Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The single-crystal neutron diffraction technique was used to determine the crystal structure of mel­amine, C3H6H6, at 14 K. The mol­ecule is nearly planar. There are three crystallographically inequivalent amine groups with different geometries, the asymmetric unit being the complete molecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680403332X/lh6307sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680403332X/lh6307Isup2.hkl
Contains datablock I

CCDC reference: 263659

Key indicators

  • Single-crystal neutron study
  • T = 14 K
  • Mean [sigma](N-C) = 0.001 Å
  • R factor = 0.047
  • wR factor = 0.043
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level A DIFMN02_ALERT_2_A The minimum difference density is < -0.1*ZMAX*2.00 _refine_diff_density_min given = -1.670 Test value = -1.400
Author Response: The corresponding peak Q1 has been located in the center of the melamine ring. this is nonsensical
DIFMX01_ALERT_2_A  The maximum difference density is > 0.1*ZMAX*2.00
            _refine_diff_density_max given =      1.810
            Test value =      1.400
Author Response: The corresponding peak Q2 has been located Q2 - C3 = 0.768\%A , Q2 - N4 = 1.3287\%A , Q2 - N3 = 1.052\%A , this is nonsensical
PLAT097_ALERT_2_A Maximum (Positive) Residual Density ............       1.81 e/A   3
Author Response: we are working with neutrons. The nuclear scattering density unity is fm/A   3
PLAT098_ALERT_2_A Minimum (Negative) Residual Density ............      -1.67 e/A   3
Author Response: The nuclear scattering density unity is fm/A   3

Alert level C CELLK01_ALERT_1_C Check that the cell measurement temperature is in Kelvin. Value of measurement temperature given = 14.000
Author Response: the temperature is in kelvin
DIFMN03_ALERT_1_C  The minimum difference density is < -0.1*ZMAX*0.75
            The relevant atom site should be identified.
Author Response: The corresponding peak QN3 has been located QN3 - N3 = 0.5787 \%A , QN3 - Q2 = 1.1975 \%A , this is nonsensical
DIFMX02_ALERT_1_C  The minimum difference density is > 0.1*ZMAX*0.75
            The relevant atom site should be identified.
PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given .......          ?
PLAT128_ALERT_4_C Non-standard setting of Space group P21/c   ....    P21/a
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor ....       2.29
PLAT353_ALERT_3_C Long    N-H Bond (0.87A)   N1     -   H1     ...       1.02 Ang.
PLAT353_ALERT_3_C Long    N-H Bond (0.87A)   N1     -   H2     ...       1.01 Ang.
PLAT353_ALERT_3_C Long    N-H Bond (0.87A)   N2     -   H4     ...       1.02 Ang.
PLAT353_ALERT_3_C Long    N-H Bond (0.87A)   N3     -   H5     ...       1.02 Ang.
PLAT353_ALERT_3_C Long    N-H Bond (0.87A)   N3     -   H6     ...       1.01 Ang.

4 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: DIF4N (modified linux version of DIF4; Stoe & Cie, 2000); cell refinement: DIF4N (modified linux version of DIF4; Stoe & Cie, 2000); data reduction: PRON (modified version of REDU4; Stoe & Cie, 2000); program(s) used to solve structure: CRYSTALS (Watkin et al., 2001); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Watkin et al., 2001).

1,3,5-triazine-2,4,6-triamine top
Crystal data top
C3H6N6F(000) = 204.000
Mr = 126.12Dx = 1.619 Mg m3
Monoclinic, P21/aNeutron radiation, λ = 0.83100 Å
a = 10.433 (1) ÅCell parameters from 15 reflections
b = 7.458 (1) Åθ = 32–44°
c = 7.238 (1) ŵ = 0.12 mm1
β = 113.30 (2)°T = 14 K
V = 517.26 (14) Å3Prism, white
Z = 43.50 × 3.00 × 3.00 mm
Data collection top
Orphεe reactor (Saclay, France): 5-C2 four-circle
diffractometer
θmax = 42.6°, θmin = 3.6°
Cu_(220) monochromatorh = 1616
ω scansk = 412
2714 measured reflectionsl = 1111
2327 independent reflections450 standard reflections every 0 reflections
1819 reflections with I > 3.00σ(I) intensity decay: 0.0%
Rint = 0.08
Refinement top
Refinement on FHydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.047 Method Prince modified Chebychev polynomial, (Watkin, 1994) W = [weight] * [1-(deltaF/6*sigmaF)2]2
1.42 -1.26 0.982 -0.228
wR(F2) = 0.043(Δ/σ)max = 0.000257
S = 1.11Δρmax = 1.81 e Å3
1819 reflectionsΔρmin = 1.67 e Å3
137 parametersExtinction correction: Larson 1970 Crystallographic Computing eq 22
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 17.2 (5)
Special details top

Experimental. Neutron-diffraction measurements were carried out with the four-circle neutron diffractometer 5 C2 at the LLB (Saclay, France). A prismatic crystal (3.5 × 3.0 × 3.0 mm) was glued on a goniometer head and oriented. Measurements in the ω scan mode were performed with an incident wavelength of 0.831 Å selected with the Cu (220) monochromator. The structure was refined with the program CRYSTALS (Watkin et al., 2001). Absorption corrections were ignored.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1730 (1)0.65231 (13)0.07285 (14)0.0028
C20.12101 (9)0.51341 (13)0.31363 (14)0.0029
C30.0643 (1)0.80507 (12)0.24100 (14)0.0026
N10.22332 (8)0.6480 (1)0.07076 (11)0.0050
N20.12275 (8)0.3668 (1)0.42209 (11)0.0051
N30.01348 (7)0.96283 (9)0.27868 (11)0.0048
N40.06065 (7)0.66176 (9)0.3501 (1)0.0041
N50.11664 (7)0.80893 (9)0.0989 (1)0.0038
N60.18120 (7)0.50207 (9)0.1804 (1)0.0041
H10.2411 (3)0.7663 (4)0.1263 (4)0.0185
H20.2715 (3)0.5352 (4)0.0883 (4)0.0183
H30.1577 (4)0.2514 (4)0.3879 (5)0.0229
H40.0621 (3)0.3627 (4)0.5037 (4)0.0188
H50.0184 (3)1.0510 (3)0.1610 (4)0.0176
H60.0537 (3)0.9515 (4)0.3478 (5)0.0204
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0029 (3)0.0027 (3)0.0026 (3)0.0006 (2)0.0008 (3)0.0010 (2)
C20.0034 (3)0.0017 (3)0.0035 (3)0.0003 (2)0.0013 (3)0.0010 (2)
C30.0029 (3)0.0016 (3)0.0031 (3)0.0004 (2)0.0011 (3)0.0004 (2)
N10.0067 (3)0.0045 (3)0.0049 (3)0.0013 (2)0.0037 (2)0.00096 (19)
N20.0064 (3)0.0037 (3)0.0059 (3)0.00021 (19)0.0031 (2)0.0017 (2)
N30.0059 (2)0.0030 (2)0.0051 (2)0.00112 (19)0.0018 (2)0.00005 (19)
N40.0055 (3)0.0034 (2)0.0043 (3)0.00080 (19)0.0029 (2)0.00074 (19)
N50.0048 (2)0.0026 (2)0.0044 (3)0.00099 (18)0.0023 (2)0.00097 (19)
N60.0055 (3)0.0025 (2)0.0049 (2)0.00132 (18)0.0029 (2)0.00120 (18)
H10.0267 (12)0.0121 (9)0.0219 (11)0.0022 (8)0.0153 (9)0.0054 (8)
H20.0249 (11)0.0124 (9)0.022 (1)0.0054 (8)0.0146 (9)0.0001 (8)
H30.0367 (15)0.0116 (9)0.0286 (13)0.0085 (9)0.0217 (12)0.0016 (9)
H40.022 (1)0.019 (1)0.0224 (11)0.0027 (8)0.0162 (9)0.0047 (8)
H50.022 (1)0.0137 (9)0.0162 (9)0.0054 (8)0.0070 (8)0.0066 (8)
H60.0242 (11)0.018 (1)0.0260 (12)0.0035 (9)0.018 (1)0.0012 (9)
Geometric parameters (Å, º) top
C1—N11.3376 (12)C3—N51.3420 (12)
C1—N51.3539 (12)N1—H11.017 (3)
C1—N61.3475 (12)N1—H21.013 (3)
C2—N21.3420 (12)N2—H31.003 (3)
C2—N41.3497 (12)N2—H41.022 (3)
C2—N61.3457 (12)N3—H51.022 (3)
C3—N31.3618 (12)N3—H61.013 (3)
C3—N41.3382 (12)
N1—C1—N5117.02 (8)H1—N1—H2119.6 (2)
N1—C1—N6118.30 (8)C2—N2—H3118.49 (18)
N5—C1—N6124.68 (8)C2—N2—H4119.59 (17)
N2—C2—N4116.94 (8)H3—N2—H4119.0 (2)
N2—C2—N6117.77 (8)C3—N3—H5114.42 (17)
N4—C2—N6125.28 (8)C3—N3—H6115.30 (17)
N3—C3—N4117.88 (8)H5—N3—H6113.9 (2)
N3—C3—N5116.34 (8)C2—N4—C3114.53 (7)
N4—C3—N5125.76 (8)C1—N5—C3114.76 (7)
C1—N1—H1118.42 (17)C1—N6—C2114.87 (7)
C1—N1—H2118.91 (17)
N3—C3—N5—C1176.64 (8)H3—N2—C2—N67.47 (17)
C3—N5—C1—N1178.32 (8)H4—N2—C2—N413.01 (17)
C3—N4—C2—N2178.66 (8)H5—N3—C3—N525.12 (17)
H1—N1—C1—N194.89 (7)H6—N3—C3—N421.30 (17)
H2—N1—C1—N5176.29 (17)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds