Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complexes, trans-di­aqua­bis­(quinoline-2-carboxyl­ato-κ2N,O)­cobalt(II)–water–methanol (1/2/2), [Co(C10H6NO2)2(H2O)2]·2CH4O·2H2O, and trans-di­aqua­bis­(quinoline-2-car­box­yl­ato-κ2N,O)­nickel(II)–water–methanol (1/2/2), [Ni(C10H6NO2)2(H2O)2]·2CH4O·2H2O, are isomorphous and contain CoII and NiII ions at centers of inversion. Both complexes have the same distorted octahedral coordination geometry, and each metal ion is coordinated by two quinoline N atoms, two carboxyl­ate O atoms and two water O atoms. The quinoline-2-carboxyl­ate ligands lie in trans positions with respect to one another, forming the equatorial plane, with the two water ligands occupying the axial positions. The complex mol­ecules are linked together by hydrogen bonding involving a series of ring patterns which include the uncoordinated water and methanol mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103008722/ln1166sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008722/ln1166Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008722/ln1166IIsup3.hkl
Contains datablock II

CCDC references: 214373; 214374

Comment top

Quinoline-2-carboxylic acid (quinaldinic acid, quinaldic acid) is known to be a potent chelator of various divalent metal ions (Martell & Smith, 1974). It may be engaged in metal-catalyzed oxidation reaction in solution (Shul'pin, 2002). Previously, the structures of the CoII (Okabe & Makino, 1999) and NiII (Odoko et al., 2001) complexes of this ligand have been determined as the water/ethanol solvates. In this study, crystals of the same CoII, (I), and NiII, (II), complexes were prepared as their water methanol/solvates, and their structures were determined so as to clarify the solvent effect.

The structures of (I) (Fig. 1) and (II) are isomorphous and have the same distorted octahedral coordination geometries with the metal ion at a center of inversion. The two bidentate ligands are coordinated to the central metal ion, either CoII or NiII, through the quinoline N atoms and the carboxylate O atoms, forming a five-membered ring in the equatorial plane. Two aqua O atoms complete the octahedron by occupying the axial positions. These coordination geometries are fundamentally the same as in trans-diaquabis(quinoline-2-carboxylato-κ2N,O)cobalt(II)–water–ethanol (1/2/2) (Okabe & Makino, 1999), trans-diaquabis(quinoline-2-carboxylato-κ2N,O)nickel(II)–water–ethanol (1/2/2) (Odoko et al., 2001) and trans-diaquabis(quinoline-2-carboxylato-κ2N,O)iron(II)–water–ethanol (1/2/2) (Okabe & Makino, 1998). The equatorial coordination bond lengths between the quinoline N atom and the metal ion, and between the carboxylate O atom and the metal ion (Tables 1 and 3), agree with the corresponding bond lengths in the same complex molecules in the structures of their water/ethanol solvates, viz. Co—N = 2.226 (2) Å and Co—O = 2.037 (3) Å in the CoII complex (Okabe & Makino, 1999), and Ni—N = 2.185 (2) Å and Ni—O = 2.013 (2) Å in the NiII complex (Odoko et al., 2001). The coordination bond lengths of the metal complexes of quinoline-2-carboxylate decrease in the order of MnII [Mn—N = 2.324 (3) Å and Mn—O 2.125 (2) Å (Haendler, 1996), and Mn—N = 2.315 (2) Å and Mn—O = 2.131 (2) Å (Okabe & Koizumi, 1997)] > FeII [Fe—N = 2.270 (1) Å and Fe—O = 2.087 (1) Å; Okabe & Makino, 1998] > CoII (Okabe & Makino, 1999; this work) > NiII (Odoko et al., 2001; this work) > CuII (Cu—N = 2.014 and 2.012 Å, and Cu—O = 1.954 and 1.962 Å; Haendler, 1986, 1996). The reverse of this order coincides well with the Irving–Williams series which indicates the general stability sequence of octahedral metal complexes in the order Mn < Fe < Co < Ni < Cu.

The hydrogen-bonding parameters for (I) and (II) are listed in Tables 2 and 4. Both structures are stabilized by identical hydrogen-bonding patterns involving several ring motifs (Bernstein et al., 1995). One centrosymmetric hydrogen-bonded ring involves one carboxylate O atom from each of two metal complex molecules, one water ligand from each of another two metal complex molecules, two solvent water molecules and two ethanol molecules. This produces an R86(16) ring motif. A larger centrosymmetric hydrogen-bonded ring with a motif of R66(20) involves one carboxylate O atom and one water ligand from each of two metal complex molecules, two solvent water molecules and two ethanol molecules. Within this large ring are two smaller rings. One is a centrosymmetric ring involving just two solvate water and two ethanol molecules; this ring contains a total eight atoms, four of them donors and two acceptors, and has an R42(8) motif. The second ring is not centrosymmetric and involves just one metal complex molecule, one solvent water molecule and one methanol molecule, giving an R33(10) motif. Finally, another centrosymmetric ring is formed between two adjacent metal complex molecules and involves the water ligand as a donor on one molecule and the carboxylate O atom as an acceptor on the second molecule, thereby generating a graph-set motif of R22(12). All of these hydrogen-bonding patterns are clearly visible in Fig. 2. Similar hydrogen-bonding patterns are also formed in the water/ethanol solvate of the NiII complex (Odoko et al., 2001), as confirmed by recalculation of the data for this compound (the results are not given here). The hydrogen-bonding patterns in the water/ethanol solvate of the CoII complex (Okabe & Makino, 1999) also seem to be the same as those observed in this study, even though the H atoms of the solvent water molecules were not located in their work. The supramolecular networks exhibited by the CoII and NiII complexes in both their water/methanol solvates and water/ethanol solvates are much the same and the structures are even almost isomorphous. The change of the solvate molecule from methanol to ethanol merely expands the cell slightly to accomodate the extra methylene group, without causing significant rearrangement of the supramolecular networks.

Experimental top

Orange plate-shaped crystals of (I) were obtained by slow evaporation of a water–methanol solution (10:90% v/v) of a mixture of quinoline-2-carboxylic acid and CoCl2·6H2O (molar ratio 4:1) at room temperature. Light-blue plate-shaped crystals of (II) were obtained by slow evaporation of a water–methanol solution (40:60% v/v) of a mixture of quinoline-2-carboxylic acid and Ni(CH3COO)2·4H2O (molar ratio 4:1) at room temperature.

Refinement top

A linear correction was applied to the intensities to correct for the decay that occurred during each data collection. Initially, all H atoms were located from difference Fourier maps. Subsequently, the methyl and hydroxy H atoms were constrained to an ideal geometry (C—H = 0.96 Å and O—H = 0.82 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—O bonds. All other H atoms, except those of the water molecules, were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were kept fixed at the positions located from the Fourier maps and their Uiso values were initially refined, then held fixed. The crystals of (I) and (II) were very unstable in air and so were mounted in capillaries before tdata collection.

Computing details top

For both compounds, data collection: MSC/AFC MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure & Rigaku, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with the atomic numbering scheme. Ellipsoids for non-H atoms corresponding to 50% probability.
[Figure 2] Fig. 2. The molecular packing of (I). Hydrogen bonds are indicated by thin lines.
(I) top
Crystal data top
[Co(C10H6NO2)2(H2O)2]·2CH4O·2H2OZ = 1
Mr = 539.39F(000) = 281.0
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 7.170 (2) ÅCell parameters from 20 reflections
b = 8.965 (2) Åθ = 12.7–14.7°
c = 10.827 (2) ŵ = 0.75 mm1
α = 76.35 (2)°T = 296 K
β = 74.38 (2)°Plate, orange
γ = 69.86 (2)°0.20 × 0.20 × 0.10 mm
V = 621.3 (3) Å3
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.051
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 98
Tmin = 0.870, Tmax = 0.928k = 110
3034 measured reflectionsl = 1413
2855 independent reflections3 standard reflections every 150 reflections
1677 reflections with I > 2σ(I) intensity decay: 38.1%
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.36 e Å3
2855 reflectionsΔρmin = 0.62 e Å3
162 parameters
Crystal data top
[Co(C10H6NO2)2(H2O)2]·2CH4O·2H2Oγ = 69.86 (2)°
Mr = 539.39V = 621.3 (3) Å3
Triclinic, P1Z = 1
a = 7.170 (2) ÅMo Kα radiation
b = 8.965 (2) ŵ = 0.75 mm1
c = 10.827 (2) ÅT = 296 K
α = 76.35 (2)°0.20 × 0.20 × 0.10 mm
β = 74.38 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
1677 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.870, Tmax = 0.9283 standard reflections every 150 reflections
3034 measured reflections intensity decay: 38.1%
2855 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046162 parameters
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
2855 reflectionsΔρmin = 0.62 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00001.00000.0316 (2)
O10.7014 (3)0.0386 (3)1.1129 (2)0.0391 (5)
O1M0.1892 (5)0.1187 (4)0.5964 (3)0.0740 (9)
O1W0.7316 (3)0.1082 (3)0.8507 (2)0.0423 (6)
O20.9090 (3)0.0582 (3)1.1682 (2)0.0476 (6)
O2W0.6247 (4)0.0316 (4)0.6181 (3)0.0719 (9)
N10.5976 (4)0.2212 (3)0.9371 (2)0.0316 (6)
C10.7362 (5)0.2139 (4)0.9997 (3)0.0355 (7)
C20.8304 (5)0.3343 (4)0.9772 (4)0.0442 (9)
C30.7746 (5)0.4673 (4)0.8875 (4)0.0490 (9)
C40.6286 (5)0.4811 (4)0.8194 (3)0.0418 (8)
C50.5646 (6)0.6153 (4)0.7241 (4)0.057 (1)
C60.4230 (8)0.6226 (5)0.6604 (4)0.071 (1)
C70.3348 (7)0.4980 (5)0.6883 (4)0.068 (1)
C80.3916 (6)0.3663 (4)0.7795 (4)0.0513 (10)
C90.5401 (5)0.3542 (4)0.8462 (3)0.0361 (7)
C100.7883 (5)0.0664 (4)1.1006 (3)0.0358 (7)
C110.0264 (8)0.2507 (7)0.5727 (6)0.105 (2)
H1A0.69250.06120.77550.0580*
H1B0.84770.09750.85620.0580*
H1M0.15500.06250.66480.1109*
H20.92880.32361.02250.0531*
H2A0.68860.00640.53960.0923*
H2B0.49150.07100.62990.0923*
H30.83420.54900.87180.0587*
H50.62100.69930.70530.0686*
H60.38370.71100.59760.0848*
H70.23650.50500.64430.0816*
H80.33160.28460.79730.0615*
H11A0.02100.31010.64390.1261*
H11B0.08080.21570.56340.1261*
H11C0.06760.31830.49420.1261*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0327 (4)0.0297 (4)0.0355 (4)0.0130 (3)0.0124 (3)0.0009 (3)
O10.044 (1)0.035 (1)0.045 (1)0.020 (1)0.019 (1)0.005 (1)
O1M0.064 (2)0.093 (3)0.048 (2)0.008 (2)0.009 (1)0.005 (2)
O1W0.040 (1)0.045 (1)0.047 (1)0.018 (1)0.009 (1)0.008 (1)
O20.043 (1)0.060 (2)0.049 (1)0.023 (1)0.020 (1)0.002 (1)
O2W0.062 (2)0.092 (2)0.051 (2)0.009 (2)0.012 (1)0.012 (2)
N10.032 (1)0.026 (1)0.034 (1)0.008 (1)0.005 (1)0.004 (1)
C10.035 (2)0.032 (2)0.038 (2)0.008 (1)0.004 (1)0.009 (1)
C20.044 (2)0.044 (2)0.054 (2)0.026 (2)0.008 (2)0.010 (2)
C30.051 (2)0.037 (2)0.061 (2)0.026 (2)0.000 (2)0.006 (2)
C40.049 (2)0.027 (2)0.045 (2)0.016 (2)0.002 (2)0.004 (2)
C50.076 (3)0.029 (2)0.059 (3)0.018 (2)0.007 (2)0.005 (2)
C60.101 (4)0.038 (2)0.067 (3)0.021 (2)0.031 (3)0.018 (2)
C70.090 (3)0.049 (3)0.069 (3)0.023 (2)0.042 (3)0.015 (2)
C80.063 (2)0.038 (2)0.054 (2)0.018 (2)0.022 (2)0.007 (2)
C90.042 (2)0.025 (2)0.037 (2)0.009 (1)0.003 (1)0.004 (1)
C100.026 (2)0.042 (2)0.037 (2)0.008 (1)0.003 (1)0.009 (2)
C110.085 (4)0.085 (4)0.097 (4)0.008 (3)0.002 (3)0.005 (3)
Geometric parameters (Å, º) top
Co1—O12.026 (3)C2—H20.930
Co1—O1W2.120 (2)C3—C41.393 (6)
Co1—N12.224 (3)C3—H30.930
O1—C101.262 (5)C4—C51.418 (5)
O1M—C111.377 (6)C4—C91.422 (6)
O1M—H1M0.820C5—C61.349 (8)
O1W—H1A0.894C5—H50.930
O1W—H1B0.889C6—C71.402 (8)
O2—C101.250 (5)C6—H60.930
O2W—H2A0.891C7—C81.367 (5)
O2W—H2B0.881C7—H70.930
N1—C11.322 (5)C8—C91.402 (6)
N1—C91.373 (4)C8—H80.930
C1—C21.405 (6)C11—H11A0.960
C1—C101.509 (4)C11—H11B0.960
C2—C31.363 (5)C11—H11C0.960
O1···O2i3.526 (3)O2W···C11ii3.501 (6)
O1···C2i3.546 (4)C1···C5iii3.514 (5)
O1M···O2Wii2.750 (4)C1···C10i3.537 (4)
O1W···O2i2.711 (4)C2···C4iii3.534 (4)
O2···C10i3.300 (4)C3···C9iii3.486 (5)
O2···C1i3.325 (4)C10···C10i3.248 (6)
O2···C6iii3.568 (5)
O1—Co1—O1iv180.0C3—C4—C5123.1 (4)
O1—Co1—O1W92.03 (9)C3—C4—C9118.4 (3)
O1—Co1—O1Wiv87.97 (9)C5—C4—C9118.5 (4)
O1—Co1—N177.36 (10)C4—C5—C6120.8 (4)
O1—Co1—N1iv102.64 (10)C4—C5—H5119.6
O1W—Co1—O1Wiv180.0C6—C5—H5119.6
O1W—Co1—N189.64 (9)C5—C6—C7120.5 (4)
O1W—Co1—N1iv90.36 (9)C5—C6—H6119.8
N1—Co1—N1iv180.0C7—C6—H6119.8
Co1—O1—C10119.0 (2)C6—C7—C8120.8 (5)
C11—O1M—H1M109.5C6—C7—H7119.6
Co1—O1W—H1A107.2C8—C7—H7119.6
Co1—O1W—H1B108.0C7—C8—C9120.1 (4)
H1A—O1W—H1B114.5C7—C8—H8119.9
H2A—O2W—H2B115.6C9—C8—H8119.9
Co1—N1—C1110.7 (2)N1—C9—C4120.7 (3)
Co1—N1—C9130.7 (3)N1—C9—C8119.9 (3)
C1—N1—C9118.6 (3)C4—C9—C8119.3 (3)
N1—C1—C2123.5 (3)O1—C10—O2124.5 (3)
N1—C1—C10115.8 (3)O1—C10—C1117.1 (3)
C2—C1—C10120.7 (3)O2—C10—C1118.4 (4)
C1—C2—C3118.6 (4)O1M—C11—H11A109.5
C1—C2—H2120.7O1M—C11—H11B109.5
C3—C2—H2120.7O1M—C11—H11C109.5
C2—C3—C4120.1 (4)H11A—C11—H11B109.5
C2—C3—H3119.9H11A—C11—H11C109.5
C4—C3—H3119.9H11B—C11—H11C109.5
Co1—O1—C10—O2177.2 (2)O2—C10—C1—C23.8 (4)
Co1—O1—C10—C10.8 (3)N1—Co1—O1—C100.5 (2)
Co1—O1iv—C10iv—O2iv177.2 (2)N1—Co1—O1iv—C10iv179.5 (2)
Co1—O1iv—C10iv—C1iv0.8 (3)N1—C1—C2—C31.0 (5)
Co1—N1—C1—C2178.0 (2)N1—C9—C4—C30.1 (4)
Co1—N1—C1—C102.6 (3)N1—C9—C4—C5179.7 (3)
Co1—N1—C9—C4178.2 (2)N1—C9—C8—C7179.6 (3)
Co1—N1—C9—C82.3 (4)C1—N1—C9—C40.4 (4)
Co1—N1iv—C1iv—C2iv178.0 (2)C1—N1—C9—C8179.2 (3)
Co1—N1iv—C1iv—C10iv2.6 (3)C1—C2—C3—C40.7 (5)
Co1—N1iv—C9iv—C4iv178.2 (2)C2—C1—N1—C90.8 (4)
Co1—N1iv—C9iv—C8iv2.3 (4)C2—C3—C4—C5179.5 (3)
O1—Co1—N1—C11.8 (2)C2—C3—C4—C90.3 (5)
O1—Co1—N1—C9179.6 (3)C3—C2—C1—C10178.3 (3)
O1—Co1—N1iv—C1iv178.2 (2)C3—C4—C5—C6179.8 (4)
O1—Co1—N1iv—C9iv0.4 (3)C3—C4—C9—C8179.5 (3)
O1—C10—C1—N12.4 (4)C4—C5—C6—C70.6 (6)
O1—C10—C1—C2178.2 (3)C4—C9—C8—C70.9 (5)
O1W—Co1—O1—C1088.7 (2)C5—C4—C9—C80.8 (5)
O1W—Co1—O1iv—C10iv91.3 (2)C5—C6—C7—C80.6 (6)
O1W—Co1—N1—C190.4 (2)C6—C5—C4—C90.0 (5)
O1W—Co1—N1—C988.3 (2)C6—C7—C8—C90.2 (6)
O1W—Co1—N1iv—C1iv89.6 (2)C9—N1—C1—C10178.5 (2)
O1W—Co1—N1iv—C9iv91.7 (2)C9—N1—C1—C10178.5 (2)
O2—C10—C1—N1175.6 (3)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2W0.891.832.719 (4)177
O1W—H1B···O2i0.891.842.711 (3)168
O1M—H1M···O2iv0.821.902.720 (4)173
O2W—H2A···O1Mii0.891.902.750 (4)160
O2W—H2B···O1M0.882.173.007 (4)158
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iv) x+1, y, z+2.
(II) top
Crystal data top
[Ni(C10H6NO2)2(H2O)2]·2CH4O·2H2OZ = 1
Mr = 539.15F(000) = 282.0
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 7.127 (2) ÅCell parameters from 25 reflections
b = 8.909 (3) Åθ = 13.9–14.9°
c = 10.769 (2) ŵ = 0.85 mm1
α = 76.74 (2)°T = 296 K
β = 74.39 (1)°Plate, light-blue
γ = 70.66 (2)°0.20 × 0.20 × 0.10 mm
V = 613.9 (3) Å3
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.020
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 98
Tmin = 0.879, Tmax = 0.919k = 110
3003 measured reflectionsl = 1313
2823 independent reflections3 standard reflections every 150 reflections
2234 reflections with I > 2σ(I) intensity decay: 5.5%
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0624P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.44 e Å3
2823 reflectionsΔρmin = 0.62 e Å3
162 parameters
Crystal data top
[Ni(C10H6NO2)2(H2O)2]·2CH4O·2H2Oγ = 70.66 (2)°
Mr = 539.15V = 613.9 (3) Å3
Triclinic, P1Z = 1
a = 7.127 (2) ÅMo Kα radiation
b = 8.909 (3) ŵ = 0.85 mm1
c = 10.769 (2) ÅT = 296 K
α = 76.74 (2)°0.20 × 0.20 × 0.10 mm
β = 74.39 (1)°
Data collection top
Rigaku AFC-5R
diffractometer
2234 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.879, Tmax = 0.9193 standard reflections every 150 reflections
3003 measured reflections intensity decay: 5.5%
2823 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038162 parameters
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
2823 reflectionsΔρmin = 0.62 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00001.00000.0289 (1)
O10.7007 (3)0.0399 (2)1.1116 (2)0.0366 (4)
O1M0.1894 (4)0.1182 (4)0.5973 (2)0.0723 (7)
O1W0.7273 (3)0.1077 (2)0.8523 (2)0.0379 (4)
O20.9096 (3)0.0582 (2)1.1655 (2)0.0444 (4)
O2W0.6249 (4)0.0356 (3)0.6180 (2)0.0677 (6)
N10.5945 (3)0.2197 (2)0.9367 (2)0.0296 (4)
C10.7352 (3)0.2131 (3)0.9980 (2)0.0316 (5)
C20.8300 (4)0.3351 (3)0.9756 (3)0.0429 (6)
C30.7745 (4)0.4684 (3)0.8861 (3)0.0471 (6)
C40.6265 (4)0.4806 (3)0.8181 (3)0.0393 (5)
C50.5616 (5)0.6161 (3)0.7244 (3)0.0535 (7)
C60.4184 (6)0.6233 (4)0.6608 (3)0.0646 (9)
C70.3303 (6)0.4961 (4)0.6888 (3)0.0631 (9)
C80.3860 (5)0.3643 (3)0.7796 (3)0.0486 (6)
C90.5374 (4)0.3522 (3)0.8456 (2)0.0339 (5)
C100.7869 (3)0.0667 (3)1.0991 (2)0.0315 (5)
C110.0245 (7)0.2483 (6)0.5724 (5)0.098 (2)
H1A0.69250.06120.77550.0602*
H1B0.84770.09750.85620.0602*
H1M0.15650.06430.66770.1085*
H20.92880.32521.02080.0515*
H2A0.68860.00640.53960.0826*
H2B0.49150.07100.62990.0826*
H30.83460.55080.87040.0565*
H50.61820.70100.70660.0642*
H60.37820.71200.59870.0775*
H70.23210.50180.64450.0758*
H80.32390.28260.79790.0583*
H11A0.09640.21390.59640.1477*
H11B0.04740.29130.48110.1477*
H11C0.00820.32990.62240.1477*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0323 (2)0.0239 (2)0.0336 (2)0.0128 (2)0.0113 (2)0.0016 (2)
O10.0427 (9)0.0314 (8)0.0418 (9)0.0187 (7)0.0188 (7)0.0064 (7)
O1M0.063 (1)0.091 (2)0.045 (1)0.009 (1)0.007 (1)0.000 (1)
O1W0.0384 (9)0.0385 (9)0.0416 (9)0.0173 (7)0.0090 (7)0.0052 (7)
O20.0422 (10)0.052 (1)0.047 (1)0.0221 (8)0.0173 (8)0.0012 (8)
O2W0.061 (1)0.083 (2)0.050 (1)0.008 (1)0.012 (1)0.012 (1)
N10.0334 (9)0.0237 (9)0.0316 (9)0.0115 (7)0.0043 (7)0.0022 (7)
C10.034 (1)0.026 (1)0.036 (1)0.0114 (9)0.0034 (9)0.0053 (9)
C20.045 (1)0.038 (1)0.055 (2)0.024 (1)0.010 (1)0.007 (1)
C30.053 (2)0.033 (1)0.058 (2)0.025 (1)0.002 (1)0.005 (1)
C40.047 (1)0.025 (1)0.042 (1)0.0144 (10)0.002 (1)0.0036 (9)
C50.070 (2)0.028 (1)0.056 (2)0.021 (1)0.007 (1)0.006 (1)
C60.093 (3)0.033 (1)0.059 (2)0.019 (2)0.025 (2)0.019 (1)
C70.084 (2)0.043 (2)0.066 (2)0.022 (2)0.039 (2)0.018 (1)
C80.065 (2)0.034 (1)0.052 (2)0.020 (1)0.024 (1)0.008 (1)
C90.041 (1)0.022 (1)0.035 (1)0.0098 (9)0.0028 (9)0.0014 (9)
C100.028 (1)0.033 (1)0.034 (1)0.0104 (9)0.0054 (9)0.0057 (9)
C110.082 (3)0.082 (3)0.094 (3)0.003 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, º) top
Ni1—O12.003 (2)C2—H20.930
Ni1—O1W2.088 (2)C3—C41.401 (5)
Ni1—N12.182 (2)C3—H30.930
O1—C101.257 (4)C4—C51.418 (4)
O1M—C111.387 (5)C4—C91.423 (4)
O1M—H1M0.820C5—C61.352 (6)
O1W—H1A0.896C5—H50.930
O1W—H1B0.905C6—C71.408 (6)
O2—C101.245 (4)C6—H60.930
O2W—H2A0.896C7—C81.366 (4)
O2W—H2B0.880C7—H70.930
N1—C11.321 (4)C8—C91.408 (5)
N1—C91.373 (3)C8—H80.930
C1—C21.406 (4)C11—H11A0.960
C1—C101.506 (3)C11—H11B0.960
C2—C31.365 (4)C11—H11C0.960
O1···O2i3.480 (2)O2W···C11ii3.506 (5)
O1···C2i3.550 (3)C1···C5iii3.504 (4)
O1M···O2Wii2.759 (4)C1···C10i3.545 (3)
O1W···O2i2.717 (3)C2···C4iii3.531 (3)
O2···C10i3.253 (3)C3···C9iii3.486 (4)
O2···C1i3.294 (3)C10···C10i3.237 (4)
O2···C6iii3.564 (4)
O1—Ni1—O1iv180.0C3—C4—C5122.5 (3)
O1—Ni1—O1W91.65 (7)C3—C4—C9118.3 (2)
O1—Ni1—O1Wiv88.35 (7)C5—C4—C9119.2 (3)
O1—Ni1—N178.83 (8)C4—C5—C6120.7 (3)
O1—Ni1—N1iv101.17 (8)C4—C5—H5119.6
O1W—Ni1—O1Wiv180.0C6—C5—H5119.6
O1W—Ni1—N190.20 (7)C5—C6—C7119.8 (3)
O1W—Ni1—N1iv89.80 (7)C5—C6—H6120.1
N1—Ni1—N1iv180.0C7—C6—H6120.1
Ni1—O1—C10117.9 (1)C6—C7—C8121.4 (4)
C11—O1M—H1M109.5C6—C7—H7119.3
Ni1—O1W—H1A108.5C8—C7—H7119.3
Ni1—O1W—H1B109.2C7—C8—C9120.0 (3)
H1A—O1W—H1B112.2C7—C8—H8120.0
H2A—O2W—H2B114.7C9—C8—H8120.0
Ni1—N1—C1110.0 (1)N1—C9—C4121.0 (3)
Ni1—N1—C9131.3 (2)N1—C9—C8120.2 (2)
C1—N1—C9118.6 (2)C4—C9—C8118.8 (2)
N1—C1—C2123.5 (2)O1—C10—O2123.9 (2)
N1—C1—C10116.0 (2)O1—C10—C1117.1 (2)
C2—C1—C10120.4 (3)O2—C10—C1119.0 (2)
C1—C2—C3118.7 (3)O1M—C11—H11A109.5
C1—C2—H2120.6O1M—C11—H11B109.5
C3—C2—H2120.6O1M—C11—H11C109.5
C2—C3—C4119.8 (3)H11A—C11—H11B109.5
C2—C3—H3120.1H11A—C11—H11C109.5
C4—C3—H3120.1H11B—C11—H11C109.5
Ni1—O1—C10—O2177.7 (2)O2—C10—C1—C22.4 (3)
Ni1—O1—C10—C11.8 (2)N1—Ni1—O1—C100.1 (1)
Ni1—O1iv—C10iv—O2iv177.7 (2)N1—Ni1—O1iv—C10iv179.9 (1)
Ni1—O1iv—C10iv—C1iv1.8 (2)N1—C1—C2—C30.2 (4)
Ni1—N1—C1—C2178.3 (2)N1—C9—C4—C30.1 (3)
Ni1—N1—C1—C103.5 (2)N1—C9—C4—C5179.3 (2)
Ni1—N1—C9—C4178.0 (2)N1—C9—C8—C7179.7 (2)
Ni1—N1—C9—C83.2 (3)C1—N1—C9—C40.4 (3)
Ni1—N1iv—C1iv—C2iv178.3 (2)C1—N1—C9—C8179.2 (2)
Ni1—N1iv—C1iv—C10iv3.5 (2)C1—C2—C3—C40.5 (4)
Ni1—N1iv—C9iv—C4iv178.0 (2)C2—C1—N1—C90.2 (3)
Ni1—N1iv—C9iv—C8iv3.2 (3)C2—C3—C4—C5179.7 (2)
O1—Ni1—N1—C12.1 (1)C2—C3—C4—C90.4 (4)
O1—Ni1—N1—C9179.8 (2)C3—C2—C1—C10177.9 (2)
O1—Ni1—N1iv—C1iv177.9 (1)C3—C4—C5—C6180.0 (3)
O1—Ni1—N1iv—C9iv0.2 (2)C3—C4—C9—C8178.9 (2)
O1—C10—C1—N13.7 (3)C4—C5—C6—C70.9 (4)
O1—C10—C1—C2178.1 (2)C4—C9—C8—C71.4 (4)
O1W—Ni1—O1—C1089.8 (2)C5—C4—C9—C80.5 (3)
O1W—Ni1—O1iv—C10iv90.2 (2)C5—C6—C7—C80.1 (5)
O1W—Ni1—N1—C189.6 (1)C6—C5—C4—C90.7 (4)
O1W—Ni1—N1—C988.2 (2)C6—C7—C8—C91.3 (4)
O1W—Ni1—N1iv—C1iv90.4 (1)C9—N1—C1—C10178.4 (2)
O1W—Ni1—N1iv—C9iv91.8 (2)C9—N1—C1—C10178.4 (2)
O2—C10—C1—N1175.8 (2)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2W0.901.832.725 (3)179
O1W—H1B···O2i0.911.822.716 (2)170
O1M—H1M···O2iv0.821.902.723 (3)177
O2W—H2A···O1Mii0.901.892.759 (4)162
O2W—H2B···O1M0.882.163.002 (4)159
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iv) x+1, y, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C10H6NO2)2(H2O)2]·2CH4O·2H2O[Ni(C10H6NO2)2(H2O)2]·2CH4O·2H2O
Mr539.39539.15
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)296296
a, b, c (Å)7.170 (2), 8.965 (2), 10.827 (2)7.127 (2), 8.909 (3), 10.769 (2)
α, β, γ (°)76.35 (2), 74.38 (2), 69.86 (2)76.74 (2), 74.39 (1), 70.66 (2)
V3)621.3 (3)613.9 (3)
Z11
Radiation typeMo KαMo Kα
µ (mm1)0.750.85
Crystal size (mm)0.20 × 0.20 × 0.100.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.870, 0.9280.879, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
3034, 2855, 1677 3003, 2823, 2234
Rint0.0510.020
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.04 0.038, 0.111, 1.04
No. of reflections28552823
No. of parameters162162
No. of restraints??
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.620.44, 0.62

Computer programs: MSC/AFC MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure & Rigaku, 2000), SIR97 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
Co1—O12.026 (3)Co1—N12.224 (3)
Co1—O1W2.120 (2)
O1—Co1—O1W92.03 (9)O1—Co1—N177.36 (10)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2W0.891.832.719 (4)177
O1W—H1B···O2i0.891.842.711 (3)168
O1M—H1M···O2ii0.821.902.720 (4)173
O2W—H2A···O1Miii0.891.902.750 (4)160
O2W—H2B···O1M0.882.173.007 (4)158
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2; (iii) x+1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
Ni1—O12.003 (2)Ni1—N12.182 (2)
Ni1—O1W2.088 (2)
O1—Ni1—O1W91.65 (7)O1W—Ni1—N190.20 (7)
O1—Ni1—N178.83 (8)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2W0.901.832.725 (3)179
O1W—H1B···O2i0.911.822.716 (2)170
O1M—H1M···O2ii0.821.902.723 (3)177
O2W—H2A···O1Miii0.901.892.759 (4)162
O2W—H2B···O1M0.882.163.002 (4)159
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2; (iii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds