Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The supramolecular structures of the isomeric compounds 5,7-di­methoxy­imidazo­[1,2-c]­pyrimidine, C8H9N3O2, (I), and 7-methoxy-1-methyl­imidazo­[1,2-a]­pyrimidin-5(1H)-one, C8H9N3O2, (II), are determined by weak C-H...N and C-H...O hydrogen bonds in (I), which generate alternating linked centrosymmetric R22(8) and R22(10) rings that form a ribbon running parallel to the c axis, and by C-H...O bonds in (II), which link the mol­ecules into sheets comprising centro­symmetric R22(10) and R44(22) rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103010266/ln1168sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010266/ln1168Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010266/ln1168IIsup3.hkl
Contains datablock II

CCDC references: 217139; 217140

Comment top

Imidazopyrimidine derivatives are a group of fused heterocyclic systems of particular interest due to their resemblance to the ubiquitous biologically important purine, and thence their potential as antimetabolites showing useful biological activities. In fact, some imidazo[1,2-a]pyrimidines have shown antifungal (Rival et al., 1991) and anti-inflammatory/analgesic activities (Sacchi et al., 1997). In this paper, we report the molecular and supramolecular structure of two isomeric examples of such fused heterocyclic derivatives, namely 5,7-dimethoxyimidazo[1,2-c]pyrimidine, (I), and 7-methoxy-1-methylimidazo [1,2-a]pyrimidin-5(1H)-one, (II). The former was prepared by reaction of commercial 4-amino-2,6-dimethoxypyrimidine with bromoacetaldehyde (Quijano et al. 1994). The latter was obtained in good yield by fusion of the crystalline intermediate 5,7-dimethoxyimidazo[1,2-a]pyrimidine, which was prepared by reaction of commercial 2-amino-4,6-dimethoxypyrimidine with bromoacetaldehyde.

There are no unusual bond lengths or angles in (I) and (II), however, the bond distances along the fused heterocycle perimeter of (I) show a clear alternation in single- and double-bond character, so pointing to the low aromatic nature of this compound (Table 1). In both compounds, the six- and five-membered rings are planar, with the angle between the rings in being 1.40 (10) and 3.13 (12)° in (I) and (II), respectively. In (I), the torsion angles about the C5—O5 and C7—O7 bonds show that the methoxy groups are coplanar with the ring system. In (II), however, the torsion angles about the C7—O7 bond show that the methoxy group is tilted out of the plane of the ring system (Table 3).

In the absence of any donors for conventional hydrogen bonds, the supramolecular structures are controlled by the formation of weak C—H···N and C—H···O hydrogen bonds in (I) and by weak C—H···O hydrogen bonds in (II). In the case of (I), these are weaker than in (II), as evidenced by the C8···N1 and C3···O5 distances of 3.476 (2) and 3.391 (2) Å, respectively, for (I), and the C3···O5 and C2···O5 distances of 3.104 (3) and 3.339 (3) Å, respectively, in for (II). Details of the hydrogen bonding are given in Tables 2 and 4.

In (I), the molecules are linked to form one-dimensional ribbons of centrosymmetric dimers which run parallel to the c axis (Fig. 3). Atom C8 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H8, to ring atom N1 in the molecule at (-x, 1 − y, 1 − z), so generating a centrosymmetric R22(8) ring (Bernstein et al., 1995) centred at (0, 1/2, 1/2). Atom C3 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H3, to methoxy atom O5 in the molecule at (-x, 1 − y, −z), so generating a centrosymmetric R22(10) ring centred at (0, 1/2, 0). Alternatively, the molecules can be viewed as being linked head-to-tail by two centrosymmetrically related C22(10) chains. There are no other direction-specific contacts in the structure.

In (II), atom C2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H2, to O5 in the molecule at (x, 1.5 − y, 0.5 + z), so generating a C(6) chain which runs parallel to the c axis (Fig. 4). This chain is produced by the action of the c-glide plane at y = 0.75. This chain is then linked to an antiparallel chain produced by the action of centres-of-symmetry to form a corrugated ribbon which lies approximately parallel to the (010) plane. In the crosslink, atom C3 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H3, to atom O5 in the molecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(10) ring centred at (1/2, 1/2, 1/2). An R44(22) ring centred at (1/2, 1/2, 1) is also formed involving six molecules, with four C2–H2···O5 and two C3–H3···O5 interactions. In this ring, two molecules donate and accept one interaction each, two accept two interactions to the same atom and two donate two interactions via two different H atoms each (Fig. 4). These ribbons are then linked via further C3–H3···O5 crosslinks, extending the structure parallel to the b axis, thereby forming corrugated sheets which lie in the (100) plane.

The molecules stack above each other such that atom N4 of the five-membered ring lies almost directly above the centroid of the five-membered ring at (1 − x, 1 − y, −z). The inter-centroid distance is 3.5221 (14) Å, the perpedicular distance between the centroid of one ring and the plane of the other is 3.301 Å, and the offset between centroids is 1.228 Å. A view of the stacking is shown in Fig. 5. Fig. 6 shows a stereoview of the three-dimensional structure formed by the interaction of the sheets and also the molecular stacking.

Experimental top

For the preparation of 5,7-dimethoxyimidazo[1,2-c]pyrimidine, (I), a mixture of bromoacetaldehyde diethyl acetal (6.9 ml, 45.4 mmol) and water (25 ml) was treated with concentrated hydrochloric acid (2.5 ml) and heated until a homogeneous solution was obtained. The pH was adjusted to 5–6 by addition of solid sodium acetate and the resulting solution was added dropwise to a suspension of 4-amino-2,6-dimethoxypyrimidine (0.51 g, 3.2 mmol) in water (13 ml) containing sodium acetate (0.27 g, 3.2 mmol). The mixture was refluxed for 20 min and, after cooling, 1 N NaOH was added until a pH of 8 was achieved. The crude reaction mixture was extracted with dichloromethane. The extract was dried over anhydrous sodium sulfate and the solvent removed in vacuo. The residue was chromatographed on a silica-gel flash column to afford 0.214 g (1.19 mmol, 37%) of compound (I). 1H NMR (300 MHz, CDCl3/TMS): δ 3.92 (s, 3H, CH3O-7), 4.21 (s, 3H, CH3O-5), 6.37 (s, 1H, H-8), 7.42 (s, 2H, H-2 and H-3); 13C NMR (75 MHz, CDCl3/TMS): δ 55.26, 55.87, 82.19, 107,02, 134.03, 148.13, 150.05, 160.56. Recrystallization from ethyl acetate produced a crystalline sample suitable for single-crystal X-ray diffraction analysis (m.p. 387 K).

7-Methoxy-1-methylimidazo[1,2-a]pyrimidin-5(1H)-one, (II), was prepared using a procedure similar to that for compound (I). 5,7-Dimethoxyimidazo[1,2-a]pyrimidine (150 mg, 0.837 mmol) was obtained from 2-amino-4,6-dimethoxypyrimidine (1.64 g, 10.3 mmol) and bromoacetaldehyde diethyl acetal (6.25 ml, 41.2 mmol) (reaction time: 40 min). M.p. 399 K. 1H NMR (300 MHz, CDCl3/TMS): δ 4.03 (s, 3H, CH3O-7), 4.08 (s, 3H, CH3O-5), 5.67 (s, 1H, H-6), 7.34 (d, J = 1,7 Hz, 1H, H-3), 7.42 (d, J = 1,7 Hz, 1H, H-2). 13C NMR (75 MHz, CDCl3/TMS): δ 54.35, 56.72, 77.12, 105.87, 132.06, 149.06, 156.36, 165.12. This compound was placed in a Pyrex tube and heated in an oil bath at 403 K for 20 min. During this period, melting and resolidification of the starting material was observed. The solid residue was directly recrystallized from ethyl acetate to afford 113 mg (0.631 mmol, 75% yield) of compound (II) as crystals suitable for X-ray diffraction analysis (m. p. 449 K). 1H NMR (300 MHz, CDCl3/TMS): δ 3.67 (s, 3H, CH3N), 3.89 (s, 3H, CH3O), 5.39 (s, 1H, H-6), 6.86 (d, J = 3.1 Hz, 1H, H-2), 7.48 (d, J = 3.1 Hz, 1H, H-3). 13C NMR (75 MHz, CDCl3/TMS): δ 31.51, 54.28, 80.01, 106.89, 118.28, 145.72, 158.97, 170.37

Refinement top

Compound (I) crystallized in the triclinic system; space group P1 was assumed and confirmed by the analysis. Compound (II) crystallized in the monoclinic system; space group P21/c was assumed from the systematic absences. In both compounds, H atoms were treated as riding atoms, with C—H distances of 0.95 (aromatic) and 0.98 Å (CH3).

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. View of the ribbon structure running parallel to the c axis in (I). Atoms marked with an asterisk (*), hash (#) or ampersand (&) are at the symmetry positions (-x, 1 − y, −z), (-x, 1 − y, 1 − z) and (x, y, 1 + z), respectively.
[Figure 4] Fig. 4. View of the part of the sheet structure formed in (II) by two antiparallel C(6) chains linked by centrosymmetric R22(10) and R44(22) rings. Atoms marked with an asterisk (*), hash (#), ampersand (&), dollar sign ($) or `at' sign (@) are at the symmetry positions (x, 1.5 − y, 0.5 + z), (1 − x, 1 − y, 1 − z), (1 − x, −0.5 + y, 1.5 − z), (x, y, 1 + z) and (1 − x, 1 − y, 2 − z), respectively.
[Figure 5] Fig. 5. View of the stacking of the molecules in (II), showing the positon of atom N4 almost directly above the centroid of the five-membered ring. The molecule labelled with an asterisk (*) is at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 6] Fig. 6. Stereoview of the three-dimensional structure of (II), viewed down the a axis.
(I) 5,7-dimethoxyimidazo[1,2-c]pyrimidine top
Crystal data top
C8H9N3O2Z = 2
Mr = 179.18F(000) = 188
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Melting point: 387 K
a = 3.8798 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9183 (6) ÅCell parameters from 1756 reflections
c = 12.6224 (11) Åθ = 3.5–27.4°
α = 69.426 (3)°µ = 0.11 mm1
β = 83.093 (4)°T = 120 K
γ = 79.189 (4)°Block, colourless
V = 400.94 (5) Å30.22 × 0.14 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1182 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.058
Graphite monochromatorθmax = 27.4°, θmin = 3.5°
ϕ scans and ω scans with κ offsetsh = 54
6415 measured reflectionsk = 1111
1756 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0751P)2]
where P = (Fo2 + 2Fc2)/3
1756 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C8H9N3O2γ = 79.189 (4)°
Mr = 179.18V = 400.94 (5) Å3
Triclinic, P1Z = 2
a = 3.8798 (3) ÅMo Kα radiation
b = 8.9183 (6) ŵ = 0.11 mm1
c = 12.6224 (11) ÅT = 120 K
α = 69.426 (3)°0.22 × 0.14 × 0.10 mm
β = 83.093 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1182 reflections with I > 2σ(I)
6415 measured reflectionsRint = 0.058
1756 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
1756 reflectionsΔρmin = 0.32 e Å3
120 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1966) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0425 (4)0.37339 (18)0.37285 (12)0.0269 (4)
C20.0218 (5)0.3154 (2)0.28995 (15)0.0268 (5)
C30.0311 (5)0.4191 (2)0.18361 (15)0.0258 (4)
N40.1346 (4)0.55052 (17)0.19891 (11)0.0224 (4)
C50.2346 (5)0.6905 (2)0.12447 (14)0.0216 (4)
O50.2332 (3)0.70044 (14)0.01661 (9)0.0263 (4)
C510.3399 (5)0.8458 (2)0.06818 (14)0.0272 (5)
N60.3217 (4)0.80121 (17)0.15539 (11)0.0235 (4)
C70.3118 (5)0.7735 (2)0.27021 (14)0.0233 (4)
O70.3967 (3)0.90308 (14)0.28836 (9)0.0282 (4)
C710.4070 (5)0.8903 (2)0.40490 (14)0.0288 (5)
C80.2278 (5)0.6363 (2)0.35239 (15)0.0245 (4)
C90.1371 (5)0.5168 (2)0.31598 (14)0.0221 (4)
H20.09540.21350.30600.032*
H30.00360.40510.11410.031*
H51A0.16430.94010.06760.041*
H51B0.35920.83460.14330.041*
H51C0.56810.86050.05080.041*
H71A0.17550.87430.44380.043*
H71B0.46950.99000.40810.043*
H71C0.58280.79780.44220.043*
H80.23010.62170.43060.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0326 (9)0.0241 (8)0.0249 (8)0.0088 (7)0.0017 (7)0.0075 (6)
C20.0338 (11)0.0220 (9)0.0268 (10)0.0079 (8)0.0031 (8)0.0087 (8)
C30.0329 (11)0.0224 (10)0.0255 (9)0.0061 (8)0.0044 (8)0.0104 (8)
N40.0265 (9)0.0204 (8)0.0205 (8)0.0050 (7)0.0020 (6)0.0065 (6)
C50.0241 (10)0.0227 (9)0.0187 (9)0.0026 (8)0.0023 (7)0.0077 (7)
O50.0389 (8)0.0238 (7)0.0177 (6)0.0096 (6)0.0013 (5)0.0064 (5)
C510.0354 (11)0.0250 (10)0.0193 (9)0.0090 (8)0.0016 (8)0.0040 (7)
N60.0295 (9)0.0212 (8)0.0206 (8)0.0065 (7)0.0019 (6)0.0064 (6)
C70.0263 (10)0.0234 (9)0.0223 (9)0.0037 (8)0.0041 (7)0.0095 (7)
O70.0424 (9)0.0250 (7)0.0211 (7)0.0118 (6)0.0027 (6)0.0088 (5)
C710.0381 (12)0.0304 (11)0.0230 (10)0.0099 (9)0.0044 (8)0.0121 (8)
C80.0279 (10)0.0262 (10)0.0201 (9)0.0047 (8)0.0021 (8)0.0084 (7)
C90.0231 (10)0.0236 (9)0.0188 (9)0.0018 (8)0.0032 (7)0.0064 (7)
Geometric parameters (Å, º) top
N1—C91.324 (2)C51—H51B0.98
N1—C21.384 (2)C51—H51C0.98
C2—C31.353 (3)N6—C71.379 (2)
C2—H20.95C7—O71.358 (2)
C3—N41.388 (2)C7—C81.362 (2)
C3—H30.95O7—C711.4398 (19)
N4—C51.364 (2)C71—H71A0.98
N4—C91.402 (2)C71—H71B0.98
C5—N61.292 (2)C71—H71C0.98
C5—O51.3335 (19)C8—C91.412 (2)
O5—C511.455 (2)C8—H80.95
C51—H51A0.98
C9—N1—C2104.59 (15)H51B—C51—H51C109.5
C3—C2—N1112.94 (16)C5—N6—C7117.12 (14)
C3—C2—H2123.5O7—C7—C8125.53 (15)
N1—C2—H2123.5O7—C7—N6109.84 (14)
C2—C3—N4104.55 (15)C8—C7—N6124.63 (15)
C2—C3—H3127.7C7—O7—C71116.35 (13)
N4—C3—H3127.7O7—C71—H71A109.5
C5—N4—C3132.45 (14)O7—C71—H71B109.5
C5—N4—C9120.28 (14)H71A—C71—H71B109.5
C3—N4—C9107.23 (13)O7—C71—H71C109.5
N6—C5—O5123.74 (15)H71A—C71—H71C109.5
N6—C5—N4123.52 (15)H71B—C71—H71C109.5
O5—C5—N4112.75 (14)C7—C8—C9116.92 (16)
C5—O5—C51116.14 (13)C7—C8—H8121.5
O5—C51—H51A109.5C9—C8—H8121.5
O5—C51—H51B109.5N1—C9—N4110.69 (14)
H51A—C51—H51B109.5N1—C9—C8131.85 (16)
O5—C51—H51C109.5N4—C9—C8117.44 (15)
H51A—C51—H51C109.5
C9—N1—C2—C30.1 (2)C5—N6—C7—C82.2 (3)
N1—C2—C3—N40.0 (2)C8—C7—O7—C711.9 (3)
C2—C3—N4—C5177.70 (18)N6—C7—O7—C71178.37 (14)
C2—C3—N4—C90.0 (2)O7—C7—C8—C9178.19 (16)
C3—N4—C5—N6179.63 (18)N6—C7—C8—C91.5 (3)
C9—N4—C5—N62.9 (3)C2—N1—C9—N40.1 (2)
C3—N4—C5—O50.5 (3)C2—N1—C9—C8178.37 (19)
C9—N4—C5—O5177.01 (14)C5—N4—C9—N1177.97 (15)
N6—C5—O5—C510.4 (2)C3—N4—C9—N10.1 (2)
N4—C5—O5—C51179.47 (15)C5—N4—C9—C83.3 (2)
O5—C5—N6—C7179.72 (16)C3—N4—C9—C8178.62 (16)
N4—C5—N6—C70.1 (3)C7—C8—C9—N1179.59 (19)
C5—N6—C7—O7177.62 (15)C7—C8—C9—N41.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.952.593.476 (2)155
C3—H3···O5ii0.952.503.391 (2)157
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.
(II) 7-methoxy-1-methylimidazo[1,2-a]pyrimidin-5(1H)-one top
Crystal data top
C8H9N3O2F(000) = 376
Mr = 179.18Dx = 1.436 Mg m3
Monoclinic, P21/cMelting point: 449 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.5917 (6) ÅCell parameters from 1855 reflections
b = 6.7484 (5) Åθ = 3.3–27.5°
c = 14.3054 (14) ŵ = 0.11 mm1
β = 91.648 (3)°T = 120 K
V = 829.09 (12) Å3Plate, colourless
Z = 40.30 × 0.28 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
993 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.087
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ϕ scans and ω scans with κ offsetsh = 1110
6217 measured reflectionsk = 88
1855 independent reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H9N3O2V = 829.09 (12) Å3
Mr = 179.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5917 (6) ŵ = 0.11 mm1
b = 6.7484 (5) ÅT = 120 K
c = 14.3054 (14) Å0.30 × 0.28 × 0.02 mm
β = 91.648 (3)°
Data collection top
Nonius KappaCCD
diffractometer
993 reflections with I > 2σ(I)
6217 measured reflectionsRint = 0.087
1855 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.94Δρmax = 0.21 e Å3
1855 reflectionsΔρmin = 0.29 e Å3
120 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1966) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6851 (2)1.0258 (3)0.62431 (13)0.0233 (5)
C10.7393 (3)1.1826 (3)0.68716 (17)0.0317 (6)
C20.5884 (3)0.8698 (3)0.64538 (17)0.0249 (5)
C30.5694 (3)0.7536 (3)0.56916 (16)0.0269 (6)
N40.6585 (2)0.8409 (3)0.49968 (12)0.0223 (5)
C50.6857 (3)0.7744 (3)0.40684 (15)0.0242 (5)
O50.61694 (19)0.6226 (2)0.37863 (11)0.0310 (4)
C60.7908 (3)0.8954 (3)0.36131 (16)0.0243 (5)
C70.8540 (3)1.0617 (3)0.40352 (16)0.0236 (5)
O70.95467 (18)1.1700 (2)0.35333 (11)0.0266 (4)
C711.0034 (3)1.3575 (3)0.39178 (17)0.0316 (6)
N80.8256 (2)1.1255 (3)0.49053 (12)0.0223 (5)
C90.7291 (2)1.0068 (3)0.53494 (16)0.0210 (5)
H1A0.68591.30670.67070.048*
H1B0.85181.19990.68140.048*
H1C0.71641.14670.75170.048*
H20.54250.84780.70410.030*
H30.50830.63660.56370.032*
H60.81980.86240.29960.029*
H71A1.05481.33650.45300.047*
H71B0.91231.44300.39890.047*
H71C1.07631.42090.34970.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0243 (10)0.0259 (10)0.0195 (11)0.0008 (9)0.0002 (8)0.0026 (9)
C10.0351 (14)0.0360 (14)0.0240 (14)0.0051 (12)0.0000 (11)0.0053 (11)
C20.0231 (12)0.0298 (12)0.0220 (13)0.0004 (11)0.0032 (10)0.0034 (11)
C30.0279 (12)0.0284 (13)0.0244 (14)0.0003 (11)0.0033 (10)0.0041 (11)
N40.0261 (10)0.0243 (10)0.0166 (10)0.0018 (9)0.0017 (8)0.0009 (8)
C50.0276 (12)0.0254 (12)0.0196 (13)0.0017 (11)0.0011 (10)0.0019 (10)
O50.0412 (10)0.0283 (9)0.0234 (9)0.0047 (8)0.0021 (8)0.0033 (8)
C60.0270 (12)0.0292 (13)0.0169 (12)0.0035 (11)0.0011 (10)0.0002 (10)
C70.0224 (12)0.0284 (12)0.0198 (13)0.0047 (11)0.0002 (10)0.0060 (10)
O70.0289 (9)0.0295 (9)0.0217 (9)0.0036 (7)0.0052 (7)0.0010 (7)
C710.0351 (14)0.0317 (13)0.0283 (14)0.0069 (12)0.0041 (11)0.0009 (11)
N80.0212 (10)0.0273 (10)0.0186 (11)0.0009 (9)0.0014 (8)0.0012 (8)
C90.0199 (11)0.0233 (12)0.0195 (12)0.0045 (10)0.0023 (10)0.0010 (10)
Geometric parameters (Å, º) top
N1—C91.350 (3)C5—O51.244 (3)
N1—C21.380 (3)C5—C61.393 (3)
N1—C11.456 (3)C6—C71.378 (3)
C1—H1A0.98C6—H60.95
C1—H1B0.98C7—N81.346 (3)
C1—H1C0.98C7—O71.354 (3)
C2—C31.349 (3)O7—C711.437 (3)
C2—H20.95C71—H71A0.98
C3—N41.401 (3)C71—H71B0.98
C3—H30.95C71—H71C0.98
N4—C91.363 (3)N8—C91.328 (3)
N4—C51.428 (3)
C9—N1—C2108.71 (18)O5—C5—N4118.16 (19)
C9—N1—C1124.14 (19)C6—C5—N4112.10 (19)
C2—N1—C1127.10 (19)C7—C6—C5121.7 (2)
N1—C1—H1A109.5C7—C6—H6119.2
N1—C1—H1B109.5C5—C6—H6119.2
H1A—C1—H1B109.5N8—C7—O7117.0 (2)
N1—C1—H1C109.5N8—C7—C6125.9 (2)
H1A—C1—H1C109.5O7—C7—C6117.1 (2)
H1B—C1—H1C109.5C7—O7—C71117.10 (18)
C3—C2—N1109.1 (2)O7—C71—H71A109.5
C3—C2—H2125.5O7—C71—H71B109.5
N1—C2—H2125.5H71A—C71—H71B109.5
C2—C3—N4105.82 (19)O7—C71—H71C109.5
C2—C3—H3127.1H71A—C71—H71C109.5
N4—C3—H3127.1H71B—C71—H71C109.5
C9—N4—C3109.22 (18)C9—N8—C7112.43 (18)
C9—N4—C5121.30 (18)N8—C9—N1126.2 (2)
C3—N4—C5129.39 (19)N8—C9—N4126.6 (2)
O5—C5—C6129.7 (2)N1—C9—N4107.17 (18)
C9—N1—C2—C30.8 (3)C6—C7—O7—C71171.5 (2)
C1—N1—C2—C3178.2 (2)O7—C7—N8—C9178.21 (18)
N1—C2—C3—N40.4 (2)C6—C7—N8—C91.2 (3)
C2—C3—N4—C90.1 (2)C7—N8—C9—N1176.4 (2)
C2—C3—N4—C5176.8 (2)C7—N8—C9—N42.1 (3)
C9—N4—C5—O5179.57 (19)C2—N1—C9—N8177.9 (2)
C3—N4—C5—O54.0 (3)C1—N1—C9—N80.5 (3)
C9—N4—C5—C60.9 (3)C2—N1—C9—N40.8 (2)
C3—N4—C5—C6175.5 (2)C1—N1—C9—N4178.30 (19)
O5—C5—C6—C7178.8 (2)C3—N4—C9—N8178.2 (2)
N4—C5—C6—C71.8 (3)C5—N4—C9—N81.1 (3)
C5—C6—C7—N80.8 (4)C3—N4—C9—N10.5 (2)
C5—C6—C7—O7179.8 (2)C5—N4—C9—N1177.62 (18)
N8—C7—O7—C719.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.952.223.104 (3)153
C2—H2···O5ii0.952.573.339 (3)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC8H9N3O2C8H9N3O2
Mr179.18179.18
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)120120
a, b, c (Å)3.8798 (3), 8.9183 (6), 12.6224 (11)8.5917 (6), 6.7484 (5), 14.3054 (14)
α, β, γ (°)69.426 (3), 83.093 (4), 79.189 (4)90, 91.648 (3), 90
V3)400.94 (5)829.09 (12)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.110.11
Crystal size (mm)0.22 × 0.14 × 0.100.30 × 0.28 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6415, 1756, 1182 6217, 1855, 993
Rint0.0580.087
(sin θ/λ)max1)0.6470.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.134, 1.03 0.052, 0.122, 0.94
No. of reflections17561855
No. of parameters120120
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.320.21, 0.29

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2003), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
N1—C91.324 (2)C5—O51.3335 (19)
N1—C21.384 (2)O5—C511.455 (2)
C2—C31.353 (3)N6—C71.379 (2)
C3—N41.388 (2)C7—O71.358 (2)
N4—C51.364 (2)C7—C81.362 (2)
N4—C91.402 (2)O7—C711.4398 (19)
C5—N61.292 (2)C8—C91.412 (2)
C9—N1—C2104.59 (15)C5—N6—C7117.12 (14)
C3—C2—N1112.94 (16)O7—C7—C8125.53 (15)
C2—C3—N4104.55 (15)O7—C7—N6109.84 (14)
C5—N4—C3132.45 (14)C8—C7—N6124.63 (15)
C5—N4—C9120.28 (14)C7—O7—C71116.35 (13)
C3—N4—C9107.23 (13)C7—C8—C9116.92 (16)
N6—C5—O5123.74 (15)N1—C9—N4110.69 (14)
N6—C5—N4123.52 (15)N1—C9—C8131.85 (16)
O5—C5—N4112.75 (14)N4—C9—C8117.44 (15)
C5—O5—C51116.14 (13)
N6—C5—O5—C510.4 (2)C8—C7—O7—C711.9 (3)
N4—C5—O5—C51179.47 (15)N6—C7—O7—C71178.37 (14)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.952.593.476 (2)155
C3—H3···O5ii0.952.503.391 (2)157
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.
Selected geometric parameters (Å, º) for (II) top
N1—C91.350 (3)C5—O51.244 (3)
N1—C21.380 (3)C5—C61.393 (3)
N1—C11.456 (3)C6—C71.378 (3)
C2—C31.349 (3)C7—N81.346 (3)
C3—N41.401 (3)C7—O71.354 (3)
N4—C91.363 (3)O7—C711.437 (3)
N4—C51.428 (3)N8—C91.328 (3)
C9—N1—C2108.71 (18)C6—C5—N4112.10 (19)
C9—N1—C1124.14 (19)C7—C6—C5121.7 (2)
C2—N1—C1127.10 (19)N8—C7—O7117.0 (2)
C3—C2—N1109.1 (2)N8—C7—C6125.9 (2)
C2—C3—N4105.82 (19)O7—C7—C6117.1 (2)
C9—N4—C3109.22 (18)C7—O7—C71117.10 (18)
C9—N4—C5121.30 (18)C9—N8—C7112.43 (18)
C3—N4—C5129.39 (19)N8—C9—N1126.2 (2)
O5—C5—C6129.7 (2)N8—C9—N4126.6 (2)
O5—C5—N4118.16 (19)N1—C9—N4107.17 (18)
N8—C7—O7—C719.1 (3)C6—C7—O7—C71171.5 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.952.223.104 (3)153
C2—H2···O5ii0.952.573.339 (3)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds