Download citation
Download citation
link to html
In the title adduct, 1,3,5,7-tetra­aza­tri­cyclo[3.3.1.13,7]dec­ane–4-nitro­benzene-1,2-diol–water (1/2/1), C6H12N4·2C6H5NO4·H2O, the hexa­methyl­ene­tetra­mine mol­ecule acts as an acceptor of intermolecular O—H...N hydrogen-bonding interactions from the water mol­ecule and the hydroxy groups of one of the two symmetry-independent 4-nitro­catechol mol­ecules. The structure is built from molecular layers which are stabilized by three intermolecular O—H...O, two intermolecular O—H...N and four intermolecular C—H...O hydrogen bonds. The layers are further interconnected by one additional intermolecular O—H...N and two intermolecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102017559/ln1149sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102017559/ln1149Isup2.hkl
Contains datablock I

CCDC reference: 199439

Comment top

Interactions between phenols and amines play an important role in biological systems (Blow, 1976). Phenol–amine adducts are also widely used for the study of hydrogen bonding, since in these adducts the two components are generally linked by intermolecular hydrogen bonds of the O—H···O, O—H···N or N—H···O types, and these adducts are among the most robust and versatile synthons in crystal engineering (Fan et al., 1994; Desiraju, 1995). Following on from our interest in such hydrogen bonds, we have recently investigated the crystal structures of the adducts of phenols or organic acids with several amines, such as bipyridine (Chantrapromma et al., 2002a), N,N-dimethlylethylenediamine (Chantrapromma et al., 2002b), piperazine (Usman et al., 2002a), quinuclidine (Chantrapromma et al., 2002c), diazabicyclo[2.2.2]octane (Chantrapromma et al., 2002 d) and hexamethylenetetraamine (Usman et al., 2001). In these adducts, we have found that the behaviour of the amines in the solid state, whether as a hydrogen-bond donor or as a hydrogen-bond acceptor, is related to the H-atom transfer process, which strongly depends on the acidity of the phenol or organic acid counterpart, while the basicity of the amine does not play any significant role in the H-atom transfer process. In order to evaluate the H-atom tranfer process and the hydrogen-bonding properties of phenol–amine adducts in the solid state, we have now focused on the adduct of hexamethylenetetraamine (HMT), a strong base, with 4-nitrocatechol, which is a relatively weak acid. The crystal structure of HMT–4-nitrocatechol–water (1/2/1), (I), determined at 213 K, is reported.

The asymmetric unit of (I) contains one HMT molecule, two independent 4-nitrocatechol molecules and one water molecule. As expected, the H-atom transfer process was not observed, because 4-nitrocatechol is a relatively weak acid, even though HMT is a strong base. All bond lengths and angles have normal values (Allen et al., 1987). The geometric parameters for the HMT molecule are comparable with those of uncomplexed HMT obtained from neutron diffraction at 130 K (Kampermann et al., 1994), and with those of HMT in the adducts HMT–1,1,1-tris(hydroxyphenyl)ethane (Coupar et al., 1997) and HMT–4-hydroxy-3-methoxybenzaldehyde (Usman et al., 2002b). Along with the unambiguous location and refinement of all H atoms in the structure, the present determination shows the HMT molecule to be unprotonated.

The bond lengths and angles within the two symmetry-independent 4-nitrocatechol molecules are comparable and both molecules are nearly planar. The planes of the nitro groups are slightly twisted about the N—C bonds, so that the O3/O4/N5/C10 and O7/O8/N6/C16 planes make angles of 2.40 (8) and 1.90 (8)° with their respective aromatic ring planes.

Within the asymmetric unit (Fig. 1), the two symmetry-independent 4-nitrocatechol molecules are interconnected by intermolecular C9—H9···O6 and O6—H1O6···O2 hydrogen bonds, and then linked to the water molecule via O5—H1O5···O1W and C18—H18···O1W hydrogen-bonding interactions and to the HMT molecule via O2—H1O2···N1 and C4—H4B···O7 hydrogen bonds. In the crystal packing, these hydrogen-bonding interactions, together with O1W—H1W1···O3i, C12—H12···O8vi and O1—H1O1···N4iii hydrogen bonds [symmetry codes: (i) 1 - x, -y, -1 - z; (iii) 2 - x, -y, 1 - z; (vi) 1 + x, y - 1, z], generate molecular layers which lie perpedicular to the ab plane (Fig. 2). One molecular layer contains of six different hydrogen-bonded ring patterns (Bernstein et al., 1995), namely those linking the water molecule to a single 4-nitrocatechol molecule [R12(6)], the two symmetry-independent 4-nitrocatechol molecules [R22(6)], the two symmetry-independent 4-nitrocatechol molecules with a HMT molecule [R33(14)], two symmetry-related 4-nitrocatechol molecules with two symmetry-related HMT molecules [R44(18)], four symmetry-related 4-nitrocatechol molecules with two symmetry-related HMT molecules [R66(26)], and two symmetry-related water molecules with two symmetry-related 4-nitrocatechol molecules [R44(28)]. The molecular layers are stacked, one above the other, along the b direction and are interconnected by an O1W—H2W1···N2ii hydrogen bond [symmetry code: (ii) 1 - x, 1 - y, -z] between the water molecule and a HMT molecule. The HMT molecule also interacts with two 4-nitrocatechol molecules in two adjacent molecular layers via C1—H1B···O4iv and C2—H2A···O5v interactions [symmetry codes: (iv) 2 - x,-y,-z; (v) 1 - x,-y,-z].

Experimental top

The title adduct was prepared by thoroughly mixing HMT (1.4 g, 10 mmol) and 4-nitrocatechol (3.10 g, 20 mmol). The mixture was then dissolved in acetone (50 ml) with addition of water (2 ml). The mixture was warmed until all the solid had dissolved. The solution was then filtered and the filtrate was left to evaporate slowly in air. Yellow single crystals suitable for X-ray diffraction analysis were obtained after a few days (m.p. 418 K).

Refinement top

All H atoms were refined; C—H distances were in the range 0.929 (18)–1.060 (13) Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of the title adduct showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed lines denote the hydrogen-bonding interactions within the asymmetric unit.
[Figure 2] Fig. 2. Packing diagram of the title adduct viewed down the b axis, showing the molecular layer. The dashed lines denote the hydrogen-bonding interactions.
Hexamethylenetetraamine–4-nitrocatechol–water (1/2/1) top
Crystal data top
C6H12N4·2C6H5NO4·H2OZ = 2
Mr = 468.43F(000) = 492
Triclinic, P1Dx = 1.536 Mg m3
Hall symbol: -P 1Melting point: 418 K
a = 9.3520 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7671 (5) ÅCell parameters from 4255 reflections
c = 11.8264 (6) Åθ = 2.5–28.3°
α = 99.489 (1)°µ = 0.13 mm1
β = 107.504 (1)°T = 213 K
γ = 91.441 (1)°Slab, yellow
V = 1012.9 (1) Å30.36 × 0.20 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4761 independent reflections
Radiation source: fine-focus sealed tube4136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω scansh = 125
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1312
Tmin = 0.956, Tmax = 0.985l = 1515
6443 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.3743P]
where P = (Fo2 + 2Fc2)/3
4761 reflections(Δ/σ)max < 0.001
394 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H12N4·2C6H5NO4·H2Oγ = 91.441 (1)°
Mr = 468.43V = 1012.9 (1) Å3
Triclinic, P1Z = 2
a = 9.3520 (5) ÅMo Kα radiation
b = 9.7671 (5) ŵ = 0.13 mm1
c = 11.8264 (6) ÅT = 213 K
α = 99.489 (1)°0.36 × 0.20 × 0.12 mm
β = 107.504 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4761 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4136 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.985Rint = 0.011
6443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109All H-atom parameters refined
S = 1.06Δρmax = 0.32 e Å3
4761 reflectionsΔρmin = 0.26 e Å3
394 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.23079 (13)0.33318 (12)0.48036 (9)0.0326 (2)
H1W10.225 (2)0.284 (2)0.546 (2)0.050 (6)*
H2W10.234 (2)0.416 (3)0.488 (2)0.057 (6)*
O10.94592 (11)0.06689 (10)0.27346 (8)0.0274 (2)
O20.73722 (11)0.04937 (10)0.10938 (9)0.0282 (2)
O30.78786 (13)0.16362 (12)0.28514 (9)0.0374 (3)
O40.95939 (14)0.30779 (14)0.24505 (10)0.0482 (3)
N50.88144 (13)0.21923 (13)0.21274 (10)0.0284 (3)
C70.93479 (14)0.10673 (13)0.15687 (11)0.0207 (2)
C80.82533 (14)0.04660 (12)0.07293 (11)0.0199 (2)
C90.80755 (14)0.08392 (13)0.04857 (11)0.0214 (2)
C100.89935 (14)0.18008 (13)0.08535 (11)0.0220 (3)
C111.00859 (16)0.23927 (14)0.00460 (12)0.0263 (3)
C121.02541 (15)0.20146 (14)0.11656 (12)0.0256 (3)
H90.7326 (18)0.0436 (16)0.1048 (14)0.025 (4)*
H111.072 (2)0.3047 (18)0.0321 (16)0.034 (4)*
H121.104 (2)0.2410 (19)0.1746 (16)0.038 (5)*
H1O11.020 (3)0.109 (2)0.319 (2)0.066 (7)*
H1O20.752 (2)0.067 (2)0.182 (2)0.048 (6)*
O50.42071 (12)0.23909 (11)0.29887 (9)0.0303 (2)
O60.58421 (13)0.16359 (13)0.09655 (10)0.0412 (3)
O70.39757 (14)0.42170 (13)0.22498 (9)0.0411 (3)
O80.22689 (16)0.54344 (13)0.13362 (10)0.0483 (3)
N60.32171 (14)0.45981 (12)0.13294 (10)0.0283 (3)
C130.39185 (14)0.29355 (13)0.19683 (11)0.0219 (3)
C140.47885 (15)0.25479 (14)0.08872 (12)0.0246 (3)
C150.45517 (15)0.30989 (13)0.01857 (12)0.0244 (3)
C160.34505 (15)0.40230 (13)0.01912 (11)0.0230 (3)
C170.25630 (16)0.44044 (14)0.08591 (12)0.0268 (3)
C180.28084 (15)0.38568 (14)0.19332 (11)0.0251 (3)
H150.514 (2)0.2855 (18)0.0898 (16)0.033 (4)*
H170.179 (2)0.5017 (18)0.0854 (15)0.033 (4)*
H180.2074 (14)0.4075 (13)0.2748 (11)0.007 (3)*
H1O50.362 (2)0.272 (2)0.356 (2)0.054 (6)*
H1O60.620 (3)0.142 (2)0.023 (2)0.064 (7)*
N10.73343 (12)0.15535 (11)0.35028 (9)0.0232 (2)
N20.73782 (13)0.37764 (11)0.48366 (10)0.0245 (2)
N30.56506 (12)0.18079 (12)0.47543 (10)0.0245 (2)
N40.83544 (12)0.17520 (11)0.56998 (9)0.0230 (2)
C10.75276 (16)0.30868 (14)0.36732 (12)0.0252 (3)
C20.58266 (15)0.11725 (14)0.35908 (12)0.0259 (3)
C30.84761 (15)0.11075 (15)0.45086 (11)0.0246 (3)
C40.58754 (15)0.33241 (14)0.48982 (12)0.0252 (3)
C50.68169 (15)0.13499 (15)0.57239 (12)0.0257 (3)
C60.85254 (15)0.32854 (14)0.58105 (12)0.0257 (3)
H1A0.6775 (18)0.3378 (16)0.3031 (15)0.026 (4)*
H1B0.851 (2)0.3373 (18)0.3649 (16)0.035 (4)*
H2A0.5692 (18)0.0153 (18)0.3495 (15)0.029 (4)*
H2B0.5055 (19)0.1504 (17)0.2933 (15)0.030 (4)*
H3A0.9453 (19)0.1379 (16)0.4483 (14)0.025 (4)*
H3B0.8324 (18)0.0119 (18)0.4436 (15)0.027 (4)*
H4A0.5776 (18)0.3737 (16)0.5677 (15)0.025 (4)*
H4B0.5111 (18)0.3621 (16)0.4242 (14)0.024 (4)*
H5A0.6674 (19)0.0310 (19)0.5617 (15)0.033 (4)*
H5B0.6708 (19)0.1787 (17)0.6503 (15)0.030 (4)*
H6A0.952 (2)0.3540 (18)0.5768 (16)0.033 (4)*
H6B0.8425 (19)0.3750 (17)0.6587 (16)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0471 (6)0.0309 (6)0.0182 (5)0.0053 (5)0.0084 (4)0.0036 (4)
O10.0322 (5)0.0346 (5)0.0149 (4)0.0179 (4)0.0058 (4)0.0039 (4)
O20.0324 (5)0.0351 (5)0.0174 (4)0.0193 (4)0.0071 (4)0.0039 (4)
O30.0413 (6)0.0506 (7)0.0181 (5)0.0123 (5)0.0056 (4)0.0054 (4)
O40.0526 (7)0.0683 (8)0.0260 (5)0.0292 (6)0.0182 (5)0.0002 (5)
N50.0286 (6)0.0373 (6)0.0193 (5)0.0040 (5)0.0093 (4)0.0018 (4)
C70.0233 (6)0.0223 (6)0.0162 (5)0.0055 (5)0.0056 (4)0.0032 (4)
C80.0204 (6)0.0198 (5)0.0196 (6)0.0055 (4)0.0064 (4)0.0031 (4)
C90.0202 (6)0.0246 (6)0.0181 (6)0.0038 (5)0.0038 (4)0.0043 (4)
C100.0245 (6)0.0252 (6)0.0164 (6)0.0025 (5)0.0077 (5)0.0018 (4)
C110.0292 (7)0.0281 (6)0.0234 (6)0.0110 (5)0.0111 (5)0.0032 (5)
C120.0288 (7)0.0283 (7)0.0209 (6)0.0129 (5)0.0075 (5)0.0062 (5)
O50.0398 (6)0.0336 (5)0.0213 (5)0.0142 (4)0.0135 (4)0.0063 (4)
O60.0458 (7)0.0538 (7)0.0308 (6)0.0329 (6)0.0163 (5)0.0141 (5)
O70.0541 (7)0.0504 (7)0.0201 (5)0.0175 (5)0.0114 (5)0.0079 (4)
O80.0695 (9)0.0488 (7)0.0333 (6)0.0348 (6)0.0238 (6)0.0063 (5)
N60.0388 (7)0.0249 (5)0.0227 (5)0.0065 (5)0.0123 (5)0.0026 (4)
C130.0257 (6)0.0209 (6)0.0199 (6)0.0023 (5)0.0088 (5)0.0029 (4)
C140.0252 (6)0.0242 (6)0.0258 (6)0.0078 (5)0.0085 (5)0.0063 (5)
C150.0271 (7)0.0254 (6)0.0204 (6)0.0045 (5)0.0056 (5)0.0066 (5)
C160.0287 (7)0.0211 (6)0.0198 (6)0.0026 (5)0.0097 (5)0.0015 (4)
C170.0308 (7)0.0251 (6)0.0248 (6)0.0104 (5)0.0090 (5)0.0036 (5)
C180.0282 (7)0.0259 (6)0.0203 (6)0.0067 (5)0.0053 (5)0.0053 (5)
N10.0256 (5)0.0268 (5)0.0170 (5)0.0093 (4)0.0063 (4)0.0025 (4)
N20.0297 (6)0.0236 (5)0.0207 (5)0.0059 (4)0.0083 (4)0.0040 (4)
N30.0230 (5)0.0285 (6)0.0230 (5)0.0058 (4)0.0084 (4)0.0047 (4)
N40.0244 (5)0.0284 (6)0.0169 (5)0.0102 (4)0.0065 (4)0.0046 (4)
C10.0293 (7)0.0285 (7)0.0200 (6)0.0066 (5)0.0095 (5)0.0070 (5)
C20.0251 (6)0.0266 (7)0.0227 (6)0.0040 (5)0.0049 (5)0.0004 (5)
C30.0259 (7)0.0303 (7)0.0192 (6)0.0136 (5)0.0083 (5)0.0048 (5)
C40.0269 (7)0.0281 (7)0.0226 (6)0.0123 (5)0.0094 (5)0.0047 (5)
C50.0288 (7)0.0287 (7)0.0236 (6)0.0084 (5)0.0116 (5)0.0089 (5)
C60.0261 (7)0.0293 (7)0.0189 (6)0.0037 (5)0.0043 (5)0.0014 (5)
Geometric parameters (Å, º) top
O1W—H1W10.83 (2)C15—H150.929 (18)
O1W—H2W10.83 (2)C16—C171.3851 (18)
O1—C71.3409 (15)C17—C181.3820 (18)
O1—H1O10.90 (2)C17—H170.950 (18)
O2—C81.3648 (15)C18—H181.060 (13)
O2—H1O20.82 (2)N1—C31.4748 (15)
O3—N51.2331 (16)N1—C11.4768 (17)
O4—N51.2312 (16)N1—C21.4873 (17)
N5—C101.4488 (16)N2—C61.4739 (16)
C7—C121.3924 (17)N2—C11.4768 (16)
C7—C81.4105 (16)N2—C41.4889 (18)
C8—C91.3805 (17)N3—C41.4648 (17)
C9—C101.3925 (17)N3—C51.4650 (16)
C9—H90.954 (16)N3—C21.4715 (17)
C10—C111.3838 (18)N4—C61.4820 (18)
C11—C121.3788 (18)N4—C31.4837 (16)
C11—H110.968 (18)N4—C51.4908 (17)
C12—H120.977 (18)C1—H1A0.956 (16)
O5—C131.3430 (15)C1—H1B0.963 (18)
O5—H1O50.85 (2)C2—H2A0.984 (17)
O6—C141.3582 (16)C2—H2B0.994 (17)
O6—H1O60.90 (2)C3—H3A0.956 (16)
O7—N61.2285 (16)C3—H3B0.958 (17)
O8—N61.2216 (16)C4—H4A0.975 (16)
N6—C161.4520 (16)C4—H4B0.974 (16)
C13—C181.3963 (18)C5—H5A1.003 (18)
C13—C141.4104 (17)C5—H5B0.985 (17)
C14—C151.3779 (18)C6—H6A0.979 (18)
C15—C161.3871 (18)C6—H6B0.988 (17)
H1W1—O1W—H2W1108 (2)C3—N1—C2107.89 (10)
C7—O1—H1O1109.8 (15)C1—N1—C2107.76 (10)
C8—O2—H1O2115.1 (15)C6—N2—C1108.13 (10)
O4—N5—O3122.26 (11)C6—N2—C4107.61 (10)
O4—N5—C10118.82 (11)C1—N2—C4108.51 (10)
O3—N5—C10118.92 (11)C4—N3—C5108.25 (10)
O1—C7—C12123.51 (11)C4—N3—C2108.66 (10)
O1—C7—C8116.79 (11)C5—N3—C2108.71 (10)
C12—C7—C8119.70 (11)C6—N4—C3108.18 (10)
O2—C8—C9119.02 (11)C6—N4—C5108.52 (10)
O2—C8—C7121.33 (11)C3—N4—C5107.81 (10)
C9—C8—C7119.64 (11)N2—C1—N1112.50 (10)
C8—C9—C10118.91 (11)N2—C1—H1A109.2 (10)
C8—C9—H9119.2 (10)N1—C1—H1A107.9 (9)
C10—C9—H9121.9 (10)N2—C1—H1B107.9 (11)
C11—C10—C9122.48 (11)N1—C1—H1B110.0 (10)
C11—C10—N5118.41 (11)H1A—C1—H1B109.5 (14)
C9—C10—N5119.11 (11)N3—C2—N1112.21 (10)
C12—C11—C10118.19 (12)N3—C2—H2A109.0 (10)
C12—C11—H11120.7 (10)N1—C2—H2A108.6 (10)
C10—C11—H11121.1 (10)N3—C2—H2B108.8 (10)
C11—C12—C7121.07 (12)N1—C2—H2B108.1 (10)
C11—C12—H12119.0 (11)H2A—C2—H2B110.1 (13)
C7—C12—H12119.9 (11)N1—C3—N4112.23 (10)
C13—O5—H1O5108.0 (15)N1—C3—H3A108.9 (10)
C14—O6—H1O6105.7 (15)N4—C3—H3A108.1 (10)
O8—N6—O7122.43 (12)N1—C3—H3B108.7 (10)
O8—N6—C16118.92 (11)N4—C3—H3B107.3 (10)
O7—N6—C16118.65 (11)H3A—C3—H3B111.7 (14)
O5—C13—C18123.19 (12)N3—C4—N2112.10 (10)
O5—C13—C14117.69 (11)N3—C4—H4A108.2 (9)
C18—C13—C14119.13 (11)N2—C4—H4A109.6 (9)
O6—C14—C15123.07 (12)N3—C4—H4B107.9 (9)
O6—C14—C13117.14 (12)N2—C4—H4B108.1 (9)
C15—C14—C13119.79 (12)H4A—C4—H4B111.0 (13)
C14—C15—C16119.64 (12)N3—C5—N4111.56 (10)
C14—C15—H15119.5 (11)N3—C5—H5A108.2 (10)
C16—C15—H15120.9 (11)N4—C5—H5A109.2 (10)
C17—C16—C15121.81 (12)N3—C5—H5B108.7 (10)
C17—C16—N6119.19 (12)N4—C5—H5B108.9 (10)
C15—C16—N6119.00 (11)H5A—C5—H5B110.2 (14)
C18—C17—C16118.45 (12)N2—C6—N4111.66 (10)
C18—C17—H17120.0 (10)N2—C6—H6A109.1 (10)
C16—C17—H17121.5 (10)N4—C6—H6A108.1 (10)
C17—C18—C13121.17 (12)N2—C6—H6B108.0 (10)
C17—C18—H18118.8 (7)N4—C6—H6B110.4 (10)
C13—C18—H18119.8 (7)H6A—C6—H6B109.6 (14)
C3—N1—C1107.82 (10)
O1—C7—C8—O21.16 (18)C15—C16—C17—C180.9 (2)
C12—C7—C8—O2178.25 (12)N6—C16—C17—C18179.46 (12)
O1—C7—C8—C9179.59 (12)C16—C17—C18—C130.2 (2)
C12—C7—C8—C91.00 (19)O5—C13—C18—C17179.22 (13)
O2—C8—C9—C10178.92 (12)C14—C13—C18—C170.8 (2)
C7—C8—C9—C100.35 (19)C6—N2—C1—N158.95 (14)
C8—C9—C10—C110.4 (2)C4—N2—C1—N157.49 (13)
C8—C9—C10—N5179.80 (11)C3—N1—C1—N258.39 (14)
O4—N5—C10—C113.0 (2)C2—N1—C1—N257.83 (13)
O3—N5—C10—C11177.61 (13)C4—N3—C2—N158.87 (13)
O4—N5—C10—C9177.57 (13)C5—N3—C2—N158.73 (14)
O3—N5—C10—C91.84 (19)C3—N1—C2—N357.82 (13)
C9—C10—C11—C120.4 (2)C1—N1—C2—N358.34 (13)
N5—C10—C11—C12179.87 (13)C1—N1—C3—N458.02 (14)
C10—C11—C12—C70.2 (2)C2—N1—C3—N458.10 (14)
O1—C7—C12—C11179.68 (13)C6—N4—C3—N158.45 (14)
C8—C7—C12—C110.9 (2)C5—N4—C3—N158.73 (14)
O5—C13—C14—O60.82 (19)C5—N3—C4—N259.89 (13)
C18—C13—C14—O6179.17 (13)C2—N3—C4—N257.99 (13)
O5—C13—C14—C15178.85 (12)C6—N2—C4—N359.51 (13)
C18—C13—C14—C151.2 (2)C1—N2—C4—N357.27 (13)
O6—C14—C15—C16179.86 (13)C4—N3—C5—N458.82 (13)
C13—C14—C15—C160.5 (2)C2—N3—C5—N459.04 (14)
C14—C15—C16—C170.6 (2)C6—N4—C5—N358.17 (13)
C14—C15—C16—N6179.82 (12)C3—N4—C5—N358.78 (13)
O8—N6—C16—C171.9 (2)C1—N2—C6—N458.66 (14)
O7—N6—C16—C17177.59 (13)C4—N2—C6—N458.37 (13)
O8—N6—C16—C15178.46 (14)C3—N4—C6—N258.51 (14)
O7—N6—C16—C152.03 (19)C5—N4—C6—N258.21 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.83 (2)2.11 (2)2.940 (2)178 (2)
O1W—H2W1···N2ii0.83 (3)2.02 (3)2.840 (2)172 (2)
O1—H1O1···N4iii0.90 (2)1.80 (2)2.684 (2)171 (2)
O2—H1O2···N10.82 (2)2.09 (2)2.877 (2)161 (2)
O5—H1O5···O1W0.85 (2)1.81 (2)2.654 (2)177 (2)
O6—H1O6···O20.90 (2)1.99 (2)2.847 (2)160 (2)
C1—H1B···O4iv0.96 (2)2.58 (2)3.417 (2)146 (2)
C2—H2A···O5v0.98 (2)2.47 (2)3.433 (2)166 (2)
C4—H4B···O70.97 (2)2.45 (2)3.370 (2)158 (2)
C9—H9···O60.95 (2)2.49 (2)3.244 (2)136 (2)
C12—H12···O8vi0.98 (2)2.47 (2)3.158 (2)127 (2)
C18—H18···O1W1.06 (1)2.50 (2)3.235 (2)126 (1)
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x+2, y, z+1; (iv) x+2, y, z; (v) x+1, y, z; (vi) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC6H12N4·2C6H5NO4·H2O
Mr468.43
Crystal system, space groupTriclinic, P1
Temperature (K)213
a, b, c (Å)9.3520 (5), 9.7671 (5), 11.8264 (6)
α, β, γ (°)99.489 (1), 107.504 (1), 91.441 (1)
V3)1012.9 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.36 × 0.20 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6443, 4761, 4136
Rint0.011
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.06
No. of reflections4761
No. of parameters394
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected bond lengths (Å) top
N1—C31.4748 (15)N3—C41.4648 (17)
N1—C11.4768 (17)N3—C51.4650 (16)
N1—C21.4873 (17)N3—C21.4715 (17)
N2—C61.4739 (16)N4—C61.4820 (18)
N2—C11.4768 (16)N4—C31.4837 (16)
N2—C41.4889 (18)N4—C51.4908 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.83 (2)2.11 (2)2.940 (2)178 (2)
O1W—H2W1···N2ii0.83 (3)2.02 (3)2.840 (2)172 (2)
O1—H1O1···N4iii0.90 (2)1.80 (2)2.684 (2)171 (2)
O2—H1O2···N10.82 (2)2.09 (2)2.877 (2)161 (2)
O5—H1O5···O1W0.85 (2)1.81 (2)2.654 (2)177 (2)
O6—H1O6···O20.90 (2)1.99 (2)2.847 (2)160 (2)
C1—H1B···O4iv0.96 (2)2.58 (2)3.417 (2)146 (2)
C2—H2A···O5v0.98 (2)2.47 (2)3.433 (2)166 (2)
C4—H4B···O70.97 (2)2.45 (2)3.370 (2)158 (2)
C9—H9···O60.95 (2)2.49 (2)3.244 (2)136 (2)
C12—H12···O8vi0.98 (2)2.47 (2)3.158 (2)127 (2)
C18—H18···O1W1.06 (1)2.50 (2)3.235 (2)126 (1)
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x+2, y, z+1; (iv) x+2, y, z; (v) x+1, y, z; (vi) x+1, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds