Download citation
Download citation
link to html
This paper reports computer simulations of X-ray six-beam (000, 220, 242, 044, -224, -202) diffraction in a perfect silicon crystal of large thickness where the super-transmission effect prevails, i.e. about 2 cm or more for an X-ray photon energy of 8 keV. Both the plane-wave angular dependence and the six-beam section topographs, which are obtained in experiments with a two-dimensional slit, are calculated. The angular dependence is computed by means of an eigenvalue problem in accordance with Ewald's theory. The section topographs are calculated by means of a fast Fourier transformation procedure from the angular to real space. It is shown that under the effect of X-ray super-transmission the quadrupole part of the photoelectric absorption as well as the Compton scattering give apparent contributions to the minimum absorption coefficient. Comparison of experimental and theoretical results by means of measuring the effective absorption coefficient is proposed. The section topographs for a thick crystal are asymmetric and polarization sensitive. These properties are explained through the angular dependence and the stationary phase method.

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds