Download citation
Download citation
link to html
The structural and nonlinear optical properties of a new anilinium hybrid crystal of chemical formula (C6H7NCl+·NO3)3 have been investigated. The crystal structure was determined from single-crystal X-ray diffraction measurements performed at a temperature of 100 K which show that the compound crystallizes in a noncentrosymmetric space group (Pna21). The structural analysis was coupled with Hirshfeld surface analysis to evaluate the contribution of the different intermolecular interactions to the formation of supramolecular assemblies in the solid state that exhibit nonlinear optical features. This analysis reveals that the studied compound is characterized by a three-dimensional network of hydrogen bonds and the main contributions are provided by the O...H, C...H, H...H and Cl...H interactions, which alone represent ∼85% of the total contributions to the Hirshfeld surfaces. It is noteworthy that the halogen...H contributions are quite comparable with those of the H...H contacts. The nonlinear optical properties were investigated by nonlinear diffuse femtosecond-pulse reflectometry and the obtained results were compared with those of the reference material LiNbO3. The hybrid crystals exhibit notable second (SHG) and third (THG) harmonic generation which confirms its polarity is generated by the different intermolecular interactions. These measurements also highlight that the THG signal of the new anilinium compound normalized to its SHG counterpart is more pronounced than for LiNbO3.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053273318014122/lk5035sup1.cif
Contains datablocks o-ClAN, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053273318014122/lk5035Isup2.hkl
Contains datablock I

CCDC reference: 1530349

Computing details top

Data collection: CrysAlis PRO 1.171.38.46 (Rigaku Oxford Diffraction, 2017); cell refinement: CrysAlis PRO 1.171.38.46 (Rigaku Oxford Diffraction, 2017); data reduction: CrysAlis PRO 1.171.38.46 (Rigaku Oxford Diffraction, 2017); program(s) used to solve structure: SHELXS97 (Sheldrick, 2014); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: 'enCIFer (Allen et al., 2004)'.

tri-(o-Chloroanilinium Nitrate top
Crystal data top
3((C6H7ClN)+·(NO3))Dx = 1.529 Mg m3
Mr = 571.76Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 117559 reflections
a = 16.8015 (5) Åθ = 3.0–37.9°
b = 6.5945 (2) ŵ = 0.43 mm1
c = 22.4243 (6) ÅT = 100 K
V = 2484.56 (12) Å3Prism, brown
Z = 40.22 × 0.18 × 0.14 mm
F(000) = 1176
Data collection top
SuperNova, Dual, Cu at zero, Atlas
diffractometer
13028 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source9377 reflections with I > 2σ(I)
Detector resolution: 10.4508 pixels mm-1Rint = 0.072
ω scansθmax = 37.9°, θmin = 3.0°
Absorption correction: multi-scan
CrysAlisPro 1.171.38.46 (Rigaku Oxford Diffraction, 2017) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 2828
Tmin = 0.826, Tmax = 0.992k = 1111
117559 measured reflectionsl = 3838
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.1157P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.45 e Å3
13028 reflectionsΔρmin = 0.38 e Å3
409 parametersAbsolute structure: Flack x determined using 3499 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
1 restraintAbsolute structure parameter: 0.050 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38372 (3)0.16209 (7)0.24812 (3)0.02480 (10)
Cl20.11473 (3)0.78871 (9)0.41627 (3)0.02871 (13)
Cl30.38460 (4)0.32023 (10)0.58072 (2)0.02871 (14)
O70.24503 (8)0.62791 (19)0.65042 (7)0.0190 (3)
O60.24147 (9)0.8922 (2)0.32153 (7)0.0209 (3)
O10.24883 (9)0.3831 (2)0.47678 (7)0.0225 (3)
O20.25547 (9)0.0581 (2)0.48710 (7)0.0236 (3)
O40.25759 (10)0.5715 (2)0.30643 (7)0.0270 (3)
O80.25819 (10)0.9537 (2)0.64560 (8)0.0275 (3)
O30.17049 (9)0.2300 (3)0.53939 (8)0.0284 (4)
O50.32754 (10)0.7245 (2)0.37433 (8)0.0286 (3)
O90.32904 (9)0.7808 (2)0.70863 (8)0.0278 (3)
N60.27838 (10)0.7897 (2)0.66911 (7)0.0166 (3)
N40.22386 (9)0.2216 (2)0.50211 (7)0.0163 (3)
N50.27653 (10)0.7290 (3)0.33496 (7)0.0173 (3)
N10.31848 (10)0.2376 (3)0.36864 (7)0.0168 (3)
N20.18133 (10)0.7134 (3)0.53670 (8)0.0156 (3)
N30.32057 (10)0.2974 (3)0.70392 (8)0.0168 (3)
C80.09461 (11)0.7114 (3)0.53327 (8)0.0152 (3)
C150.45232 (12)0.3177 (3)0.75138 (12)0.0218 (4)
C140.40697 (11)0.3123 (3)0.69968 (9)0.0149 (3)
C180.52529 (14)0.3378 (3)0.63992 (12)0.0282 (5)
C10.44176 (12)0.1889 (3)0.31153 (9)0.0184 (4)
C20.40471 (12)0.2229 (3)0.36588 (9)0.0169 (3)
C130.44297 (12)0.3228 (3)0.64420 (9)0.0192 (4)
C60.52416 (14)0.1773 (3)0.30787 (12)0.0280 (5)
C30.44992 (12)0.2439 (3)0.41743 (12)0.0242 (4)
C70.05730 (12)0.7435 (3)0.47897 (10)0.0204 (4)
C40.53223 (14)0.2306 (4)0.41372 (15)0.0322 (5)
C90.05007 (13)0.6738 (3)0.58416 (11)0.0227 (4)
C170.57056 (13)0.3435 (3)0.69158 (15)0.0338 (6)
C100.03246 (14)0.6678 (4)0.58037 (14)0.0307 (5)
C50.56884 (15)0.1985 (4)0.35975 (15)0.0348 (6)
C160.53468 (13)0.3330 (3)0.74694 (16)0.0304 (5)
C120.02524 (14)0.7382 (4)0.47510 (13)0.0300 (5)
C110.06960 (14)0.6990 (4)0.52598 (15)0.0348 (6)
H3A0.3037 (15)0.183 (4)0.6891 (13)0.019 (6)*
H3C0.3067 (16)0.294 (4)0.7413 (16)0.038 (8)*
H60.5497 (15)0.151 (4)0.2714 (12)0.026 (7)*
H90.0758 (15)0.654 (4)0.6191 (13)0.022 (7)*
H2B0.2008 (15)0.614 (4)0.5155 (12)0.022 (6)*
H2C0.1949 (16)0.696 (4)0.5770 (14)0.024 (7)*
H180.5470 (15)0.349 (4)0.6007 (12)0.027 (7)*
H1C0.3026 (16)0.332 (4)0.3477 (14)0.028 (7)*
H2A0.2001 (16)0.832 (4)0.5258 (13)0.025 (7)*
H1A0.2971 (16)0.126 (4)0.3589 (13)0.025 (7)*
H120.0468 (16)0.763 (4)0.4384 (14)0.039 (8)*
H3B0.2973 (14)0.393 (4)0.6858 (12)0.017 (6)*
H150.4295 (16)0.306 (4)0.7873 (14)0.025 (7)*
H160.5629 (17)0.337 (4)0.7823 (14)0.035 (8)*
H170.6259 (19)0.367 (5)0.6864 (17)0.053 (10)*
H1B0.3026 (16)0.268 (4)0.4054 (14)0.030 (8)*
H100.0601 (17)0.644 (4)0.6156 (13)0.033 (8)*
H40.5598 (16)0.241 (5)0.4491 (14)0.043 (9)*
H30.4244 (15)0.264 (4)0.4530 (13)0.024 (7)*
H110.1288 (19)0.685 (5)0.5212 (16)0.048 (9)*
H50.628 (2)0.193 (5)0.3552 (18)0.065 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0339 (2)0.0265 (2)0.01404 (15)0.00014 (19)0.0046 (2)0.0021 (2)
Cl20.0349 (3)0.0370 (3)0.0142 (2)0.0039 (2)0.0042 (2)0.0027 (3)
Cl30.0369 (3)0.0357 (3)0.0135 (2)0.0016 (2)0.0051 (2)0.00025 (17)
O70.0223 (7)0.0158 (6)0.0189 (6)0.0004 (5)0.0060 (5)0.0012 (5)
O60.0223 (7)0.0187 (7)0.0216 (7)0.0002 (5)0.0035 (6)0.0027 (5)
O10.0299 (8)0.0169 (6)0.0206 (7)0.0003 (5)0.0096 (6)0.0020 (5)
O20.0284 (8)0.0170 (7)0.0256 (8)0.0007 (5)0.0066 (6)0.0012 (5)
O40.0335 (9)0.0205 (7)0.0271 (8)0.0015 (6)0.0108 (6)0.0045 (6)
O80.0342 (9)0.0177 (6)0.0306 (8)0.0018 (6)0.0079 (7)0.0053 (6)
O30.0222 (8)0.0343 (9)0.0286 (8)0.0048 (6)0.0137 (6)0.0082 (6)
O50.0239 (8)0.0330 (8)0.0290 (8)0.0039 (6)0.0144 (7)0.0030 (6)
O90.0235 (8)0.0303 (8)0.0297 (9)0.0012 (6)0.0149 (6)0.0050 (6)
N60.0145 (7)0.0177 (7)0.0178 (7)0.0001 (5)0.0007 (6)0.0013 (5)
N40.0136 (7)0.0204 (7)0.0148 (7)0.0001 (5)0.0010 (5)0.0022 (5)
N50.0161 (8)0.0222 (8)0.0136 (7)0.0007 (6)0.0013 (6)0.0005 (5)
N10.0182 (8)0.0196 (8)0.0128 (7)0.0006 (6)0.0023 (6)0.0011 (5)
N20.0162 (7)0.0157 (7)0.0149 (7)0.0002 (5)0.0012 (6)0.0004 (5)
N30.0164 (7)0.0193 (7)0.0145 (7)0.0005 (5)0.0019 (6)0.0024 (6)
C80.0157 (8)0.0141 (7)0.0157 (8)0.0007 (6)0.0005 (6)0.0012 (6)
C150.0245 (9)0.0206 (9)0.0202 (9)0.0032 (7)0.0066 (9)0.0012 (8)
C140.0138 (8)0.0155 (7)0.0155 (7)0.0000 (6)0.0006 (6)0.0003 (6)
C180.0225 (11)0.0211 (10)0.0411 (14)0.0010 (7)0.0139 (9)0.0011 (8)
C10.0199 (9)0.0166 (8)0.0187 (8)0.0004 (6)0.0045 (7)0.0004 (6)
C20.0171 (9)0.0168 (8)0.0169 (8)0.0002 (6)0.0023 (6)0.0013 (6)
C130.0216 (10)0.0177 (8)0.0184 (8)0.0006 (6)0.0063 (7)0.0002 (6)
C60.0220 (11)0.0217 (10)0.0403 (13)0.0008 (8)0.0114 (10)0.0010 (8)
C30.0251 (10)0.0263 (9)0.0212 (9)0.0029 (8)0.0047 (10)0.0016 (9)
C70.0205 (9)0.0215 (9)0.0191 (9)0.0024 (7)0.0044 (7)0.0024 (6)
C40.0241 (11)0.0307 (11)0.0418 (15)0.0033 (8)0.0123 (11)0.0006 (11)
C90.0228 (10)0.0215 (9)0.0239 (10)0.0010 (7)0.0065 (8)0.0004 (7)
C170.0162 (10)0.0230 (10)0.0621 (19)0.0014 (7)0.0003 (11)0.0009 (11)
C100.0214 (11)0.0269 (10)0.0436 (15)0.0020 (8)0.0114 (10)0.0014 (9)
C50.0156 (10)0.0301 (12)0.0586 (19)0.0005 (8)0.0005 (11)0.0031 (11)
C160.0241 (10)0.0225 (10)0.0447 (13)0.0021 (7)0.0131 (12)0.0034 (10)
C120.0237 (11)0.0299 (11)0.0363 (13)0.0041 (8)0.0125 (10)0.0054 (9)
C110.0158 (10)0.0287 (12)0.0598 (19)0.0000 (8)0.0006 (11)0.0057 (11)
Geometric parameters (Å, º) top
Cl1—C11.733 (2)C15—C161.391 (3)
Cl2—C71.731 (2)C15—H150.90 (3)
Cl3—C131.729 (2)C14—C131.385 (3)
O7—N61.276 (2)C18—C171.386 (4)
O6—N51.263 (2)C18—C131.390 (3)
O1—N41.278 (2)C18—H180.95 (3)
O2—N41.248 (2)C1—C21.387 (3)
O4—N51.261 (2)C1—C61.389 (3)
O8—N61.250 (2)C2—C31.390 (3)
O3—N41.227 (2)C6—C51.392 (4)
O5—N51.231 (2)C6—H60.94 (3)
O9—N61.230 (2)C3—C41.388 (3)
N1—C21.453 (2)C3—H30.92 (3)
N1—H1C0.82 (3)C7—C121.390 (3)
N1—H1A0.85 (3)C4—C51.374 (5)
N1—H1B0.89 (3)C4—H40.92 (3)
N2—C81.459 (2)C9—C101.390 (3)
N2—H2B0.87 (3)C9—H90.91 (3)
N2—H2C0.94 (3)C17—C161.382 (5)
N2—H2A0.88 (3)C17—H170.95 (3)
N3—C141.458 (2)C10—C111.385 (4)
N3—H3A0.87 (2)C10—H100.93 (3)
N3—H3C0.87 (4)C5—H50.99 (4)
N3—H3B0.84 (3)C16—H160.92 (3)
C8—C71.386 (3)C12—C111.387 (4)
C8—C91.387 (3)C12—H120.91 (3)
C15—C141.388 (3)C11—H111.01 (3)
O9—N6—O8122.19 (17)C6—C1—Cl1120.45 (17)
O9—N6—O7120.04 (16)C1—C2—C3120.1 (2)
O8—N6—O7117.76 (16)C1—C2—N1119.72 (18)
O3—N4—O2122.24 (16)C3—C2—N1120.17 (18)
O3—N4—O1120.35 (16)C14—C13—C18120.0 (2)
O2—N4—O1117.41 (16)C14—C13—Cl3119.43 (15)
O5—N5—O4121.30 (17)C18—C13—Cl3120.56 (17)
O5—N5—O6121.10 (17)C1—C6—C5118.9 (2)
O4—N5—O6117.60 (16)C1—C6—H6121.0 (16)
C2—N1—H1C110.4 (19)C5—C6—H6120.0 (16)
C2—N1—H1A110.6 (18)C4—C3—C2119.2 (3)
H1C—N1—H1A112 (3)C4—C3—H3121.9 (17)
C2—N1—H1B110.7 (18)C2—C3—H3118.9 (17)
H1C—N1—H1B105 (3)C8—C7—C12120.2 (2)
H1A—N1—H1B108 (3)C8—C7—Cl2119.20 (15)
C8—N2—H2B109.8 (17)C12—C7—Cl2120.65 (18)
C8—N2—H2C106.9 (17)C5—C4—C3120.6 (3)
H2B—N2—H2C110 (2)C5—C4—H4123.0 (19)
C8—N2—H2A110.6 (18)C3—C4—H4116.4 (19)
H2B—N2—H2A113 (2)C8—C9—C10119.5 (2)
H2C—N2—H2A107 (2)C8—C9—H9118.8 (17)
C14—N3—H3A111.0 (17)C10—C9—H9121.6 (17)
C14—N3—H3C109.3 (19)C16—C17—C18120.7 (2)
H3A—N3—H3C105 (3)C16—C17—H17123 (2)
C14—N3—H3B112.3 (16)C18—C17—H17116 (2)
H3A—N3—H3B108 (2)C11—C10—C9119.9 (3)
H3C—N3—H3B111 (2)C11—C10—H10123.2 (18)
C7—C8—C9120.41 (19)C9—C10—H10116.9 (18)
C7—C8—N2119.77 (17)C4—C5—C6120.7 (2)
C9—C8—N2119.81 (18)C4—C5—H5123 (2)
C14—C15—C16119.2 (3)C6—C5—H5117 (2)
C14—C15—H15120.9 (18)C17—C16—C15120.1 (3)
C16—C15—H15119.8 (18)C17—C16—H16123.0 (19)
C13—C14—C15120.61 (19)C15—C16—H16117 (2)
C13—C14—N3119.79 (17)C11—C12—C7119.3 (2)
C15—C14—N3119.60 (18)C11—C12—H12124.2 (17)
C17—C18—C13119.4 (2)C7—C12—H12116.5 (17)
C17—C18—H18123.9 (16)C10—C11—C12120.7 (2)
C13—C18—H18116.7 (16)C10—C11—H11122 (2)
C2—C1—C6120.5 (2)C12—C11—H11117 (2)
C2—C1—Cl1119.01 (16)
C16—C15—C14—C130.3 (3)N2—C8—C7—C12178.84 (19)
C16—C15—C14—N3179.66 (17)C9—C8—C7—Cl2179.67 (16)
C6—C1—C2—C30.6 (3)N2—C8—C7—Cl20.8 (3)
Cl1—C1—C2—C3179.67 (16)C2—C3—C4—C50.5 (3)
C6—C1—C2—N1179.05 (18)C7—C8—C9—C100.2 (3)
Cl1—C1—C2—N10.7 (2)N2—C8—C9—C10178.62 (19)
C15—C14—C13—C180.3 (3)C13—C18—C17—C160.4 (3)
N3—C14—C13—C18179.74 (17)C8—C9—C10—C110.0 (3)
C15—C14—C13—Cl3178.85 (14)C3—C4—C5—C60.5 (4)
N3—C14—C13—Cl30.6 (2)C1—C6—C5—C40.1 (3)
C17—C18—C13—C140.4 (3)C18—C17—C16—C150.4 (3)
C17—C18—C13—Cl3178.75 (16)C14—C15—C16—C170.3 (3)
C2—C1—C6—C50.6 (3)C8—C7—C12—C110.5 (3)
Cl1—C1—C6—C5179.66 (17)Cl2—C7—C12—C11179.15 (19)
C1—C2—C3—C40.0 (3)C9—C10—C11—C120.6 (4)
N1—C2—C3—C4179.58 (19)C7—C12—C11—C100.8 (4)
C9—C8—C7—C120.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O40.82 (3)1.98 (3)2.800 (2)173 (3)
N1—H1A···O6i0.85 (3)1.99 (3)2.825 (2)169 (3)
N1—H1B···O10.89 (3)1.99 (3)2.858 (2)166 (3)
N1—H1B···O20.89 (3)2.43 (3)3.095 (2)132 (2)
N2—H2B···O10.87 (3)1.93 (3)2.799 (2)174 (3)
N2—H2A···O2ii0.88 (3)1.96 (3)2.821 (2)166 (3)
N2—H2C···O70.94 (3)1.90 (3)2.823 (2)166 (2)
N2—H2C···O80.94 (3)2.53 (3)3.185 (2)127 (2)
N3—H3B···O70.84 (3)1.95 (3)2.793 (2)175 (2)
N3—H3A···O8i0.87 (2)1.96 (3)2.819 (2)171 (3)
N3—H3C···O6iii0.87 (4)2.08 (3)2.904 (2)159 (2)
N3—H3C···O4iii0.87 (4)2.34 (3)3.038 (2)138 (2)
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+3/2, z; (iii) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds