Download citation
Download citation
link to html
The title compound, trans-[Pd2Cl4(PCy3)2]·C6H6, where PCy3 is tri­cyclo­hexyl­phosphine (C18H33P), cocrystallizes with one benzene mol­ecule in the centrosymmetric space group P21/c and both mol­ecules lie on inversion centers. Each Pd atom adopts a distorted square-planar geometry [angles vary from 84.23 (3) to 95.82 (3)°], and is bonded to a terminal chloride, a phosphine and two bridging chlorides. Bond lengths are typical of related species.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803015307/lh6081sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803015307/lh6081Isup2.hkl
Contains datablock I

CCDC reference: 221639

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.033
  • wR factor = 0.083
  • Data-to-parameter ratio = 19.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL96 (Sheldrick, 1996); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL96.

(I) top
Crystal data top
[Pd2Cl4(C18H33P)2]·C6H6F(000) = 1028.0
Mr = 993.58Dx = 1.430 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 6051 reflections
a = 9.9954 (1) Åθ = 2.7–72.5°
b = 16.463 (1) ŵ = 9.27 mm1
c = 14.095 (1) ÅT = 293 K
β = 95.657 (1)°Block, light orange-red
V = 2308.1 (2) Å30.16 × 0.14 × 0.08 mm
Z = 2
Data collection top
Bruker AXS SMART 2K Platform
diffractometer
4457 independent reflections
Radiation source: normal-focus xray tube3791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 5.5 pixels mm-1θmax = 72.7°, θmin = 4.1°
ω scansh = 911
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.266, Tmax = 0.475l = 1717
27337 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
4457 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.57 e Å3
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a glass fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2 K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu—Kα radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8 Å resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis. Data reduction processing was carried out by the use of the program SAINT (Bruker, 1999), which applied Lorentz and polarization corrections to three-dimensionally integrated diffraction spots. The program SADABS (Sheldrick, 1996) was utilized for the scaling of diffraction data, the application of a decay correction, and an empirical absorption correction based on redundant reflections. The space group was confirmed by XPREP routine in SHELXTL program (Sheldrick, 1997). The structure was solved by direct method using SHELXS97 (Sheldrick, 1997) and difmap synthesis using SHELXL96 (Sheldrick, 1996).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.49659 (2)0.094758 (12)0.941172 (14)0.03453 (8)
Cl10.53990 (9)0.03929 (4)0.90316 (5)0.04788 (19)
Cl20.43994 (10)0.22105 (5)0.99154 (6)0.0595 (2)
P0.53664 (7)0.14659 (4)0.79903 (5)0.03043 (15)
C110.3806 (3)0.17198 (17)0.7257 (2)0.0352 (6)
H110.40590.18510.66200.042*
C120.3017 (3)0.2446 (2)0.7578 (3)0.0552 (9)
H12A0.27500.23430.82100.066*
H12B0.35870.29240.76120.066*
C130.1771 (4)0.2604 (2)0.6889 (3)0.0622 (10)
H13A0.12770.30600.71160.075*
H13B0.20420.27450.62680.075*
C140.0876 (4)0.1867 (3)0.6800 (4)0.0724 (12)
H14A0.00990.19780.63500.087*
H14B0.05600.17450.74130.087*
C150.1635 (4)0.1145 (2)0.6461 (4)0.0784 (15)
H15A0.18990.12550.58290.094*
H15B0.10550.06720.64200.094*
C160.2880 (4)0.0972 (2)0.7141 (3)0.0551 (9)
H16A0.33690.05200.68990.066*
H16B0.26090.08170.77580.066*
C210.6201 (3)0.07159 (18)0.7279 (2)0.0352 (6)
H210.57210.02050.73590.042*
C220.6130 (3)0.08465 (18)0.6198 (2)0.0428 (7)
H22A0.52050.09400.59440.051*
H22B0.66540.13210.60610.051*
C230.6680 (4)0.0097 (2)0.5725 (2)0.0511 (8)
H23A0.61040.03650.58180.061*
H23B0.66650.01920.50450.061*
C240.8098 (4)0.0099 (3)0.6128 (3)0.0648 (11)
H24A0.83810.06010.58470.078*
H24B0.86950.03300.59590.078*
C250.8211 (4)0.0188 (2)0.7193 (3)0.0580 (9)
H25A0.91490.02630.74270.070*
H25B0.77240.06690.73570.070*
C260.7661 (3)0.05448 (19)0.7681 (2)0.0407 (7)
H26A0.82130.10160.75830.049*
H26B0.76940.04450.83610.049*
C310.6363 (3)0.24039 (17)0.8172 (2)0.0386 (6)
H310.57540.27980.84250.046*
C320.7548 (3)0.2330 (2)0.8941 (3)0.0512 (8)
H32A0.72450.20980.95150.061*
H32B0.82260.19740.87210.061*
C330.8151 (4)0.3170 (2)0.9160 (3)0.0686 (11)
H33A0.74990.35040.94450.082*
H33B0.89350.31160.96190.082*
C340.8549 (4)0.3582 (2)0.8279 (3)0.0757 (13)
H34A0.92830.32840.80390.091*
H34B0.88670.41260.84400.091*
C350.7392 (5)0.3630 (2)0.7513 (3)0.0730 (12)
H35A0.77010.38700.69450.088*
H35B0.67020.39800.77270.088*
C360.6788 (4)0.2796 (2)0.7265 (2)0.0504 (8)
H36A0.74470.24560.69950.060*
H36B0.60150.28530.67970.060*
C410.9687 (6)0.0745 (3)0.0354 (4)0.0848 (15)
H410.94740.12490.05980.102*
C420.8819 (5)0.0104 (4)0.0389 (3)0.0896 (16)
H420.80110.01780.06520.107*
C430.9118 (6)0.0637 (3)0.0045 (4)0.0909 (16)
H430.85230.10680.00780.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.04704 (15)0.03376 (12)0.02387 (12)0.00476 (8)0.00895 (8)0.00222 (8)
Cl10.0806 (6)0.0362 (4)0.0296 (4)0.0046 (3)0.0195 (3)0.0039 (3)
Cl20.0985 (7)0.0443 (4)0.0391 (4)0.0070 (4)0.0244 (4)0.0035 (3)
P0.0383 (4)0.0298 (3)0.0238 (3)0.0027 (3)0.0063 (3)0.0029 (3)
C110.0382 (16)0.0343 (14)0.0336 (15)0.0010 (11)0.0064 (11)0.0031 (12)
C120.054 (2)0.0458 (19)0.065 (2)0.0091 (15)0.0004 (17)0.0154 (17)
C130.056 (2)0.052 (2)0.077 (3)0.0152 (16)0.0034 (19)0.0057 (19)
C140.042 (2)0.076 (3)0.096 (3)0.0029 (18)0.011 (2)0.009 (2)
C150.058 (3)0.063 (3)0.107 (4)0.0001 (18)0.030 (2)0.017 (2)
C160.050 (2)0.0416 (18)0.071 (3)0.0063 (14)0.0075 (17)0.0026 (16)
C210.0422 (17)0.0355 (14)0.0282 (15)0.0007 (11)0.0058 (11)0.0028 (11)
C220.057 (2)0.0440 (17)0.0283 (15)0.0019 (13)0.0097 (13)0.0019 (12)
C230.058 (2)0.057 (2)0.0389 (18)0.0014 (15)0.0063 (14)0.0100 (15)
C240.065 (3)0.073 (3)0.057 (2)0.0166 (19)0.0103 (18)0.023 (2)
C250.056 (2)0.059 (2)0.058 (2)0.0168 (17)0.0003 (16)0.0084 (18)
C260.0422 (18)0.0456 (18)0.0339 (16)0.0045 (12)0.0021 (12)0.0006 (13)
C310.0479 (18)0.0326 (15)0.0355 (16)0.0074 (12)0.0063 (12)0.0015 (12)
C320.054 (2)0.052 (2)0.046 (2)0.0113 (15)0.0048 (15)0.0018 (15)
C330.067 (3)0.062 (2)0.075 (3)0.0166 (19)0.004 (2)0.022 (2)
C340.074 (3)0.054 (2)0.099 (4)0.030 (2)0.014 (2)0.013 (2)
C350.096 (3)0.047 (2)0.077 (3)0.023 (2)0.018 (2)0.014 (2)
C360.063 (2)0.0455 (19)0.0443 (19)0.0130 (15)0.0120 (15)0.0071 (15)
C410.090 (4)0.091 (4)0.070 (3)0.014 (3)0.009 (3)0.020 (3)
C420.073 (3)0.127 (5)0.067 (3)0.005 (3)0.000 (2)0.027 (3)
C430.095 (4)0.100 (4)0.076 (4)0.021 (3)0.003 (3)0.011 (3)
Geometric parameters (Å, º) top
Pd—P2.2495 (7)C23—H23B0.9700
Pd—Cl22.2862 (8)C24—C251.500 (5)
Pd—Cl12.3217 (8)C24—H24A0.9700
Pd—Cl1i2.4370 (7)C24—H24B0.9700
Cl1—Pdi2.4370 (7)C25—C261.519 (4)
P—C111.833 (3)C25—H25A0.9700
P—C311.842 (3)C25—H25B0.9700
P—C211.842 (3)C26—H26A0.9700
C11—C121.526 (4)C26—H26B0.9700
C11—C161.540 (4)C31—C361.529 (4)
C11—H110.9800C31—C321.530 (4)
C12—C131.524 (5)C31—H310.9800
C12—H12A0.9700C32—C331.527 (4)
C12—H12B0.9700C32—H32A0.9700
C13—C141.505 (5)C32—H32B0.9700
C13—H13A0.9700C33—C341.503 (6)
C13—H13B0.9700C33—H33A0.9700
C14—C151.513 (5)C33—H33B0.9700
C14—H14A0.9700C34—C351.504 (6)
C14—H14B0.9700C34—H34A0.9700
C15—C161.521 (5)C34—H34B0.9700
C15—H15A0.9700C35—C361.526 (5)
C15—H15B0.9700C35—H35A0.9700
C16—H16A0.9700C35—H35B0.9700
C16—H16B0.9700C36—H36A0.9700
C21—C221.533 (4)C36—H36B0.9700
C21—C261.538 (4)C41—C421.371 (7)
C21—H210.9800C41—C43ii1.381 (7)
C22—C231.530 (4)C41—H410.9300
C22—H22A0.9700C42—C431.356 (7)
C22—H22B0.9700C42—H420.9300
C23—C241.509 (5)C43—C41ii1.381 (7)
C23—H23A0.9700C43—H430.9300
P—Pd—Cl290.16 (3)C22—C23—H23B109.23
P—Pd—Cl195.82 (3)H23A—C23—H23B107.9
Cl2—Pd—Cl1173.53 (3)C25—C24—C23111.9 (3)
P—Pd—Cl1i178.32 (3)C25—C24—H24A109.2
Cl2—Pd—Cl1i89.86 (3)C23—C24—H24A109.23
Cl1—Pd—Cl1i84.23 (3)C25—C24—H24B109.2
Pd—Cl1—Pdi95.77 (3)C23—C24—H24B109.2
C11—P—C31107.78 (14)H24A—C24—H24B107.9
C11—P—C21104.58 (13)C24—C25—C26112.4 (3)
C31—P—C21111.71 (14)C24—C25—H25A109.1
C11—P—Pd111.90 (9)C26—C25—H25A109.13
C31—P—Pd109.61 (10)C24—C25—H25B109.1
C21—P—Pd111.14 (9)C26—C25—H25B109.1
C12—C11—C16109.6 (3)H25A—C25—H25B107.9
C12—C11—P116.6 (2)C25—C26—C21110.6 (3)
C16—C11—P110.3 (2)C25—C26—H26A109.5
C12—C11—H11106.61C21—C26—H26A109.53
C16—C11—H11106.61C25—C26—H26B109.53
P—C11—H11106.61C21—C26—H26B109.53
C13—C12—C11111.0 (3)H26A—C26—H26B108.1
C13—C12—H12A109.4C36—C31—C32111.4 (3)
C11—C12—H12A109.44C36—C31—P115.4 (2)
C13—C12—H12B109.4C32—C31—P113.7 (2)
C11—C12—H12B109.44C36—C31—H31105.02
H12A—C12—H12B108.0C32—C31—H31105.02
C14—C13—C12111.0 (3)P—C31—H31105.02
C14—C13—H13A109.4C33—C32—C31109.5 (3)
C12—C13—H13A109.44C33—C32—H32A109.8
C14—C13—H13B109.4C31—C32—H32A109.76
C12—C13—H13B109.4C33—C32—H32B109.8
H13A—C13—H13B108.0C31—C32—H32B109.76
C13—C14—C15110.3 (3)H32A—C32—H32B108.2
C13—C14—H14A109.6C34—C33—C32111.9 (3)
C15—C14—H14A109.6C34—C33—H33A109.2
C13—C14—H14B109.6C32—C33—H33A109.2
C15—C14—H14B109.6C34—C33—H33B109.2
H14A—C14—H14B108.1C32—C33—H33B109.2
C14—C15—C16110.7 (4)H33A—C33—H33B107.9
C14—C15—H15A109.5C33—C34—C35111.6 (3)
C16—C15—H15A109.5C33—C34—H34A109.3
C14—C15—H15B109.5C35—C34—H34A109.3
C16—C15—H15B109.5C33—C34—H34B109.3
H15A—C15—H15B108.1C35—C34—H34B109.3
C15—C16—C11111.2 (3)H34A—C34—H34B108.0
C15—C16—H16A109.4C34—C35—C36112.1 (3)
C11—C16—H16A109.38C34—C35—H35A109.2
C15—C16—H16B109.4C36—C35—H35A109.2
C11—C16—H16B109.38C34—C35—H35B109.2
H16A—C16—H16B108.0C36—C35—H35B109.2
C22—C21—C26109.9 (2)H35A—C35—H35B107.9
C22—C21—P117.9 (2)C35—C36—C31108.9 (3)
C26—C21—P112.7 (2)C35—C36—H36A109.9
C22—C21—H21105.00C31—C36—H36A109.90
C26—C21—H21105.00C35—C36—H36B109.9
P—C21—H21105.00C31—C36—H36B109.90
C23—C22—C21109.6 (3)H36A—C36—H36B108.3
C23—C22—H22A109.74C42—C41—C43ii119.4 (5)
C21—C22—H22A109.74C42—C41—H41120.3
C23—C22—H22B109.74C43ii—C41—H41120.3
C21—C22—H22B109.74C43—C42—C41121.2 (5)
H22A—C22—H22B108.2C43—C42—H42119.4
C24—C23—C22111.9 (3)C41—C42—H42119.4
C24—C23—H23A109.2C42—C43—C41ii119.4 (5)
C22—C23—H23A109.23C42—C43—H43120.3
C24—C23—H23B109.2C41ii—C43—H43120.3
P—Pd—Cl1—Pdi178.31 (3)C31—P—C21—C2652.6 (2)
Cl1i—Pd—Cl1—Pdi0.0Pd—P—C21—C2670.2 (2)
Cl2—Pd—P—C1173.97 (10)C26—C21—C22—C2357.9 (3)
Cl1—Pd—P—C11103.56 (10)P—C21—C22—C23171.0 (2)
Cl2—Pd—P—C3145.55 (11)C21—C22—C23—C2456.7 (4)
Cl1—Pd—P—C31136.92 (11)C22—C23—C24—C2554.4 (4)
Cl2—Pd—P—C21169.53 (11)C23—C24—C25—C2653.5 (5)
Cl1—Pd—P—C2112.94 (11)C24—C25—C26—C2155.1 (4)
C31—P—C11—C1250.0 (3)C22—C21—C26—C2557.3 (3)
C21—P—C11—C12169.0 (2)P—C21—C26—C25168.9 (2)
Pd—P—C11—C1270.5 (2)C11—P—C31—C3661.7 (3)
C31—P—C11—C16175.8 (2)C21—P—C31—C3652.6 (3)
C21—P—C11—C1665.2 (2)Pd—P—C31—C36176.3 (2)
Pd—P—C11—C1655.2 (2)C11—P—C31—C32167.7 (2)
C16—C11—C12—C1355.6 (4)C21—P—C31—C3278.0 (3)
P—C11—C12—C13178.3 (3)Pd—P—C31—C3245.7 (3)
C11—C12—C13—C1457.8 (4)C36—C31—C32—C3357.5 (4)
C12—C13—C14—C1558.2 (5)P—C31—C32—C33170.0 (3)
C13—C14—C15—C1657.9 (5)C31—C32—C33—C3455.5 (5)
C14—C15—C16—C1157.0 (5)C32—C33—C34—C3554.9 (5)
C12—C11—C16—C1555.6 (4)C33—C34—C35—C3655.6 (5)
P—C11—C16—C15174.8 (3)C34—C35—C36—C3156.3 (5)
C11—P—C21—C2239.1 (3)C32—C31—C36—C3557.6 (4)
C31—P—C21—C2277.3 (3)P—C31—C36—C35170.7 (3)
Pd—P—C21—C22160.0 (2)C43ii—C41—C42—C430.6 (9)
C11—P—C21—C26168.9 (2)C41—C42—C43—C41ii0.6 (9)
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds