Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, ethyldiphenylphosphine-dithiomono­metaphosphoryl chloride, EtPh2P\rightarrowPS2Cl, C14H15ClP2S2, (I), and tris-n-propyl­phosphine-di­thio­monometa­phospho­ryl chloride and bromide, nPr3P\rightarrowPS2Cl, C9H21ClP2S2, (II), and nPr3P\rightarrowPS2Br, C9H21BrP2S2, (III), respectively, are the first phosphine-stabilized di­thio­monometa­phospho­ryl halides to be structurally characterized. In the tris-n-propyl­phosphine derivatives, the central P\rightarrowP donor-acceptor bond becomes longer in the order bromo < chloro < fluoro. Substitution of the tris-n-propyl­phosphine group in (II) by the more bulky ethyl­di­phenyl­phosphine group also leads to a longer P\rightarrowP bond. These structural features agree with the observed 31P NMR data. In (II) and (III), the central P-P bond coincides with the crystallographic threefold axis, entailing site-occupational disorder for the S2Y group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102004080/ln1136sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004080/ln1136Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004080/ln1136IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004080/ln1136IIIsup4.hkl
Contains datablock III

CCDC references: 184508; 184509; 184510

Computing details top

Data collection: IPDS (Stoe & Cie, 1996) for (I), (II); IPDS (Stoe& Cie, 1996) for (III). For all compounds, cell refinement: IPDS; data reduction: IPDS. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I), (III); SHELXS86 (Sheldrick, 1990) for (II). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97.

(I) Diphenylmonoethylphosphine-dithiomonometaphosphoryl chloride top
Crystal data top
C14H15ClP2S2F(000) = 712
Mr = 344.77Dx = 1.472 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.204 (1) ÅCell parameters from 5000 reflections
b = 9.694 (1) Åθ = 6.9–28.3°
c = 13.655 (1) ŵ = 0.70 mm1
β = 117.11 (1)°T = 190 K
V = 1555.8 (3) Å3Prismatic, colourless
Z = 40.57 × 0.38 × 0.19 mm
Data collection top
Stoe IPDS
diffractometer
3738 independent reflections
Radiation source: fine-focus sealed X-ray tube3485 reflections with I > 2σ(I)
Planar graphite monochromatorRint = 0.043
Detector resolution: 6.667 pixels mm-1θmax = 28.1°, θmin = 2.7°
φ scansh = 1715
Absorption correction: part of the refinement model (ΔF)
(ABSCOR; Stoe & Cie, 1996)
k = 1212
Tmin = 0.659, Tmax = 0.875l = 1717
18747 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.4476P]
where P = (Fo2 + 2Fc2)/3
3738 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Experimental. Recrystallized from benzene. During data collection the crystal was in cold N2 gas of the Cryostream Cooler (Oxford Cryosystems, 1992) mounted on a φ-axis diffractometer supplied with an area detector. Data collection: φ-scans, φ-incr.=1.2 °, 200 exposures

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.57851 (2)0.33775 (3)0.80861 (2)0.01820 (9)
C110.59187 (11)0.24627 (14)0.69960 (11)0.0253 (3)
H11A0.596160.146160.715350.030*
H11B0.522310.262570.629730.030*
C210.69530 (12)0.2873 (2)0.68391 (12)0.0311 (3)
H21A0.696300.23330.623670.037*
H21B0.764960.26910.751890.037*
H21C0.690980.38580.666120.037*
C120.55253 (10)0.51783 (13)0.77587 (10)0.0198 (2)
C220.52019 (10)0.56438 (14)0.66855 (10)0.0241 (2)
H220.513410.501050.612790.029*
C320.49810 (12)0.7036 (2)0.64411 (12)0.0291 (3)
H320.476560.73560.571520.035*
C420.50735 (12)0.79576 (14)0.72500 (13)0.0293 (3)
H420.491240.890680.707560.035*
C520.54016 (12)0.75017 (15)0.83193 (12)0.0294 (3)
H520.546970.814060.887350.035*
C620.56288 (11)0.61172 (14)0.85752 (11)0.0256 (3)
H620.585470.580630.930530.031*
C130.46268 (10)0.26518 (13)0.82703 (10)0.0215 (2)
C230.46365 (12)0.12464 (14)0.85078 (12)0.0281 (3)
H230.522790.066860.853030.034*
C330.37785 (12)0.0700 (2)0.87103 (12)0.0315 (3)
H330.377990.02550.886710.038*
C430.29182 (12)0.1546 (2)0.86842 (12)0.0303 (3)
H430.233500.11690.882780.036*
C530.29073 (11)0.2935 (2)0.84498 (12)0.0296 (3)
H530.231770.35100.843500.036*
C630.37566 (11)0.34947 (14)0.82356 (11)0.0251 (3)
H630.374310.444720.806640.030*
P20.74202 (3)0.30647 (4)0.96374 (3)0.02250 (9)
Cl20.67714 (3)0.34038 (4)1.07421 (3)0.03474 (10)
S120.84799 (3)0.45134 (4)0.97461 (3)0.03541 (11)
S220.77716 (3)0.11146 (4)0.96454 (3)0.03167 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01792 (15)0.0192 (2)0.0192 (2)0.00010 (10)0.00992 (12)0.00047 (11)
C110.0277 (6)0.0260 (6)0.0250 (6)0.0018 (5)0.0144 (5)0.0059 (5)
C210.0299 (6)0.0394 (8)0.0309 (7)0.0020 (6)0.0198 (6)0.0027 (6)
C120.0182 (5)0.0210 (5)0.0212 (5)0.0002 (4)0.0097 (4)0.0006 (4)
C220.0225 (6)0.0283 (6)0.0206 (6)0.0005 (5)0.0092 (5)0.0012 (5)
C320.0280 (6)0.0325 (7)0.0256 (6)0.0015 (5)0.0112 (5)0.0079 (5)
C420.0274 (6)0.0233 (6)0.0366 (7)0.0026 (5)0.0141 (5)0.0063 (5)
C520.0348 (7)0.0238 (6)0.0312 (7)0.0024 (5)0.0165 (6)0.0018 (5)
C620.0307 (6)0.0247 (6)0.0233 (6)0.0029 (5)0.0140 (5)0.0010 (5)
C130.0206 (5)0.0231 (6)0.0225 (6)0.0022 (4)0.0115 (4)0.0007 (5)
C230.0262 (6)0.0234 (6)0.0361 (7)0.0004 (5)0.0154 (5)0.0009 (5)
C330.0317 (7)0.0273 (7)0.0352 (7)0.0058 (5)0.0150 (6)0.0043 (6)
C430.0271 (6)0.0395 (8)0.0282 (7)0.0086 (6)0.0161 (5)0.0011 (6)
C530.0246 (6)0.0355 (7)0.0336 (7)0.0008 (5)0.0175 (5)0.0028 (6)
C630.0230 (6)0.0251 (6)0.0301 (6)0.0004 (5)0.0145 (5)0.0006 (5)
P20.0219 (2)0.0232 (2)0.0205 (2)0.00246 (11)0.00795 (12)0.00144 (11)
Cl20.0459 (2)0.0393 (2)0.0236 (2)0.00746 (15)0.01980 (15)0.00098 (13)
S120.0257 (2)0.0314 (2)0.0414 (2)0.00534 (13)0.00848 (15)0.00362 (15)
S220.0319 (2)0.0238 (2)0.0395 (2)0.00751 (12)0.01640 (15)0.00435 (14)
Geometric parameters (Å, º) top
P1—C121.7958 (13)P2—S221.9454 (5)
P1—C131.8023 (12)P2—Cl22.0724 (5)
P1—C111.8090 (13)C11—H11A0.990
P1—P22.2522 (5)C11—H11B0.990
C11—C211.528 (2)C21—H21A0.980
C12—C621.397 (2)C21—H21B0.980
C12—C221.401 (2)C21—H21C0.980
C22—C321.389 (2)C22—H220.950
C32—C421.382 (2)C23—H230.950
C42—C521.392 (2)C32—H320.950
C52—C621.385 (2)C33—H330.950
C13—C631.393 (2)C42—H420.950
C13—C231.399 (2)C43—H430.950
C23—C331.388 (2)C52—H520.950
C33—C431.388 (2)C53—H530.950
C43—C531.383 (2)C62—H620.950
C53—C631.392 (2)C63—H630.950
P2—S121.9399 (5)
C12—P1—C13109.64 (6)P1—C11—H11A108.6
C12—P1—C11110.54 (6)C21—C11—H11B108.8
C13—P1—C11109.31 (6)P1—C11—H11B108.6
C12—P1—P2110.95 (4)H11A—C11—H11B107.6
C13—P1—P2109.08 (4)C11—C21—H21A109.5
C11—P1—P2107.27 (5)C11—C21—H21B109.7
C21—C11—P1114.59 (10)H21A—C21—H21B109.4
C62—C12—C22119.82 (12)C11—C21—H21C109.4
C62—C12—P1119.77 (10)H21A—C21—H21C109.4
C22—C12—P1120.40 (10)H21B—C21—H21C109.4
C32—C22—C12119.66 (12)C32—C22—H22120.5
C42—C32—C22120.25 (13)C12—C22—H22119.9
C32—C42—C52120.31 (13)C33—C23—H23120.0
C62—C52—C42120.03 (13)C13—C23—H23120.2
C52—C62—C12119.92 (12)C42—C32—H32119.9
C63—C13—C23119.97 (12)C22—C32—H32119.5
C63—C13—P1120.37 (10)C23—C33—H33120.1
C23—C13—P1119.58 (10)C43—C33—H33119.6
C33—C23—C13119.71 (13)C32—C42—H42119.8
C23—C33—C43120.16 (14)C52—C42—H42119.8
C53—C43—C33120.20 (12)C53—C43—H43119.9
C43—C53—C63120.27 (13)C33—C43—H43120.3
C53—C63—C13119.69 (13)C62—C52—H52120.1
S12—P2—S22122.76 (2)C42—C52—H52120.0
S12—P2—Cl2110.64 (2)C43—C53—H53119.9
S22—P2—Cl2109.07 (2)C63—C53—H53120.5
S12—P2—P1108.87 (2)C52—C62—H62119.9
S22—P2—P1105.08 (2)C12—C62—H62120.3
Cl2—P2—P197.25 (2)C53—C63—H63119.6
C21—C11—H11A108.5C13—C63—H63120.1
(II) Tris-n-propylphosphine-dithiomonometaphosphoryl chloride top
Crystal data top
C9H21ClP2S2Melting point: 324 (decomp.) K
Mr = 290.77Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3c1Cell parameters from 5000 reflections
a = 11.413 (3) Åθ = 2.5–25.0°
c = 13.566 (3) ŵ = 0.70 mm1
V = 1530.3 (8) Å3T = 180 K
Z = 4Block, colourless
F(000) = 6160.68 × 0.40 × 0.28 mm
Dx = 1.262 Mg m3
Data collection top
Stoe IPDS
diffractometer
1001 independent reflections
Radiation source: fine-focus sealed X-ray tube987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 6.667 pixels mm-1θmax = 26.0°, θmin = 2.6°
φ scansh = 1314
Absorption correction: numerical
[XRED (Stoe & Cie, 1996) and XSHAPE (Stoe & Cie, 1996) based on HABITUS (Herrendorf, 1993)]
k = 1413
Tmin = 0.777, Tmax = 0.848l = 1616
10448 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.2298P]
where P = (Fo2 + 2Fc2)/3
1000 reflections(Δ/σ)max = 0.002
48 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.18 e Å3
Special details top

Experimental. Recrystallized from acetonitrile/benzene (1/10). During data collection the crystal was in cold N2 gas of the Cryostream Cooler (Oxford Cryosystems, 1992) mounted on a φ-axis diffractometer supplied with an area detector. Data collection: φ-scans, φ-incr.=1.5 °, 147 exposures

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 1 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.79078 (15)0.49784 (15)0.65083 (11)0.0215 (3)
H1A0.879610.522140.680000.026*
H1B0.798490.491360.578590.026*
C20.7617 (2)0.6123 (2)0.67198 (14)0.0315 (4)
H2A0.67200.58860.644730.038*
H2B0.75910.62380.744130.038*
C30.8691 (2)0.7438 (2)0.6266 (2)0.0477 (5)
H3A0.84930.81600.64210.057*
H3B0.86970.73330.55500.057*
H3C0.95790.76710.65350.057*
P10.66670.33330.69654 (4)0.01700 (14)
P20.66670.33330.86057 (5)0.0273 (2)
S10.8512 (6)0.4661 (8)0.9020 (5)0.0319 (6)0.66667
Cl10.8609 (12)0.4746 (16)0.8906 (10)0.0319 (6)0.33333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (7)0.0184 (7)0.0214 (7)0.0067 (5)0.0038 (5)0.0021 (5)
C20.0319 (8)0.0223 (7)0.0412 (9)0.0142 (7)0.0066 (7)0.0042 (7)
C30.0498 (11)0.0242 (8)0.064 (2)0.0146 (8)0.0115 (10)0.0138 (9)
P10.0173 (2)0.0173 (2)0.0164 (3)0.00866 (9)0.0000.000
P20.0333 (2)0.0333 (2)0.0153 (3)0.01664 (11)0.0000.000
S10.0201 (8)0.0373 (10)0.022 (2)0.0024 (7)0.0013 (8)0.0008 (10)
Cl10.0201 (8)0.0373 (10)0.022 (2)0.0024 (7)0.0013 (8)0.0008 (10)
Geometric parameters (Å, º) top
C1—C21.528 (2)C3—H3A0.98
C1—P11.805 (2)C3—H3B0.98
C1—H1A0.99C3—H3C0.98
C1—H1B0.99P1—P22.2253 (10)
C2—C31.514 (2)P2—S11.964 (6)
C2—H2A0.99P2—Cl12.026 (12)
C2—H2B0.99
C2—C1—P1115.60 (11)C2—C3—H3B109.47
C2—C1—H1A108.38H3A—C3—H3B109.5
P1—C1—H1A108.38C2—C3—H3C109.47
C2—C1—H1B108.38H3A—C3—H3C109.5
P1—C1—H1B108.38H3B—C3—H3C109.5
H1A—C1—H1B107.4C1—P1—C1i108.84 (5)
C3—C2—C1110.89 (15)C1—P1—P2110.10 (5)
C3—C2—H2A109.46S1—P2—S1i112.2 (2)
C1—C2—H2A109.46S1i—P2—Cl1113.9 (8)
C3—C2—H2B109.46S1—P2—Cl1i114.8 (8)
C1—C2—H2B109.46Cl1—P2—Cl1i116.1 (3)
H2A—C2—H2B108.0S1—P2—P1106.6 (2)
C2—C3—H3A109.47Cl1—P2—P1101.6 (4)
P1—C1—C2—C3177.62 (13)C1—P1—P2—S129.4 (3)
C2—C1—P1—C1ii172.64 (10)C1i—P1—P2—S1149.4 (3)
C2—C1—P1—C1i54.2 (2)C1—P1—P2—Cl1ii148.9 (6)
C2—C1—P1—P266.60 (13)C1ii—P1—P2—Cl191.1 (6)
C1ii—P1—P2—S190.6 (3)C1—P1—P2—Cl128.9 (6)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z.
(III) Tris-n-propylphosphine-dithiomonometaphosphoryl bromide top
Crystal data top
C9H21BrP2S2Dx = 1.440 Mg m3
Mr = 335.23Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3c1Cell parameters from 1524 reflections
a = 11.522 (3) Åθ = 2.5–25.0°
c = 13.450 (4) ŵ = 3.10 mm1
V = 1546.3 (7) Å3T = 180 K
Z = 4Trigonal prism, colourless
F(000) = 6880.16 × 0.15 × 0.12 mm
Data collection top
Stoe IPDS
diffractometer
1024 independent reflections
Radiation source: fine-focus sealed X-ray tube722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
Detector resolution: 6.667 pixels mm-1θmax = 26.2°, θmin = 3.0°
φ scansh = 1413
Absorption correction: numerical
(XRED; Stoe & Cie, 1996)
k = 1414
Tmin = 0.637, Tmax = 0.707l = 1616
9325 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0275P)2]
where P = (Fo2 + 2Fc2)/3
1024 reflections(Δ/σ)max = 0.004
47 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.45 e Å3
Special details top

Experimental. Recrystallized from acetonitrile/benzene (1/10). During data collection the crystal was in cold N2 gas of the Cryostream Cooler (Oxford Cryosystems, 1992) mounted on a φ-axis diffractometer supplied with an area detector. Data collection: φ-scans, φ-incr.=1.32 °, 153 exposures

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5032 (2)0.2921 (3)0.34476 (17)0.0220 (6)
H1A0.50920.30710.41750.026*
H1B0.47900.35560.31460.026*
C20.3902 (3)0.1508 (3)0.3245 (2)0.0303 (7)
H2A0.37760.13650.25190.036*
H2B0.41450.08570.35140.036*
C30.2601 (3)0.1258 (3)0.3715 (2)0.0467 (9)
H3A0.18910.03420.35660.056*
H3B0.23560.18960.34460.056*
H3C0.27170.13740.44370.056*
Br10.5228 (15)0.3905 (19)0.0984 (13)0.0302 (6)0.3333
P10.66670.33330.29992 (8)0.0186 (3)
P20.66670.33330.13609 (8)0.0353 (4)
S10.5355 (19)0.385 (2)0.0973 (17)0.0302 (6)0.6667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0229 (15)0.0293 (16)0.0154 (11)0.0142 (13)0.0006 (10)0.0017 (11)
C20.0252 (16)0.0283 (17)0.0345 (15)0.0113 (15)0.0041 (12)0.0018 (12)
C30.0306 (19)0.044 (2)0.055 (2)0.0107 (18)0.0074 (15)0.0023 (16)
Br10.036 (2)0.0513 (12)0.0217 (4)0.0352 (11)0.0026 (13)0.0006 (6)
P10.0218 (4)0.0218 (4)0.0123 (5)0.0109 (2)0.0000.000
P20.0473 (6)0.0473 (6)0.0114 (6)0.0237 (3)0.0000.000
S10.036 (2)0.0513 (12)0.0217 (4)0.0352 (11)0.0026 (13)0.0006 (6)
Geometric parameters (Å, º) top
C1—C21.517 (4)C3—H3A0.9800
C1—P11.801 (2)C3—H3B0.9800
C1—H1A0.9900C3—H3C0.9800
C1—H1B0.9900Br1—P22.128 (6)
C2—C31.515 (4)P1—P22.2035 (16)
C2—H2A0.9900P2—S11.954 (8)
C2—H2B0.9900
C2—C1—P1116.49 (18)C2—C3—H3B109.5
C2—C1—H1A108.2H3A—C3—H3B109.5
P1—C1—H1A108.2C2—C3—H3C109.5
C2—C1—H1B108.2H3A—C3—H3C109.5
P1—C1—H1B108.2H3B—C3—H3C109.5
H1A—C1—H1B107.3C1i—P1—C1109.38 (8)
C3—C2—C1111.4 (2)C1—P1—P2109.57 (8)
C3—C2—H2A109.3S1i—P2—S1113.1 (6)
C1—C2—H2A109.3S1—P2—Br1i113.8 (12)
C3—C2—H2B109.3S1i—P2—Br1113.9 (12)
C1—C2—H2B109.3Br1i—P2—Br1114.5 (4)
H2A—C2—H2B108.0S1—P2—P1105.5 (7)
C2—C3—H3A109.5Br1—P2—P1103.8 (5)
P1—C1—C2—C3176.3 (2)C1—P1—P2—S1i90.0 (8)
C2—C1—P1—C1i53.0 (3)C1—P1—P2—S130.0 (8)
C2—C1—P1—C1ii172.82 (16)C1—P1—P2—Br1i90.0 (5)
C2—C1—P1—P267.1 (2)C1i—P1—P2—Br1150.0 (5)
C1ii—P1—P2—S1i150.0 (8)C1—P1—P2—Br130.0 (5)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds