—C8—C9119.4 (3)
O1—S1—C13106.62 (11)C7—C8—H8120.3
O2—S1—C1104.79 (11)C9—C8—H8120.3
O1—S1—C1106.86 (11)C10—C9—C8119.9 (3)
C13—S1—C1109.23 (13)C10—C9—H9120.1
O3—S2—O4118.49 (11)C8—C9—H9120.1
O3—S2—C13107.35 (10)C11—C10—C9120.5 (3)
O4—S2—C13108.01 (12)C11—C10—H10119.8
O3—S2—C7107.54 (11)C9—C10—H10119.8
O4—S2—C7105.91 (11)C10—C11—C12120.1 (3)
C13—S2—C7109.32 (12)C10—C11—H11120
C18—N1—C14121.09 (19)C12—C11—H11120
C18—N1—C13119.9 (2)C11—C12—C7118.7 (3)
C14—N1—C13119.0 (2)C11—C12—H12120.6
C6—C1—C2120.6 (2)C7—C12—H12120.6
C6—C1—S1122.40 (19)N1—C13—S1117.13 (18)
C2—C1—S1117.0 (2)N1—C13—S2117.85 (17)
C3—C2—C1119.1 (3)S1—C13—S2124.69 (13)
C3—C2—H2120.4N1—C14—C15120.1 (2)
C1—C2—H2120.4N1—C14—H14119.9
C4—C3—C2120.5 (3)C15—C14—H14119.9
C4—C3—H3119.7C14—C15—C16119.5 (2)
C2—C3—H3119.7C14—C15—H15120.3
C5—C4—C3120.0 (3)C16—C15—H15120.3
C5—C4—H4120C17—C16—C15119.4 (2)
C3—C4—H4120C17—C16—H16120.3
C4—C5—C6120.1 (3)C15—C16—H16120.3
C4—C5—H5119.9C16—C17—C18119.8 (2)
C6—C5—H5119.9C16—C17—H17120.1
C1—C6—C5119.6 (2)C18—C17—H17120.1
C1—C6—H6120.2N1—C18—C17120.0 (2)
C5—C6—H6120.2N1—C18—H18120
C8—C7—C12121.4 (2)C17—C18—H18120
C8—C7—S2119.5 (2)
O2—S1—C1—C6128.3 (2)C8—C7—C12—C111.3 (4)
O1—S1—C1—C6107.1 (2)S2—C7—C12—C11177.1 (2)
C13—S1—C1—C67.9 (3)C18—N1—C13—S1104.8 (3)
O2—S1—C1—C253.3 (2)C14—N1—C13—S173.2 (3)
O1—S1—C1—C271.2 (2)C18—N1—C13—S281.4 (3)
C13—S1—C1—C2173.8 (2)C14—N1—C13—S2100.5 (2)
C6—C1—C2—C30.2 (4)O2—S1—C13—N1135.06 (19)
S1—C1—C2—C3178.1 (2)O1—S1—C13—N16.0 (2)
C1—C2—C3—C40.7 (5)C1—S1—C13—N1109.2 (2)
C2—C3—C4—C50.8 (5)O2—S1—C13—S238.2 (2)
C3—C4—C5—C60.3 (5)O1—S1—C13—S2167.34 (17)
C2—C1—C6—C50.3 (4)C1—S1—C13—S277.5 (2)
S1—C1—C6—C5178.5 (2)O3—S2—C13—N1164.67 (19)
C4—C5—C6—C10.2 (4)O4—S2—C13—N135.8 (2)
O3—S2—C7—C858.5 (2)C7—S2—C13—N179.0 (2)
O4—S2—C7—C8173.9 (2)O3—S2—C13—S122.1 (2)
C13—S2—C7—C857.7 (2)O4—S2—C13—S1150.91 (17)
O3—S2—C7—C12119.9 (2)C7—S2—C13—S194.3 (2)
O4—S2—C7—C127.7 (2)C18—N1—C14—C151.6 (4)
C13—S2—C7—C12123.8 (2)C13—N1—C14—C15176.3 (2)
C12—C7—C8—C91.4 (4)N1—C14—C15—C162.5 (4)
S2—C7—C8—C9176.9 (2)C14—C15—C16—C171.5 (4)
C7—C8—C9—C100.5 (4)C15—C16—C17—C180.5 (4)
C8—C9—C10—C110.6 (5)C14—N1—C18—C170.3 (4)
C9—C10—C11—C120.8 (5)C13—N1—C18—C17178.3 (2)
C10—C11—C12—C70.1 (4)C16—C17—C18—N11.4 (4)

Experimental details

Crystal data
Chemical formulaC18H15NO4S2
Mr373.43
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)8.9402 (2), 17.2777 (5), 11.3437 (4)
V3)1752.22 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.33 × 0.12 × 0.07
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.924, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
13541, 6736, 5207
Rint0.061
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.116, 1.02
No. of reflections6736
No. of parameters226
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.46
Absolute structureFlack & Bernardinelli, (2000); 2756 Friedel pairs
Absolute structure parameter0.15 (7)

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—C131.691 (2)N1—C181.352 (3)
S1—C11.774 (2)N1—C141.357 (3)
S2—C131.695 (2)N1—C131.445 (3)
S2—C71.778 (2)
N1—C13—S1117.13 (18)S1—C13—S2124.69 (13)
N1—C13—S2117.85 (17)
C13—S1—C1—C67.9 (3)O1—S1—C13—N16.0 (2)
C13—S2—C7—C857.7 (2)O4—S2—C13—N135.8 (2)
C14—N1—C13—S173.2 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds