Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)-8-(3-furyl)-2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c-dodeca­hydro-3-hydroxy-2a,5a,6a,7-tetra­methyl-5-(3-methylbut-2-enoyl­oxy)-2H,3H-cyclo­penta­[4′,5′]­furo­[2′,3′:6,5]benzo[cd]­isobenzo­furan-6-acetate, C32H42O8, was isolated from uncrushed green leaves of Azadirachta indica A. Juss (neem) and has been found to possess antifeedant activity against Spodptera litura. The conformations of the functional groups are similar to those of 3-des­acetyl­salannin, which was isolated from neem kernels. The mol­ecules are linked into chains by intermolecular O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010201747X/ln1144sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010201747X/ln1144Isup2.hkl
Contains datablock I

CCDC reference: 199441

Comment top

Azadirachta indica A. Juss, an indigenous tree of the Indian subcontinent, has attracted the attention of many chemists and biologists all over the world during the past two decades, due to the plethora of biological activities found in the compounds extracted therefrom, in particular insect-antifeedant and growth-inhibition activities (Singh, 1993; Eppler, 1995; Locke, 1995; Schmutterer, 1995). The title compound, (I), was isolated from the hexane extract of uncrushed green neem leaves and purified by preparative high-performance liquid chromatography techniques.

The antifeedant activity of (I) against Spodptera litura (Suresh et al., 2002) is similar to that of 3-desacetylsalannin (DAS) (Kabaleeswaran et al., 1999), which was isolated from neem kernels. The difference between the structure of (I) and that of DAS is that in (I), a 3-methylbutenoyl (O-senecioxy ester) group has replaced the 2-methylbutenoyl (O-tigloyl) group at C1 in DAS. Due to this difference in the chemical structure, there is a conformational variation in the orientation of this functional group in these structures, and this is evident in the different values for the C1—O1—C31—C32 dihedral angle [-177.6 (3)° in (I) and -171.9 (2)° in DAS]. Other functional groups, such as the –CH2COOCH3 group at C9 [C10—C9—C11—C12 - 149.1 (4)° in (I) and -149.6 (2)° in DAS] and the furan ring (E) at C17 [C16—C17—C20—C22 64.5 (6)° in (I) and 63.8 (5)° in DAS], show similar conformations. \sch

Rings A and B in (I) are in chair conformations, as is evident from the ring puckering amplitudes (Cremer & Pople, 1975); QT = 0.522 (5) Å, θ = 5.8 (5)° and ϕ2 = -178 (5)°, and QT = 0.552 (4) Å, θ = 7.0 (5)° and ϕ2= -29 (4)°, respectively. Ring F is in a half-chair conformation [q2 = 0.454 (4) Å and ϕ2 = 93.6 (5)°], with atoms C4 and C5 deviating from the least-squares plane defined by atoms C6, O6 and C28 by 0.450 (5) and -0.295 (4) Å, respectively. Ring I also adopts a half-chair conformation [q2 = 0.405 (4) Å and ϕ2= 241.1 (6)°], with atoms C7 and C8 deviating from the plane defined by atoms O7, C14 and C15 by -0.214 (4) and 0.459 (4) Å, respectively, while ring D' is in an envelope conformation [q2 = 0.319 (5) Å and ϕ2 = 103.8 (8)°], with atom C16 at the apex of the envelope. Ring E adopts a planar conformation (Nardelli, 1995). The ring junctions A/B, A/F and B/F are trans-fused. The B/I junction is cis-fused, and I/D' is quasi-trans-fused due to the sp2 hybridization of C13.

The molecules in the crystal lattice of (I) are stabilized by an O—H···O hydrogen bond between atoms O3 and O6(-x, y + 1/2, 1/2 - z). This hydrogen bond links the molecules into infinite one-dimensional chains which run parallel to the y axis, and can be denoted by the graph set motif C(6) (Berstein et al., 1995). A similar pattern of hydrogen bonds was also observed in the related structure of DAS (Kabaleeswaran et al., 1999).

Experimental top

Fresh uncrushed green leaves of Azadirachta indica A. Juss (neem) (5 kg) were soaked in hexane (25 l) for 24 h and the decanted n-hexane extract was concentrated to 1 l in vacuo. The hexane extract was then partitioned with 95% MeOH-water. The methanol layer was concentrated to dryness in vacuo, resulting in a residue (16 g) which was subjected to primary preparative high-performance liquid chromatography (HPLC) separation (Shimadzu ODS column, 2 × 25 cm, 215 nm) using MeOH:H2O (70:30) as eluent at a flow rate of 4 ml min-1 to yield eight peaks with retention times of 6.9, 11.9, 14.1, 18.3, 22.8, 32.2, 47.7 and 61.4 min. The peak with a retention time of 18.3 min (262 mg) was further subjected to semi-preparative HPLC on an RP18 column (E-Merck, ODS, 10 µm, 9.6 mm × 25 cm) using acetonitrile-water (55:45) as eluent at a flow rate of 8 ml min-1. On evaporation of the solvent, this yielded the title compound as a white solid (80 mg) with a melting point of 457 K. This compound was identified as 2'3'-dehydrosalannol by comparison of its spectroscopic data (one- and two-dimensional NMR) with published data (Garg & Bhakuni, 1985) (positions 2' and 3' are numbered as C32 and C34, respectively, in Fig. 1). Good diffraction-quality crystals of (I) were obtained from a solution of acetonitrile and water (Ratio?) at 293 K.

Refinement top

In the absence of suitable anomalous scatters, Friedel equivalents could not be used to determine the absolute structure. Refinement of the Flack parameter (Flack, 1983) led to an inconclusive value (Flack & Bernadinelli, 2000) of -0.3 (4). Therefore, the 133 Friedel equivalents were merged before the final refinement. The enantiomer employed in the refined model was chosen to agree with the accepted configuration of limonoids (Narayanan et al., 1964; Harris et al., 1968; Henderson et al., 1968). The methyl and hydroxy H atoms were constrained to an ideal geometry (C—H = 0.96 and O—H = 0.82 Å) with Uiso(H) = 1.5Ueq(parent atom), but were allowed to rotate freely about the C—C and C—O bonds, respectively. All remaining H atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å) and constrained to ride on their parent atom with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with 30% probability displacement ellipsoids and the atomic numbering scheme. H atoms have been omitted for clarity.
methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)]- 8-(3-furyl)-2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c-dodecahydro-3-hydroxy- 2a,5a,6a,7-tetramethyl-5-(3-methylbut-2-enoyloxy)-2H,3H- cyclopenta[4',5']furo[2',3':6,5]benzo[cd]isobenzofuran-6-acetate top
Crystal data top
C32H42O8F(000) = 1192
Mr = 554.66Dx = 1.245 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.220 (2) Åθ = 15–30°
b = 12.728 (2) ŵ = 0.72 mm1
c = 32.210 (6) ÅT = 293 K
V = 2960.0 (11) Å3Needle, colourless
Z = 40.33 × 0.23 × 0.13 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 75.1°, θmin = 2.7°
Graphite monochromatorh = 28
non–profiled ω/2θ scansk = 415
3407 measured reflectionsl = 1040
3280 independent reflections3 standard reflections every 60 min
2091 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.151Calculated w = 1/[σ2(Fo2) + (0.0876P)2 + 0.3127P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3280 reflectionsΔρmax = 0.21 e Å3
367 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (4)
Crystal data top
C32H42O8V = 2960.0 (11) Å3
Mr = 554.66Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.220 (2) ŵ = 0.72 mm1
b = 12.728 (2) ÅT = 293 K
c = 32.210 (6) Å0.33 × 0.23 × 0.13 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.028
3407 measured reflections3 standard reflections every 60 min
3280 independent reflections intensity decay: 2%
2091 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3280 reflectionsΔρmin = 0.20 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1417 (4)0.84934 (18)0.16929 (8)0.0529 (7)
O30.0312 (4)0.8124 (2)0.25251 (10)0.0631 (8)
H30.06270.86940.24300.095*
O60.1722 (5)0.5228 (2)0.26136 (8)0.0605 (8)
O70.0670 (4)0.50150 (19)0.17641 (7)0.0492 (7)
O120.1783 (6)0.7262 (3)0.06896 (10)0.0809 (11)
O210.1623 (8)0.4012 (5)0.02194 (13)0.1267 (19)
O270.4531 (5)0.6904 (3)0.04168 (10)0.0824 (11)
O310.2388 (6)0.9958 (3)0.13869 (15)0.1210 (18)
C10.3137 (6)0.8420 (3)0.19281 (14)0.0516 (10)
H10.40750.88630.17950.062*
C20.2763 (7)0.8838 (3)0.23677 (14)0.0593 (11)
H2A0.39510.89480.25020.071*
H2B0.21800.95210.23410.071*
C30.1573 (7)0.8179 (3)0.26592 (14)0.0573 (11)
H3A0.16140.84900.29370.069*
C40.2348 (7)0.7062 (3)0.26795 (12)0.0528 (10)
C50.2588 (6)0.6687 (2)0.22303 (11)0.0444 (9)
H50.13450.67390.21100.053*
C60.2914 (7)0.5536 (3)0.22740 (12)0.0503 (10)
H60.42030.54250.23580.060*
C70.2588 (6)0.4965 (3)0.18728 (12)0.0470 (9)
H70.29640.42290.19030.056*
C80.3676 (6)0.5478 (3)0.15042 (13)0.0469 (9)
C90.3433 (6)0.6709 (2)0.14995 (12)0.0457 (9)
H90.21130.68260.14460.055*
C100.3821 (6)0.7261 (3)0.19251 (13)0.0467 (9)
C110.4435 (7)0.7217 (3)0.11341 (13)0.0591 (11)
H11A0.46310.79540.11950.071*
H11B0.56410.68900.11040.071*
C120.3424 (8)0.7129 (3)0.07354 (14)0.0601 (11)
C130.2799 (6)0.4369 (3)0.08379 (12)0.0539 (11)
C140.2521 (6)0.4987 (3)0.11677 (11)0.0454 (9)
C150.0571 (6)0.4919 (3)0.13197 (11)0.0450 (9)
H150.01730.54900.12020.054*
C160.0072 (7)0.3866 (3)0.11495 (13)0.0579 (11)
H16A0.13940.38710.10950.069*
H16B0.02120.33000.13410.069*
C170.1048 (6)0.3753 (3)0.07405 (13)0.0584 (12)
H170.13840.30120.07060.070*
C180.4497 (8)0.4180 (4)0.05835 (16)0.0759 (15)
H18A0.54090.47040.06470.114*
H18B0.41870.42180.02940.114*
H18C0.49860.34960.06460.114*
C190.5894 (7)0.7299 (4)0.20337 (16)0.0674 (13)
H19A0.61120.78470.22320.101*
H19B0.65990.74360.17870.101*
H19C0.62660.66360.21500.101*
C200.0003 (8)0.4095 (4)0.03642 (14)0.0671 (13)
C210.0621 (12)0.3462 (6)0.00635 (18)0.104 (2)
H210.03950.27440.00500.125*
C220.0644 (8)0.5111 (5)0.02672 (16)0.0810 (15)
H220.04410.57200.04200.097*
C230.1605 (9)0.5033 (7)0.00885 (19)0.0976 (19)
H230.21740.55900.02250.117*
C270.3650 (11)0.6814 (6)0.00128 (16)0.107 (2)
H27A0.45700.66620.01940.160*
H27B0.30430.74630.00540.160*
H27C0.27540.62570.00190.160*
C280.1052 (8)0.6177 (3)0.28159 (12)0.0633 (13)
H28A0.10830.60960.31150.076*
H28B0.02110.63260.27320.076*
C290.4066 (8)0.7039 (4)0.29547 (15)0.0764 (15)
H29A0.45520.63370.29640.115*
H29B0.37410.72590.32300.115*
H29C0.49850.75050.28430.115*
C300.5677 (6)0.5095 (3)0.15092 (16)0.0641 (12)
H30A0.56960.43400.15100.096*
H30B0.62860.53530.17540.096*
H30C0.63090.53490.12670.096*
C310.1212 (7)0.9304 (3)0.14339 (15)0.0616 (12)
C320.0604 (8)0.9285 (3)0.12375 (14)0.0637 (13)
H320.12900.86720.12710.076*
C330.0525 (10)1.1063 (4)0.09314 (18)0.0953 (19)
H33A0.13591.14820.07690.143*
H33B0.06071.09600.07810.143*
H33C0.02651.14160.11880.143*
C340.1382 (7)1.0037 (3)0.10186 (13)0.0589 (11)
C350.3265 (9)0.9922 (5)0.0841 (2)0.106 (2)
H35A0.36340.91980.08530.160*
H35B0.32581.01530.05570.160*
H35C0.41221.03420.09970.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0574 (18)0.0355 (11)0.0657 (16)0.0065 (12)0.0105 (15)0.0085 (12)
O30.066 (2)0.0473 (15)0.075 (2)0.0018 (14)0.0058 (18)0.0090 (14)
O60.090 (2)0.0413 (13)0.0501 (15)0.0048 (15)0.0047 (16)0.0032 (11)
O70.0564 (18)0.0425 (12)0.0487 (14)0.0059 (13)0.0080 (13)0.0049 (11)
O120.081 (3)0.096 (3)0.066 (2)0.015 (2)0.006 (2)0.0087 (19)
O210.139 (5)0.162 (5)0.080 (3)0.051 (4)0.014 (3)0.002 (3)
O270.080 (3)0.103 (3)0.0637 (19)0.007 (2)0.018 (2)0.0014 (19)
O310.084 (3)0.092 (3)0.187 (4)0.036 (2)0.036 (3)0.087 (3)
C10.051 (3)0.0351 (17)0.069 (3)0.0100 (17)0.014 (2)0.0005 (17)
C20.072 (3)0.0323 (17)0.074 (3)0.0087 (19)0.009 (3)0.0088 (18)
C30.066 (3)0.0465 (19)0.059 (2)0.007 (2)0.009 (2)0.0156 (19)
C40.066 (3)0.046 (2)0.047 (2)0.004 (2)0.010 (2)0.0001 (16)
C50.054 (2)0.0316 (15)0.0470 (19)0.0027 (17)0.0056 (19)0.0002 (14)
C60.063 (3)0.0353 (17)0.052 (2)0.0037 (18)0.006 (2)0.0024 (16)
C70.053 (3)0.0301 (15)0.058 (2)0.0035 (17)0.002 (2)0.0033 (16)
C80.042 (2)0.0376 (16)0.061 (2)0.0011 (16)0.003 (2)0.0009 (17)
C90.047 (2)0.0371 (16)0.053 (2)0.0064 (16)0.004 (2)0.0030 (16)
C100.043 (2)0.0356 (16)0.062 (2)0.0066 (16)0.007 (2)0.0003 (17)
C110.061 (3)0.052 (2)0.065 (3)0.007 (2)0.006 (2)0.0067 (19)
C120.073 (3)0.051 (2)0.056 (2)0.003 (2)0.010 (3)0.008 (2)
C130.060 (3)0.046 (2)0.056 (2)0.0007 (19)0.016 (2)0.0061 (17)
C140.046 (2)0.0382 (16)0.052 (2)0.0015 (18)0.0080 (19)0.0008 (16)
C150.051 (2)0.0394 (17)0.0445 (19)0.0035 (18)0.0111 (18)0.0063 (16)
C160.063 (3)0.050 (2)0.060 (2)0.010 (2)0.012 (2)0.0103 (19)
C170.068 (3)0.047 (2)0.060 (2)0.009 (2)0.020 (2)0.0172 (19)
C180.071 (3)0.077 (3)0.079 (3)0.000 (3)0.029 (3)0.020 (3)
C190.057 (3)0.064 (3)0.081 (3)0.006 (2)0.014 (3)0.004 (2)
C200.073 (3)0.072 (3)0.056 (3)0.020 (2)0.013 (2)0.012 (2)
C210.147 (6)0.098 (4)0.067 (3)0.042 (5)0.008 (4)0.011 (3)
C220.073 (4)0.097 (4)0.073 (3)0.001 (3)0.005 (3)0.001 (3)
C230.079 (4)0.130 (6)0.083 (4)0.004 (4)0.003 (3)0.023 (4)
C270.125 (6)0.140 (6)0.056 (3)0.022 (5)0.013 (4)0.009 (3)
C280.097 (4)0.048 (2)0.045 (2)0.005 (2)0.005 (3)0.0010 (17)
C290.094 (4)0.067 (3)0.068 (3)0.003 (3)0.025 (3)0.003 (2)
C300.048 (3)0.061 (2)0.084 (3)0.013 (2)0.004 (3)0.004 (3)
C310.072 (3)0.0393 (18)0.074 (3)0.002 (2)0.006 (3)0.0131 (19)
C320.075 (3)0.0413 (19)0.075 (3)0.011 (2)0.008 (3)0.016 (2)
C330.116 (5)0.061 (3)0.109 (4)0.012 (3)0.017 (4)0.036 (3)
C340.075 (3)0.050 (2)0.051 (2)0.003 (2)0.003 (2)0.0097 (18)
C350.091 (4)0.098 (4)0.130 (5)0.008 (4)0.034 (4)0.049 (4)
Geometric parameters (Å, º) top
O1—C311.335 (5)C13—C171.521 (6)
O1—C11.458 (5)C14—C151.493 (6)
O3—C31.430 (6)C15—C161.520 (5)
O3—H30.8200C15—H150.9800
O6—C61.446 (5)C16—C171.553 (6)
O6—C281.455 (5)C16—H16A0.9700
O7—C71.430 (5)C16—H16B0.9700
O7—C151.439 (4)C17—C201.494 (7)
O12—C121.206 (6)C17—H170.9800
O21—C211.358 (8)C18—H18A0.9600
O21—C231.366 (9)C18—H18B0.9600
O27—C121.332 (5)C18—H18C0.9600
O27—C271.453 (7)C19—H19A0.9600
O31—C311.199 (5)C19—H19B0.9600
C1—C21.537 (6)C19—H19C0.9600
C1—C101.555 (5)C20—C211.336 (7)
C1—H10.9800C20—C221.409 (7)
C2—C31.524 (6)C21—H210.9300
C2—H2A0.9700C22—C231.343 (8)
C2—H2B0.9700C22—H220.9300
C3—C41.529 (6)C23—H230.9300
C3—H3A0.9800C27—H27A0.9600
C4—C291.525 (6)C27—H27B0.9600
C4—C281.529 (6)C27—H27C0.9600
C4—C51.533 (5)C28—H28A0.9700
C5—C61.490 (4)C28—H28B0.9700
C5—C101.514 (5)C29—H29A0.9600
C5—H50.9800C29—H29B0.9600
C6—C71.501 (5)C29—H29C0.9600
C6—H60.9800C30—H30A0.9600
C7—C81.566 (5)C30—H30B0.9600
C7—H70.9800C30—H30C0.9600
C8—C141.504 (6)C31—C321.456 (7)
C8—C301.525 (6)C32—C341.315 (6)
C8—C91.577 (5)C32—H320.9300
C9—C111.525 (5)C33—C341.472 (7)
C9—C101.566 (5)C33—H33A0.9600
C9—H90.9800C33—H33B0.9600
C10—C191.538 (6)C33—H33C0.9600
C11—C121.481 (6)C34—C351.483 (7)
C11—H11A0.9700C35—H35A0.9600
C11—H11B0.9700C35—H35B0.9600
C13—C141.337 (5)C35—H35C0.9600
C13—C181.494 (6)
C31—O1—C1118.0 (3)O7—C15—H15110.3
C3—O3—H3109.5C14—C15—H15110.3
C6—O6—C28108.1 (3)C16—C15—H15110.3
C7—O7—C15106.7 (3)C15—C16—C17103.2 (3)
C21—O21—C23106.1 (5)C15—C16—H16A111.1
C12—O27—C27116.4 (5)C17—C16—H16A111.1
O1—C1—C2107.9 (3)C15—C16—H16B111.1
O1—C1—C10109.2 (3)C17—C16—H16B111.1
C2—C1—C10113.0 (3)H16A—C16—H16B109.1
O1—C1—H1108.9C20—C17—C13116.1 (4)
C2—C1—H1108.9C20—C17—C16113.4 (4)
C10—C1—H1108.9C13—C17—C16102.1 (3)
C3—C2—C1118.5 (3)C20—C17—H17108.3
C3—C2—H2A107.7C13—C17—H17108.3
C1—C2—H2A107.7C16—C17—H17108.3
C3—C2—H2B107.7C13—C18—H18A109.5
C1—C2—H2B107.7C13—C18—H18B109.5
H2A—C2—H2B107.1H18A—C18—H18B109.5
O3—C3—C2112.2 (4)C13—C18—H18C109.5
O3—C3—C4108.4 (3)H18A—C18—H18C109.5
C2—C3—C4109.4 (4)H18B—C18—H18C109.5
O3—C3—H3A109.0C10—C19—H19A109.5
C2—C3—H3A109.0C10—C19—H19B109.5
C4—C3—H3A109.0H19A—C19—H19B109.5
C29—C4—C28108.4 (4)C10—C19—H19C109.5
C29—C4—C3109.9 (3)H19A—C19—H19C109.5
C28—C4—C3118.3 (4)H19B—C19—H19C109.5
C29—C4—C5116.8 (4)C21—C20—C22106.4 (6)
C28—C4—C596.4 (3)C21—C20—C17125.6 (5)
C3—C4—C5106.9 (3)C22—C20—C17127.9 (4)
C6—C5—C10116.3 (4)C20—C21—O21110.7 (6)
C6—C5—C4103.6 (3)C20—C21—H21124.6
C10—C5—C4121.9 (3)O21—C21—H21124.6
C6—C5—H5104.4C23—C22—C20106.9 (6)
C10—C5—H5104.4C23—C22—H22126.5
C4—C5—H5104.4C20—C22—H22126.5
O6—C6—C5104.1 (3)C22—C23—O21109.8 (6)
O6—C6—C7115.3 (3)C22—C23—H23125.1
C5—C6—C7111.7 (3)O21—C23—H23125.1
O6—C6—H6108.5O27—C27—H27A109.5
C5—C6—H6108.5O27—C27—H27B109.5
C7—C6—H6108.5H27A—C27—H27B109.5
O7—C7—C6109.9 (3)O27—C27—H27C109.5
O7—C7—C8106.3 (3)H27A—C27—H27C109.5
C6—C7—C8111.9 (3)H27B—C27—H27C109.5
O7—C7—H7109.6O6—C28—C4106.2 (4)
C6—C7—H7109.6O6—C28—H28A110.5
C8—C7—H7109.6C4—C28—H28A110.5
C14—C8—C30113.6 (3)O6—C28—H28B110.5
C14—C8—C795.5 (3)C4—C28—H28B110.5
C30—C8—C7109.5 (3)H28A—C28—H28B108.7
C14—C8—C9110.2 (3)C4—C29—H29A109.5
C30—C8—C9115.0 (3)C4—C29—H29B109.5
C7—C8—C9111.5 (3)H29A—C29—H29B109.5
C11—C9—C10113.6 (3)C4—C29—H29C109.5
C11—C9—C8112.1 (3)H29A—C29—H29C109.5
C10—C9—C8114.7 (3)H29B—C29—H29C109.5
C11—C9—H9105.1C8—C30—H30A109.5
C10—C9—H9105.1C8—C30—H30B109.5
C8—C9—H9105.1H30A—C30—H30B109.5
C5—C10—C19116.1 (4)C8—C30—H30C109.5
C5—C10—C1105.5 (3)H30A—C30—H30C109.5
C19—C10—C1106.2 (3)H30B—C30—H30C109.5
C5—C10—C9104.3 (3)O31—C31—O1122.5 (4)
C19—C10—C9112.8 (4)O31—C31—C32126.5 (4)
C1—C10—C9112.0 (3)O1—C31—C32111.0 (4)
C12—C11—C9113.8 (4)C34—C32—C31127.3 (4)
C12—C11—H11A108.8C34—C32—H32116.4
C9—C11—H11A108.8C31—C32—H32116.4
C12—C11—H11B108.8C34—C33—H33A109.5
C9—C11—H11B108.8C34—C33—H33B109.5
H11A—C11—H11B107.7H33A—C33—H33B109.5
O12—C12—O27121.7 (5)C34—C33—H33C109.5
O12—C12—C11125.4 (5)H33A—C33—H33C109.5
O27—C12—C11112.9 (5)H33B—C33—H33C109.5
C14—C13—C18130.9 (4)C32—C34—C33124.7 (5)
C14—C13—C17110.0 (4)C32—C34—C35121.8 (4)
C18—C13—C17119.1 (3)C33—C34—C35113.5 (5)
C13—C14—C15111.6 (4)C34—C35—H35A109.5
C13—C14—C8137.2 (4)C34—C35—H35B109.5
C15—C14—C8108.1 (3)H35A—C35—H35B109.5
O7—C15—C14105.9 (3)C34—C35—H35C109.5
O7—C15—C16116.7 (3)H35A—C35—H35C109.5
C14—C15—C16102.8 (3)H35B—C35—H35C109.5
C31—O1—C1—C299.9 (4)C11—C9—C10—C1957.5 (5)
C31—O1—C1—C10137.0 (4)C8—C9—C10—C1973.2 (4)
O1—C1—C2—C371.1 (4)C11—C9—C10—C162.2 (5)
C10—C1—C2—C349.6 (5)C8—C9—C10—C1167.1 (3)
C1—C2—C3—O367.8 (5)C10—C9—C11—C12149.1 (4)
C1—C2—C3—C452.5 (5)C8—C9—C11—C1278.9 (5)
O3—C3—C4—C29160.6 (4)C27—O27—C12—O120.8 (7)
C2—C3—C4—C2976.8 (4)C27—O27—C12—C11179.4 (5)
O3—C3—C4—C2835.4 (5)C9—C11—C12—O1243.0 (6)
C2—C3—C4—C28158.0 (4)C9—C11—C12—O27138.5 (4)
O3—C3—C4—C571.7 (4)C18—C13—C14—C15180.0 (5)
C2—C3—C4—C550.8 (5)C17—C13—C14—C153.0 (5)
C29—C4—C5—C669.2 (5)C18—C13—C14—C823.1 (8)
C28—C4—C5—C645.2 (4)C17—C13—C14—C8153.9 (4)
C3—C4—C5—C6167.3 (4)C30—C8—C14—C138.4 (6)
C29—C4—C5—C1064.2 (5)C7—C8—C14—C13122.4 (5)
C28—C4—C5—C10178.6 (4)C9—C8—C14—C13122.3 (5)
C3—C4—C5—C1059.3 (5)C30—C8—C14—C15149.0 (3)
C28—O6—C6—C511.8 (4)C7—C8—C14—C1535.0 (3)
C28—O6—C6—C7134.5 (4)C9—C8—C14—C1580.3 (4)
C10—C5—C6—O6173.5 (3)C7—O7—C15—C149.0 (4)
C4—C5—C6—O636.9 (4)C7—O7—C15—C16104.6 (4)
C10—C5—C6—C761.5 (5)C13—C14—C15—O7145.0 (3)
C4—C5—C6—C7161.9 (4)C8—C14—C15—O718.7 (4)
C15—O7—C7—C6153.8 (3)C13—C14—C15—C1622.1 (4)
C15—O7—C7—C832.5 (4)C8—C14—C15—C16141.6 (3)
O6—C6—C7—O751.9 (4)O7—C15—C16—C17146.3 (4)
C5—C6—C7—O766.7 (4)C14—C15—C16—C1730.9 (4)
O6—C6—C7—C8169.8 (3)C14—C13—C17—C20107.0 (4)
C5—C6—C7—C851.2 (5)C18—C13—C17—C2075.6 (5)
O7—C7—C8—C1440.9 (3)C14—C13—C17—C1616.9 (5)
C6—C7—C8—C14160.9 (3)C18—C13—C17—C16160.5 (4)
O7—C7—C8—C30158.3 (3)C15—C16—C17—C2096.5 (4)
C6—C7—C8—C3081.7 (4)C15—C16—C17—C1329.2 (4)
O7—C7—C8—C973.3 (4)C13—C17—C20—C21131.3 (6)
C6—C7—C8—C946.7 (5)C16—C17—C20—C21110.9 (6)
C14—C8—C9—C1173.5 (4)C13—C17—C20—C2253.3 (7)
C30—C8—C9—C1156.4 (5)C16—C17—C20—C2264.5 (6)
C7—C8—C9—C11178.2 (3)C22—C20—C21—O210.2 (8)
C14—C8—C9—C10155.0 (3)C17—C20—C21—O21176.1 (5)
C30—C8—C9—C1075.1 (5)C23—O21—C21—C200.6 (8)
C7—C8—C9—C1050.3 (5)C21—C20—C22—C230.3 (7)
C6—C5—C10—C1965.1 (5)C17—C20—C22—C23176.4 (5)
C4—C5—C10—C1963.0 (5)C20—C22—C23—O210.7 (7)
C6—C5—C10—C1177.7 (3)C21—O21—C23—C220.8 (7)
C4—C5—C10—C154.2 (5)C6—O6—C28—C417.8 (4)
C6—C5—C10—C959.6 (4)C29—C4—C28—O682.8 (4)
C4—C5—C10—C9172.3 (4)C3—C4—C28—O6151.3 (3)
O1—C1—C10—C576.0 (4)C5—C4—C28—O638.2 (4)
C2—C1—C10—C544.0 (4)C1—O1—C31—O310.7 (7)
O1—C1—C10—C19160.3 (3)C1—O1—C31—C32177.6 (3)
C2—C1—C10—C1979.7 (4)O31—C31—C32—C349.7 (9)
O1—C1—C10—C936.8 (4)O1—C31—C32—C34168.5 (5)
C2—C1—C10—C9156.8 (3)C31—C32—C34—C330.0 (8)
C11—C9—C10—C5175.8 (3)C31—C32—C34—C35179.0 (5)
C8—C9—C10—C553.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.822.112.900 (4)161
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H42O8
Mr554.66
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.220 (2), 12.728 (2), 32.210 (6)
V3)2960.0 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.33 × 0.23 × 0.13
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3407, 3280, 2091
Rint0.028
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.151, 1.02
No. of reflections3280
No. of parameters367
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 and PARST97 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.822.112.900 (4)161
Symmetry code: (i) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds