Download citation
Download citation
link to html
In the title structure, C16H16N2O3, the benzene rings are in a trans configuration with respect to the azo double bond and the mol­ecule is essentially planar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028072/lh6476sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028072/lh6476Isup2.hkl
Contains datablock I

CCDC reference: 287620

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.053
  • wR factor = 0.173
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.111 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.11 PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 42 Perc. PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.80 mm PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C14
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Azo compounds have been the most widely used class of dyes owing to their versatile application in various fields, such as dyeing textile fibres, colouring different materials, plastics, biological medical studies, lasers, liquid crystalline displays, electrooptical devices and ink-jet printers in high-technology areas (Catino & Farris, 1985; Gregory, 1991). In azo compounds, conversion from the trans to the cis form can lead to photochromism. Photochromic compounds are of great interest for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent, 1990), and for potential applications in molecular electronic devices (Martin et al., 1995). As part of a general study of the crystal chemistry of dyes, and to provide templates for molecular-modelling studies, the crystal structure of the title compound, (I), has been determined.

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The bond lengths and angles of the azo group are as expected. The molecules is essentially planar, with dihedral angles between the mean planes of the benzene rings and the C1—N1N2—C7 azo bridge of 6.19 (6) and 4.12 (4) Å for rings C1–C6 and C7–C12, respectively. The angle between the planes of the two benzene rings is 10.14 (4) Å. Apart from the expected intramolecular O—H···O hydrogen bond (Table 2) there are no other significant hydrogen-bond interactions, the closest contacts being of the types C—H···O and C—H···π, with distances ca 2.7 Å for H···O and H···π(ring centroid).

Experimental top

The compound was prepared by using 4-ethoxyaniline and 2-hydroxyacetophenone as for Deveci et al. (2005). Crystals of 2-acetyl-4-(4-ethoxyphenyldiazenyl)phenol were obtained after 1 d by slow evaporation of an acetonitrile solution (yield 56%, m.p. 408–410 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and O—H = 0.82 Å. Uiso(H) values were set at 1.2Ueq(C) or 1.5Ueq(O or Cmethyl).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. A dashed line indicates an intramolecular hydrogen bond
2-Acetyl-4-(4-ethoxyphenyldiazenyl)phenol top
Crystal data top
C16H16N2O3F(000) = 1200
Mr = 284.31Dx = 1.296 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 13929 reflections
a = 7.2099 (5) Åθ = 2.8–27.9°
b = 13.6448 (9) ŵ = 0.09 mm1
c = 29.631 (3) ÅT = 296 K
V = 2915.0 (4) Å3Plate, brown
Z = 80.80 × 0.39 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
2864 independent reflections
Radiation source: fine-focus sealed tube1211 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.111
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.8°
ω scansh = 88
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1616
Tmin = 0.951, Tmax = 0.994l = 3636
19031 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0811P)2]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H16N2O3V = 2915.0 (4) Å3
Mr = 284.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2099 (5) ŵ = 0.09 mm1
b = 13.6448 (9) ÅT = 296 K
c = 29.631 (3) Å0.80 × 0.39 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
2864 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1211 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.994Rint = 0.111
19031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 0.89Δρmax = 0.12 e Å3
2864 reflectionsΔρmin = 0.20 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8272 (4)0.0347 (2)0.59115 (10)0.0524 (8)
C20.8452 (5)0.1316 (2)0.60473 (10)0.0577 (8)
H20.85960.14650.63520.069*
C30.8417 (5)0.2051 (2)0.57334 (10)0.0600 (8)
H30.85350.26990.58260.072*
C40.8206 (4)0.1839 (2)0.52728 (10)0.0555 (8)
C50.8014 (5)0.0876 (2)0.51366 (10)0.0622 (9)
H50.78540.07250.48330.075*
C60.8061 (4)0.0137 (2)0.54582 (11)0.0602 (9)
H60.79490.05120.53670.072*
C70.8510 (4)0.1033 (2)0.69271 (10)0.0547 (8)
C80.8666 (5)0.2011 (2)0.67913 (12)0.0650 (9)
H80.87300.21680.64860.078*
C90.8724 (5)0.2737 (2)0.71116 (12)0.0709 (10)
H90.88070.33890.70220.085*
C100.8660 (5)0.2509 (2)0.75649 (12)0.0641 (9)
C110.8538 (5)0.1538 (2)0.77104 (10)0.0566 (8)
C120.8463 (5)0.0806 (2)0.73799 (10)0.0552 (8)
H120.83800.01530.74680.066*
C130.8508 (5)0.1304 (3)0.81956 (12)0.0659 (9)
C140.8396 (6)0.0269 (3)0.83615 (11)0.0765 (11)
H14A0.83930.02650.86850.115*
H14B0.94480.00940.82530.115*
H14C0.72770.00290.82520.115*
C150.8229 (5)0.2471 (2)0.45200 (11)0.0672 (9)
H15A0.92960.20810.44330.081*
H15B0.71130.21260.44290.081*
C160.8310 (5)0.3467 (2)0.42971 (12)0.0752 (10)
H16A0.83130.33890.39750.113*
H16B0.72480.38460.43860.113*
H16C0.94200.38000.43890.113*
N10.8336 (4)0.04659 (17)0.62121 (8)0.0566 (7)
N20.8395 (4)0.02273 (18)0.66180 (8)0.0571 (7)
O10.8716 (4)0.32704 (17)0.78556 (9)0.0918 (9)
H10.86740.30640.81150.138*
O20.8579 (4)0.1976 (2)0.84779 (8)0.0922 (9)
O30.8226 (4)0.26316 (15)0.49955 (7)0.0669 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (2)0.0463 (16)0.0501 (18)0.0014 (15)0.0047 (15)0.0036 (13)
C20.070 (2)0.0555 (18)0.0473 (17)0.0024 (17)0.0020 (16)0.0023 (15)
C30.077 (2)0.0472 (16)0.0562 (19)0.0018 (16)0.0025 (17)0.0006 (15)
C40.061 (2)0.0509 (16)0.0544 (18)0.0035 (16)0.0033 (16)0.0078 (15)
C50.084 (3)0.056 (2)0.0470 (17)0.0047 (18)0.0004 (17)0.0002 (15)
C60.077 (2)0.0474 (17)0.0566 (19)0.0048 (16)0.0048 (16)0.0035 (15)
C70.0570 (19)0.0488 (17)0.0584 (19)0.0000 (16)0.0031 (16)0.0074 (15)
C80.079 (3)0.0532 (18)0.063 (2)0.0004 (17)0.0065 (18)0.0007 (16)
C90.092 (3)0.0392 (16)0.082 (3)0.0043 (18)0.009 (2)0.0015 (17)
C100.074 (2)0.0523 (18)0.066 (2)0.0022 (18)0.0095 (18)0.0158 (17)
C110.061 (2)0.0546 (17)0.0545 (18)0.0035 (16)0.0070 (16)0.0129 (14)
C120.062 (2)0.0496 (16)0.0536 (19)0.0020 (16)0.0031 (15)0.0031 (14)
C130.064 (2)0.070 (2)0.064 (2)0.0036 (18)0.0098 (17)0.0177 (18)
C140.092 (3)0.076 (2)0.061 (2)0.004 (2)0.002 (2)0.0026 (18)
C150.082 (3)0.066 (2)0.0532 (19)0.0043 (19)0.0007 (18)0.0079 (16)
C160.086 (3)0.070 (2)0.070 (2)0.004 (2)0.009 (2)0.0185 (18)
N10.0703 (18)0.0530 (14)0.0465 (15)0.0014 (13)0.0006 (14)0.0005 (12)
N20.0680 (18)0.0501 (14)0.0532 (16)0.0002 (13)0.0000 (13)0.0046 (12)
O10.124 (2)0.0582 (14)0.0935 (19)0.0027 (16)0.0151 (17)0.0299 (14)
O20.127 (2)0.0839 (17)0.0655 (16)0.0004 (17)0.0070 (16)0.0253 (14)
O30.0962 (18)0.0553 (13)0.0492 (12)0.0015 (13)0.0008 (12)0.0071 (10)
Geometric parameters (Å, º) top
C1—C61.382 (4)C10—O11.350 (4)
C1—C21.389 (4)C10—C111.397 (4)
C1—N11.423 (4)C11—C121.399 (4)
C2—C31.368 (4)C11—C131.473 (4)
C2—H20.9300C12—H120.9300
C3—C41.403 (4)C13—O21.242 (4)
C3—H30.9300C13—C141.497 (5)
C4—O31.359 (3)C14—H14A0.9600
C4—C51.381 (4)C14—H14B0.9600
C5—C61.387 (4)C14—H14C0.9600
C5—H50.9300C15—O31.426 (4)
C6—H60.9300C15—C161.513 (4)
C7—C121.377 (4)C15—H15A0.9700
C7—C81.398 (4)C15—H15B0.9700
C7—N21.433 (4)C16—H16A0.9600
C8—C91.373 (4)C16—H16B0.9600
C8—H80.9300C16—H16C0.9600
C9—C101.379 (5)N1—N21.247 (3)
C9—H90.9300O1—H10.8200
C6—C1—C2119.3 (3)C10—C11—C13120.5 (3)
C6—C1—N1116.8 (3)C12—C11—C13121.9 (3)
C2—C1—N1123.9 (3)C7—C12—C11121.4 (3)
C3—C2—C1120.0 (3)C7—C12—H12119.3
C3—C2—H2120.0C11—C12—H12119.3
C1—C2—H2120.0O2—C13—C11119.8 (3)
C2—C3—C4120.8 (3)O2—C13—C14118.5 (3)
C2—C3—H3119.6C11—C13—C14121.7 (3)
C4—C3—H3119.6C13—C14—H14A109.5
O3—C4—C5125.6 (3)C13—C14—H14B109.5
O3—C4—C3115.0 (3)H14A—C14—H14B109.5
C5—C4—C3119.4 (3)C13—C14—H14C109.5
C4—C5—C6119.2 (3)H14A—C14—H14C109.5
C4—C5—H5120.4H14B—C14—H14C109.5
C6—C5—H5120.4O3—C15—C16107.1 (3)
C1—C6—C5121.4 (3)O3—C15—H15A110.3
C1—C6—H6119.3C16—C15—H15A110.3
C5—C6—H6119.3O3—C15—H15B110.3
C12—C7—C8119.8 (3)C16—C15—H15B110.3
C12—C7—N2116.7 (3)H15A—C15—H15B108.6
C8—C7—N2123.6 (3)C15—C16—H16A109.5
C9—C8—C7119.5 (3)C15—C16—H16B109.5
C9—C8—H8120.2H16A—C16—H16B109.5
C7—C8—H8120.2C15—C16—H16C109.5
C8—C9—C10120.6 (3)H16A—C16—H16C109.5
C8—C9—H9119.7H16B—C16—H16C109.5
C10—C9—H9119.7N2—N1—C1113.7 (2)
O1—C10—C9116.6 (3)N1—N2—C7114.7 (2)
O1—C10—C11122.3 (3)C10—O1—H1109.5
C9—C10—C11121.1 (3)C4—O3—C15118.4 (2)
C10—C11—C12117.6 (3)
C6—C1—C2—C30.1 (5)C9—C10—C11—C13178.8 (3)
N1—C1—C2—C3178.5 (3)C8—C7—C12—C111.1 (5)
C1—C2—C3—C40.2 (5)N2—C7—C12—C11179.0 (3)
C2—C3—C4—O3178.9 (3)C10—C11—C12—C70.1 (5)
C2—C3—C4—C50.6 (5)C13—C11—C12—C7179.4 (3)
O3—C4—C5—C6178.5 (3)C10—C11—C13—O20.5 (5)
C3—C4—C5—C61.0 (5)C12—C11—C13—O2179.9 (3)
C2—C1—C6—C50.4 (5)C10—C11—C13—C14179.4 (3)
N1—C1—C6—C5178.9 (3)C12—C11—C13—C140.0 (5)
C4—C5—C6—C10.9 (5)C6—C1—N1—N2175.2 (3)
C12—C7—C8—C91.6 (5)C2—C1—N1—N26.4 (5)
N2—C7—C8—C9178.5 (3)C1—N1—N2—C7178.4 (3)
C7—C8—C9—C101.1 (5)C12—C7—N2—N1176.1 (3)
C8—C9—C10—O1179.7 (3)C8—C7—N2—N14.0 (4)
C8—C9—C10—C110.1 (6)C5—C4—O3—C156.4 (5)
O1—C10—C11—C12179.1 (3)C3—C4—O3—C15173.1 (3)
C9—C10—C11—C120.7 (5)C16—C15—O3—C4178.4 (3)
O1—C10—C11—C131.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.832.555 (4)146
C14—H14C···O1i0.962.703.464 (4)137
C16—H16C···G1ii0.962.753.617 (4)149
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O3
Mr284.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.2099 (5), 13.6448 (9), 29.631 (3)
V3)2915.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.80 × 0.39 × 0.06
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.951, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
19031, 2864, 1211
Rint0.111
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.173, 0.89
No. of reflections2864
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.20

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—C61.382 (4)C8—C91.373 (4)
C3—C41.403 (4)C10—O11.350 (4)
C4—O31.359 (3)C10—C111.397 (4)
C7—C121.377 (4)C13—O21.242 (4)
C7—C81.398 (4)
C9—C10—C11121.1 (3)O3—C15—C16107.1 (3)
C12—C11—C13121.9 (3)C4—O3—C15118.4 (2)
C11—C13—C14121.7 (3)
C1—N1—N2—C7178.4 (3)C3—C4—O3—C15173.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.832.555 (4)146
C14—H14C···O1i0.962.703.464 (4)137
C16—H16C···G1ii0.962.753.617 (4)149
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds