metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(di­methyl­amino)ethanol-κ2N,O](pentane-2,4-dionato-κ2O,O′)nickel(II) chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: mazhar42pk@yahoo.com

(Received 30 June 2005; accepted 9 September 2005; online 17 September 2005)

The Ni atom in the title complex, [Ni(C5H7O2)(C4H11NO)2]Cl, is in a distorted octa­hedral coordination environment. Cations are linked into centrosymmetric dimers via O—H⋯Cl hydrogen bonds involving the OH groups of the 2-(dimethyl­amino)ethanol ligands and the Cl anions.

Comment

The title compound, (I)[link], is a synthetic precursor for the possible deposition of nickel oxide thin films through aerosol-assisted chemical vapour deposition (AACVD). The mol­ecular structure of complex (I)[link] is shown in Fig. 1[link], and selected bond lengths and angles are given in Table 1[link].

[Scheme 1]

The complex has a distorted octa­hedral geometry around the NiII atom and contains two bidentate chelating dimethyl­amino­ethanol groups and a bidentate acetyl­acetonate group. The N atoms are in mutually trans positions, with an N2—Ni1—N1 angle of 171.43 (10)°. The Ni1—N2 bond length of 2.139 (3) Å is significantly shorter than that of 2.166 (3) Å for Ni1—N1. The Ni—O1, Ni—O2 and Ni—O3 bonds are very similar to the analogous bonds in the related compound [Ni(acac)2(dmaeH)] (acac is acetyl­acetonate and dmaeH is dimethyl­amino­ethanol; Williams et al., 2001[Williams, P. A., Jones C. A., Bickley, F. J., Steiner, A., Davies, O. H., Leedham. J. T., Impey. A. S., Garcia. J., Allen, S., Rougier A. & Blyr, A. (2001). J. Mater. Chem. 11, 2329-2935.]). Not surprisingly, the Ni—O bonds of the coordinated dmaeH groups are longer [2.080 (2) and 2.106 (2) Å] than the Ni—O(acac) bonds [2.014 (2) and 2.015 (2) Å]. The cis O—Ni—O and O—Ni—N bond angles in (I)[link] are close to the ideal octa­hedral value of 90°, lying in the range 89.07 (9)–93.84 (9)°, with the exception of the bite angles of the chelating dmaeH groups [80.30 (10) and 81.10 (9)°], and 97.08 (10)° for N2—Ni1—O4. Distortions of the trans O—Ni—O angles from the ideal 180° are also evident [169.95 (9)–172.31 (10)°].

In the crystal structure, mol­ecules are linked via O—H⋯Cl hydrogen bonds to form centrosymmetric dimers involving the O—H groups of the dmaeH ligands and the Cl anions [H1—Cl 2.15 (4) and H2—Cl1i 2.18 (4) Å, and O1—H1⋯Cl1 172 (4) and O2—H2⋯Cl1i 161 (6)°; symmetry code: (i) 2 − x, 1 − y, 1 − z].

[Figure 1]
Figure 1
The hydrogen-bonded (dashed lines) dimer of the title compound, showing 30% displacement ellipsoids. Atoms labelled with the suffix A are related by the symmetry operator (2 − x, 1 − y, 1 − z).

Experimental

Bis(2,4-pentanedionato)nickel(II), [Ni(acac)2] (0.5 g, 1.95 mmol), was reacted with dimethyl­amino­ethanol (dmaeH; 0.391 ml, 3.9 mmol) in the presence of methoxy­tin(II) chloride (0.7 g, 3.9 mmol), [ClSnOCH3] in toluene under argon. The resulting product was recrystallized from tetra­hydro­furan at 263 K to give crystals of [Ni(acac)(dmaeH)2]Cl, (I)[link].

Crystal data
  • [Ni(C5H7O2)(C4H11NO)2]Cl

  • Mr = 371.54

  • Monoclinic, P 21 /a

  • a = 13.6400 (3) Å

  • b = 8.7900 (3) Å

  • c = 15.2310 (5) Å

  • β = 100.6970 (10)°

  • V = 1794.40 (9) Å3

  • Z = 4

  • Dx = 1.375 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25977 reflections

  • θ = 2.9–27.5°

  • μ = 1.25 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])Tmin = 0.706, Tmax = 0.886

  • 27270 measured reflections

  • 4059 independent reflections

  • 3191 reflections with I > 2σ(I)

  • Rint = 0.093

  • θmax = 27.5°

  • h = −17 → 17

  • k = −11 → 11

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.137

  • S = 1.07

  • 4059 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0683P)2 + 1.8862P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Ni1—O1 2.080 (2)
Ni1—O2 2.106 (2)
Ni1—O3 2.014 (2)
Ni1—O4 2.015 (2)
Ni1—N1 2.166 (3)
Ni1—N2 2.139 (3)
O1—H1 0.86 (4)
O2—H2 0.86 (2)
N1—Ni1—N2 171.43 (10)
O1—Ni1—O4 169.95 (9)
O2—Ni1—O3 172.31 (9)
N1—Ni1—O1 80.30 (10)
N1—Ni1—O2 93.78 (9)
N1—Ni1—O3 93.84 (9)
N1—Ni1—O4 89.66 (10)
N2—Ni1—O1 92.86 (10)
N2—Ni1—O2 81.10 (9)
N2—Ni1—O3 91.48 (10)
N2—Ni1—O4 97.08 (10)
O1—Ni1—O2 90.96 (10)
O1—Ni1—O3 91.42 (10)
O2—Ni1—O4 89.07 (9)
O3—Ni1—O4 89.86 (9)

H atoms on O atoms were located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.98–0.99 Å and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H atoms. The highest peak is located 0.96 Å from atom C2 and 1.61 Å from atom N1.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinski & Minor, 1997); data reduction: DENZO (Otwinski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 Windows NT Version. Bruker AXS Inc., Madison, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I), is a synthetic precursor for the possible deposition of nickel oxide thin films through aerosol-assisted chemical vapour deposition (AACVD). The molecular structure of complex (I) is shown in Fig. 1, and selected bond lengths and angles are given in Table 1.

The complex has a distorted octahedral geometry around the NiII atom and contains two bidentate chelating dimethylaminoethanol groups and a bidentate acetylacetonate group. The N atoms are in mutually trans positions, with an N2—Ni1—N1 angle of 171.43 (10)°. The Ni1—N2 bond length of 2.139 (3) Å is significantly shorter than that of 2.166 (3) Å for Ni1—N1. The Ni—O1, Ni—O2 and Ni—O3 bonds are very similar to the analogous bonds in the related compound [Ni(acac)2(dmaeH)] (acac is acetylacetonate and dmaeH is dimethylaminoethanol; Williams et al., 2001). Not surprisingly, the Ni—O bonds of the coordinated dmaeH groups are longer [2.080 (2) and 2.106 (2) Å] than the Ni—O(acac) bonds [2.014 (2) and 2.015 (2) Å]. The cis O—Ni—O and O—Ni—N bond angles in (I) are close to the ideal octahedral value of 90°, lying in the range 89.07 (9)–93.84 (9)°, with the exception of the bite angles of the chelating dmaeH groups [80.30 (10) and 81.10 (9)°], and 97.08 (10)° for N2—Ni1—O4. Distortions of the trans O—Ni—O angles from the ideal 180° are also evident [169.95 (9)–172.31 (10)°].

In the crystal structure, molecules are linked via O—H···Cl hydrogen bonds to form centrosymmetric dimers invoving the O—H groups of the dmaeH ligands and the Cl anions [H1—Cl 2.15 (4) and H2—Cl1i 2.18 (4) Å, and O1—H1···Cl1 172 (4) and O2—H2···Cl1i 161 (6)°; symmetry code: (i) 2 − x, 1 − y, 1 − z].

Experimental top

Bis(2,4-pentanedionato)nickel(II), [Ni(acac)2] (0.5 g, 1.95 mmol), was reacted with dimethylaminoethanol (dmaeH; 0.391 ml, 3.9 mmol) in the presence of methoxytin(II) chloride, [ClSnOCH3] in toluene under argon. The resulting product was recrystallized from tetrahydrofuran at 263 K to give crystals of [Ni(acac)(dmaeH)2]Cl, (I).

Refinement top

H atoms on O atoms were located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.98–0.99 Å and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H atoms. [Please check added text and correct as necessary.]

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinski & Minor, 1997); data reduction: DENZO (Otwinski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The hydrogen-bonded (dashed lines) dimer of the title compound, showing 30% displacement ellipsoids. The atoms labelled with the suffix A are related by the symmetry operator (2 − x, 1 − y, 1 − z).
2,4-Pentanedionatobis(dimethylaminoethanol)nickel(II) chloride top
Crystal data top
[Ni(C5H7O2)(C4H11NO)2]ClF(000) = 792
Mr = 371.54Dx = 1.375 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 25977 reflections
a = 13.6400 (3) Åθ = 2.9–27.5°
b = 8.7900 (3) ŵ = 1.25 mm1
c = 15.2310 (5) ÅT = 150 K
β = 100.697 (1)°Plate, colourless
V = 1794.40 (9) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker Nonius Kappa CCD area-detector
diffractometer
4059 independent reflections
Radiation source: fine-focus sealed tube3191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
188 2.0° images with ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1717
Tmin = 0.706, Tmax = 0.886k = 1111
27270 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0683P)2 + 1.8862P]
where P = (Fo2 + 2Fc2)/3
4059 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 1.00 e Å3
1 restraintΔρmin = 0.86 e Å3
Crystal data top
[Ni(C5H7O2)(C4H11NO)2]ClV = 1794.40 (9) Å3
Mr = 371.54Z = 4
Monoclinic, P21/aMo Kα radiation
a = 13.6400 (3) ŵ = 1.25 mm1
b = 8.7900 (3) ÅT = 150 K
c = 15.2310 (5) Å0.30 × 0.20 × 0.10 mm
β = 100.697 (1)°
Data collection top
Bruker Nonius Kappa CCD area-detector
diffractometer
4059 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3191 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.886Rint = 0.093
27270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.00 e Å3
4059 reflectionsΔρmin = 0.86 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.93608 (3)0.33643 (4)0.26988 (2)0.02843 (14)
Cl10.86046 (6)0.29196 (9)0.56412 (5)0.0374 (2)
O10.8803 (2)0.4046 (3)0.38181 (17)0.0420 (6)
H10.881 (3)0.371 (5)0.435 (3)0.048 (12)*
O21.07688 (16)0.4291 (3)0.32353 (15)0.0344 (5)
H21.080 (5)0.510 (4)0.356 (3)0.096 (19)*
O30.81020 (15)0.2204 (3)0.22212 (15)0.0355 (5)
O40.98193 (16)0.3064 (3)0.15270 (14)0.0340 (5)
N10.87266 (19)0.5542 (3)0.22294 (18)0.0341 (6)
N21.00493 (19)0.1378 (3)0.33520 (17)0.0319 (6)
C10.8531 (3)0.5613 (4)0.3789 (3)0.0506 (9)
H1A0.91280.62440.40080.061*
H1B0.80390.57950.41810.061*
C20.8100 (3)0.6035 (5)0.2869 (3)0.0577 (10)
H2A0.80180.71540.28320.069*
H2B0.74310.55680.27020.069*
C30.9500 (3)0.6658 (4)0.2141 (3)0.0519 (10)
H3A0.91850.76040.18900.078*
H3B0.99260.62540.17440.078*
H3C0.99050.68640.27310.078*
C40.8064 (3)0.5424 (5)0.1348 (3)0.0600 (12)
H4A0.77160.63930.12030.090*
H4B0.75730.46140.13650.090*
H4C0.84610.51850.08920.090*
C51.1457 (2)0.3168 (4)0.3682 (2)0.0366 (7)
H5A1.19360.36510.41700.044*
H5B1.18380.27120.32540.044*
C61.0870 (2)0.1952 (4)0.4056 (2)0.0365 (7)
H6A1.13180.11010.42900.044*
H6B1.05870.23760.45570.044*
C70.9365 (3)0.0434 (4)0.3773 (2)0.0389 (7)
H7A0.97370.04090.40990.058*
H7B0.88340.00260.33100.058*
H7C0.90690.10600.41890.058*
C81.0469 (3)0.0400 (4)0.2719 (2)0.0386 (7)
H8A1.09610.09800.24630.058*
H8B0.99310.00640.22400.058*
H8C1.07920.04890.30380.058*
C90.7069 (2)0.0304 (4)0.1439 (3)0.0467 (9)
H9A0.71430.03500.19690.070*
H9B0.70400.03280.09050.070*
H9C0.64520.08960.13870.070*
C100.7951 (2)0.1375 (4)0.1526 (2)0.0350 (7)
C110.8532 (2)0.1379 (4)0.0866 (2)0.0406 (8)
H110.83220.07420.03620.049*
C120.9396 (2)0.2238 (4)0.0880 (2)0.0367 (7)
C130.9908 (3)0.2209 (6)0.0080 (3)0.0557 (10)
H13A0.99750.32500.01310.084*
H13B0.95090.16070.03980.084*
H13C1.05710.17510.02520.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0323 (2)0.0229 (2)0.0296 (2)0.00079 (14)0.00439 (15)0.00080 (15)
Cl10.0490 (4)0.0275 (4)0.0339 (4)0.0053 (3)0.0035 (3)0.0004 (3)
O10.0648 (16)0.0258 (12)0.0400 (13)0.0061 (11)0.0213 (12)0.0017 (10)
O20.0356 (11)0.0265 (12)0.0377 (12)0.0014 (9)0.0019 (9)0.0019 (9)
O30.0350 (11)0.0313 (12)0.0405 (12)0.0028 (9)0.0082 (9)0.0045 (10)
O40.0374 (11)0.0330 (12)0.0321 (11)0.0014 (9)0.0079 (9)0.0015 (9)
N10.0378 (13)0.0272 (13)0.0355 (13)0.0008 (10)0.0020 (11)0.0013 (11)
N20.0386 (13)0.0235 (13)0.0330 (13)0.0004 (10)0.0048 (11)0.0003 (10)
C10.073 (3)0.037 (2)0.045 (2)0.0192 (18)0.0180 (18)0.0015 (15)
C20.068 (3)0.046 (2)0.063 (3)0.0188 (19)0.022 (2)0.0087 (19)
C30.049 (2)0.037 (2)0.068 (3)0.0023 (15)0.0058 (19)0.0187 (18)
C40.066 (2)0.036 (2)0.064 (3)0.0086 (18)0.025 (2)0.0002 (18)
C50.0344 (15)0.0334 (18)0.0391 (17)0.0037 (12)0.0006 (13)0.0009 (13)
C60.0388 (16)0.0342 (17)0.0335 (16)0.0039 (13)0.0014 (13)0.0019 (13)
C70.0487 (18)0.0263 (16)0.0426 (18)0.0000 (13)0.0113 (14)0.0062 (13)
C80.0483 (18)0.0277 (16)0.0391 (17)0.0061 (13)0.0066 (14)0.0008 (13)
C90.0351 (16)0.0384 (19)0.065 (2)0.0054 (14)0.0042 (16)0.0076 (17)
C100.0301 (14)0.0293 (16)0.0429 (17)0.0003 (12)0.0001 (13)0.0038 (13)
C110.0398 (17)0.039 (2)0.0390 (17)0.0001 (14)0.0025 (14)0.0102 (14)
C120.0420 (17)0.0345 (17)0.0326 (15)0.0035 (13)0.0042 (13)0.0022 (13)
C130.069 (3)0.062 (3)0.0397 (19)0.008 (2)0.0213 (18)0.0101 (18)
Geometric parameters (Å, º) top
Ni1—O12.080 (2)C4—H4A0.9800
Ni1—O22.106 (2)C4—H4B0.9800
Ni1—O32.014 (2)C4—H4C0.9800
Ni1—O42.015 (2)C5—C61.510 (5)
Ni1—N12.166 (3)C5—H5A0.9900
Ni1—N22.139 (3)C5—H5B0.9900
O1—C11.425 (4)C6—H6A0.9900
O1—H10.86 (4)C6—H6B0.9900
O2—C51.442 (4)C7—H7A0.9800
O2—H20.86 (2)C7—H7B0.9800
O3—C101.270 (4)C7—H7C0.9800
O4—C121.273 (4)C8—H8A0.9800
N1—C31.465 (4)C8—H8B0.9800
N1—C21.475 (5)C8—H8C0.9800
N1—C41.476 (4)C9—C101.515 (4)
N2—C71.481 (4)C9—H9A0.9800
N2—C81.483 (4)C9—H9B0.9800
N2—C61.487 (4)C9—H9C0.9800
C1—C21.463 (6)C10—C111.391 (5)
C1—H1A0.9900C11—C121.397 (5)
C1—H1B0.9900C11—H110.9500
C2—H2A0.9900C12—C131.512 (5)
C2—H2B0.9900C13—H13A0.9800
C3—H3A0.9800C13—H13B0.9800
C3—H3B0.9800C13—H13C0.9800
C3—H3C0.9800
N1—Ni1—N2171.43 (10)H3B—C3—H3C109.5
O1—Ni1—O4169.95 (9)N1—C4—H4A109.5
O2—Ni1—O3172.31 (9)N1—C4—H4B109.5
N1—Ni1—O180.30 (10)H4A—C4—H4B109.5
N1—Ni1—O293.78 (9)N1—C4—H4C109.5
N1—Ni1—O393.84 (9)H4A—C4—H4C109.5
N1—Ni1—O489.66 (10)H4B—C4—H4C109.5
N2—Ni1—O192.86 (10)O2—C5—C6108.5 (3)
N2—Ni1—O281.10 (9)O2—C5—H5A110.0
N2—Ni1—O391.48 (10)C6—C5—H5A110.0
N2—Ni1—O497.08 (10)O2—C5—H5B110.0
O1—Ni1—O290.96 (10)C6—C5—H5B110.0
O1—Ni1—O391.42 (10)H5A—C5—H5B108.4
O2—Ni1—O489.07 (9)N2—C6—C5110.4 (3)
O3—Ni1—O489.86 (9)N2—C6—H6A109.6
C1—O1—Ni1112.7 (2)C5—C6—H6A109.6
C1—O1—H1109 (3)N2—C6—H6B109.6
Ni1—O1—H1137 (3)C5—C6—H6B109.6
C5—O2—Ni1112.66 (18)H6A—C6—H6B108.1
C5—O2—H2109 (4)N2—C7—H7A109.5
Ni1—O2—H2119 (4)N2—C7—H7B109.5
C10—O3—Ni1126.0 (2)H7A—C7—H7B109.5
C12—O4—Ni1126.1 (2)N2—C7—H7C109.5
C3—N1—C2112.2 (3)H7A—C7—H7C109.5
C3—N1—C4107.1 (3)H7B—C7—H7C109.5
C2—N1—C4106.8 (3)N2—C8—H8A109.5
C3—N1—Ni1111.8 (2)N2—C8—H8B109.5
C2—N1—Ni1106.6 (2)H8A—C8—H8B109.5
C4—N1—Ni1112.2 (2)N2—C8—H8C109.5
C7—N2—C8107.9 (3)H8A—C8—H8C109.5
C7—N2—C6109.2 (3)H8B—C8—H8C109.5
C8—N2—C6109.6 (3)C10—C9—H9A109.5
C7—N2—Ni1113.64 (19)C10—C9—H9B109.5
C8—N2—Ni1111.10 (19)H9A—C9—H9B109.5
C6—N2—Ni1105.37 (18)C10—C9—H9C109.5
O1—C1—C2109.3 (3)H9A—C9—H9C109.5
O1—C1—H1A109.8H9B—C9—H9C109.5
C2—C1—H1A109.8O3—C10—C11125.1 (3)
O1—C1—H1B109.8O3—C10—C9115.6 (3)
C2—C1—H1B109.8C11—C10—C9119.2 (3)
H1A—C1—H1B108.3C10—C11—C12125.6 (3)
C1—C2—N1112.3 (3)C10—C11—H11117.2
C1—C2—H2A109.1C12—C11—H11117.2
N1—C2—H2A109.1O4—C12—C11125.5 (3)
C1—C2—H2B109.1O4—C12—C13115.0 (3)
N1—C2—H2B109.1C11—C12—C13119.6 (3)
H2A—C2—H2B107.9C12—C13—H13A109.5
N1—C3—H3A109.5C12—C13—H13B109.5
N1—C3—H3B109.5H13A—C13—H13B109.5
H3A—C3—H3B109.5C12—C13—H13C109.5
N1—C3—H3C109.5H13A—C13—H13C109.5
H3A—C3—H3C109.5H13B—C13—H13C109.5

Experimental details

Crystal data
Chemical formula[Ni(C5H7O2)(C4H11NO)2]Cl
Mr371.54
Crystal system, space groupMonoclinic, P21/a
Temperature (K)150
a, b, c (Å)13.6400 (3), 8.7900 (3), 15.2310 (5)
β (°) 100.697 (1)
V3)1794.40 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker Nonius Kappa CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.706, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
27270, 4059, 3191
Rint0.093
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.07
No. of reflections4059
No. of parameters204
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.00, 0.86

Computer programs: COLLECT (Nonius, 1997), HKL SCALEPACK (Otwinski & Minor, 1997), DENZO (Otwinski & Minor, 1997) and SCALEPACK, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 2001), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni1—O12.080 (2)Ni1—N12.166 (3)
Ni1—O22.106 (2)Ni1—N22.139 (3)
Ni1—O32.014 (2)O1—H10.86 (4)
Ni1—O42.015 (2)O2—H20.86 (2)
N1—Ni1—N2171.43 (10)N2—Ni1—O281.10 (9)
O1—Ni1—O4169.95 (9)N2—Ni1—O391.48 (10)
O2—Ni1—O3172.31 (9)N2—Ni1—O497.08 (10)
N1—Ni1—O180.30 (10)O1—Ni1—O290.96 (10)
N1—Ni1—O293.78 (9)O1—Ni1—O391.42 (10)
N1—Ni1—O393.84 (9)O2—Ni1—O489.07 (9)
N1—Ni1—O489.66 (10)O3—Ni1—O489.86 (9)
N2—Ni1—O192.86 (10)
 

Acknowledgements

The authors thank the Pakistan Science Foundation, Islamabad 45320, Pakistan, for funding [contract/grant No. PSF/R&D/C-QU/Chem(218)].

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 Windows NT Version. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationWilliams, P. A., Jones C. A., Bickley, F. J., Steiner, A., Davies, O. H., Leedham. J. T., Impey. A. S., Garcia. J., Allen, S., Rougier A. & Blyr, A. (2001). J. Mater. Chem. 11, 2329–2935.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds