Download citation
Download citation
link to html
The coordination of Fe and Ru in the title compound, [RuFe(C3H6)(C5H5)2(CO)4], is identical in its effectively tetrahedral form with that observed in closely analogous materials. However, partial [24.08 (17)%] disorder by interchange of Fe and Ru renders the bonds to Fe and Ru here apparently slightly longer and shorter, respectively, than they are in the analogues.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803004732/lh6042sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803004732/lh6042Isup2.hkl
Contains datablock I

CCDC reference: 209881

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.024
  • wR factor = 0.062
  • Data-to-parameter ratio = 25.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 31.71 From the CIF: _reflns_number_total 5254 Count of symmetry unique reflns 3183 Completeness (_total/calc) 165.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2071 Fraction of Friedel pairs measured 0.651 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

This structure determination was undertaken in the context of an ongoing study of heterobimetallic compounds (Friedrich & Moss, 1993). The connectivity and atom labelling of the molecule of the title compound, (I), is shown in Fig. 1. The coordination of Fe and Ru in (I) is compared to that in the closely analogous (propane-1,3-diyl)-bis[dicarbonyl(η-5-cyclopentadienyl)iron], (II) (PRCFEC; Pope et al., 1976) and (pentane-1,5-diyl)-bis[dicarbonyl(η-5-cyclopentadienyl)ruthenium], (III) (JEHVUN; Finch et al., 1989) in Table 1. There it is clear that whereas the effectively tetrahedral coordination of the metal atoms is very similar throughout in (I) the bonds to Fe tend to be slightly longer than in (II) and the bonds to Ru somewhat shorter than they are in (III). In a previous structural model where twin refinement, but no other form of disorder, had been introduced a concern, not noted in the checkCIF validation report obtained at that time, was the disparity between the Ueq values for Fe1 and Ru1 of 0.0038 (1) and 0.0168 (1) Å2, respectively. This prompted the rerefinement presented here in which disorder by partial replacement of Ru by Fe and vice versa was introduced and twin refinement abandoned. Precisely this form of disorder is found but in a much more extreme form in the structure of the wholly analogous [dicarbonyl(η5-cyclopentadienyl)iron(II)]-µ21,6-n-hexandiyl- [dicarbonyl(η5-cyclopentadienyl)ruthenium(II)] (Archer et al., 1991). The disordered model has proved to be technically superior on every count, i.e. giving much better R factors, much lower residual electron densities, lower s.u. values and a satisfactory estimate of the Flack x parameter with no indication of the need for twin refinement. Clearly it also accounts for the bond-length differences between (I) and (II) and (III).

The C—C and C—O bonds in (I) are unexceptional and are not discussed further. Selected torsion angles are given in Table 2. In the cell of (I) (Fig. 2), aside from the weak intermolecular interactions given in Table 3, the packing of the molecules involves only van der Waals contacts.

Experimental top

Compound (I) was prepared according to a reported procedure (Archer et al., 1991) and crystals were grown by a slow diffusion, over several days, of a threefold excess of hexane into a concentrated solution of (I) in dichloromethane held at 263 K.

Refinement top

H atoms were placed in calculated positions, with C—H = 0.99 and 0.95 Å for methylene and cyclopentadienyl H atoms, respectively. All H atoms were refined with a riding model, with Uiso = 1.2Ueq of the C atom to which they are attached. The extent of disorder of Fe and Ru was established by refinement of a free variable occupancy factor, x [final refined value 0.7592 (17)], for sites of the form Fex/Ru1 - x and Rux/Fe1 - x with SHELXL97 EXYZ and EADP instructions rigorously enforcing identical atomic coordinates and displacement parameters for both atoms in the site.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms as spheres of arbitrary radius. Metal–cyclopentadienyl bonds are represented by dashed lines joining the centroid of the ligand ring and the metal atom.
[Figure 2] Fig. 2. The cell of (I). Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms have been omitted for clarity. Metal–cyclopentadienyl bonds are represented by dashed lines joining the centroid of the ligand ring and the metal atom. [Symmetry codes: (i) 1/2 - x, -y, 1/2 + z; (ii) -x, 1/2 + y, 1/2 - z; (iii) 1/2 + x, 1/2 - y, -z.]
[Dicarbonyl](eta-5-cyclopentadienyl)iron(II)]-mu-2–1,3-propandiyl- [dicarbonyl](eta-5-cyclopentadienyl)ruthenium(II)] top
Crystal data top
[RuFe(C3H6)(C5H5)2(CO)4]F(000) = 880
Mr = 441.22Dx = 1.772 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 15516 reflections
a = 6.834 (3) Åθ = 4.1–31.7°
b = 11.358 (4) ŵ = 1.81 mm1
c = 21.303 (9) ÅT = 100 K
V = 1653.6 (12) Å3Plate, yellow
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur 2 CCD area-detector
diffractometer
5017 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 31.7°, θmin = 4.1°
ω–2θ scansh = 910
15516 measured reflectionsk = 016
5254 independent reflectionsl = 030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.3168P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
5254 reflectionsΔρmax = 0.54 e Å3
209 parametersΔρmin = 0.81 e Å3
0 restraintsAbsolute structure: Flack (1983), 2204 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.040 (18)
Crystal data top
[RuFe(C3H6)(C5H5)2(CO)4]V = 1653.6 (12) Å3
Mr = 441.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.834 (3) ŵ = 1.81 mm1
b = 11.358 (4) ÅT = 100 K
c = 21.303 (9) Å0.40 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur 2 CCD area-detector
diffractometer
5017 reflections with I > 2σ(I)
15516 measured reflectionsRint = 0.053
5254 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.54 e Å3
S = 1.11Δρmin = 0.81 e Å3
5254 reflectionsAbsolute structure: Flack (1983), 2204 Friedel pairs
209 parametersAbsolute structure parameter: 0.040 (18)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.6450 (0.0049) x - 4.7849 (0.0115) y + 7.9775 (0.0225) z = 6.8563 (0.0087)

* -0.0049 (0.0013) C1_a * 0.0022 (0.0014) C2_a * 0.0014 (0.0014) C3_a * -0.0044 (0.0014) C4_a * 0.0058 (0.0013) C5_a -1.7881 (0.0013) Fe1_a

Rms deviation of fitted atoms = 0.0041

6.6465 (0.0035) x + 0.1866 (0.0143) y + 4.9431 (0.0256) z = 6.8644 (0.0099)

Angle to previous plane (with approximate e.s.d.) = 27.95 (0.10)

* 0.0065 (0.0014) C1A_a * 0.0004 (0.0016) C2A_a * -0.0074 (0.0016) C3A_a * 0.0115 (0.0016) C4A_a * -0.0110 (0.0015) C5A_a -1.8805 (0.0013) Ru1_a

Rms deviation of fitted atoms = 0.0084

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.21839 (3)0.13426 (2)0.400252 (10)0.01211 (8)0.7592 (17)
Ru1A0.21839 (3)0.13426 (2)0.400252 (10)0.01211 (8)0.2408 (17)
C10.4699 (3)0.11100 (18)0.45976 (9)0.0173 (4)
H10.49610.04050.48220.021*
C20.3566 (3)0.20921 (19)0.48189 (10)0.0179 (4)
H20.29570.21550.52180.021*
C30.3520 (3)0.29428 (19)0.43401 (11)0.0196 (4)
H30.28710.36810.43600.023*
C40.4614 (3)0.25101 (19)0.38186 (10)0.0206 (4)
H40.48110.29060.34310.025*
C50.5355 (3)0.13848 (19)0.39818 (10)0.0185 (4)
H50.61520.08990.37240.022*
C60.0415 (3)0.04504 (19)0.43712 (9)0.0178 (4)
O10.0754 (3)0.01541 (16)0.45860 (8)0.0268 (4)
C70.0424 (3)0.20557 (19)0.35258 (10)0.0195 (4)
O20.0727 (3)0.25321 (16)0.32244 (9)0.0285 (4)
C80.2395 (3)0.00338 (18)0.33556 (9)0.0152 (4)
H8A0.32610.02140.30070.018*
H8B0.10830.01890.31770.018*
C90.3194 (3)0.11766 (19)0.36395 (9)0.0161 (4)
H9A0.22700.14730.39610.019*
H9B0.44610.10160.38480.019*
Ru10.48086 (2)0.369182 (15)0.347747 (8)0.01301 (6)0.7592 (17)
Fe1A0.48086 (2)0.369182 (15)0.347747 (8)0.01301 (6)0.2408 (17)
C1A0.7669 (3)0.46428 (19)0.34127 (11)0.0216 (4)
H1A0.78230.53770.32050.026*
C2A0.7190 (4)0.4481 (2)0.40503 (12)0.0261 (5)
H2A0.69540.50880.43480.031*
C3A0.7123 (4)0.3247 (3)0.41716 (11)0.0265 (5)
H3A0.68200.28880.45620.032*
C4A0.7584 (3)0.2657 (2)0.36119 (11)0.0220 (5)
H4A0.76810.18280.35620.026*
C5A0.7882 (3)0.3505 (2)0.31342 (10)0.0213 (4)
H5A0.81700.33470.27060.026*
C6A0.2762 (3)0.38190 (19)0.40304 (10)0.0193 (4)
O1A0.1544 (2)0.38925 (17)0.43959 (8)0.0281 (4)
C7A0.3455 (4)0.4477 (2)0.28598 (11)0.0222 (4)
O2A0.2614 (3)0.49664 (18)0.24772 (9)0.0331 (4)
C8A0.3480 (3)0.21119 (19)0.31342 (9)0.0160 (4)
H8C0.21910.23090.29500.019*
H8D0.43080.17820.27960.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01250 (12)0.01073 (11)0.01309 (11)0.00212 (9)0.00027 (7)0.00059 (9)
Ru1A0.01250 (12)0.01073 (11)0.01309 (11)0.00212 (9)0.00027 (7)0.00059 (9)
C10.0157 (8)0.0151 (9)0.0209 (9)0.0001 (7)0.0043 (7)0.0002 (7)
C20.0186 (10)0.0170 (9)0.0182 (9)0.0011 (8)0.0025 (7)0.0039 (7)
C30.0200 (10)0.0125 (9)0.0262 (11)0.0020 (8)0.0011 (8)0.0014 (7)
C40.0186 (10)0.0180 (10)0.0251 (10)0.0041 (8)0.0016 (8)0.0031 (7)
C50.0142 (8)0.0181 (9)0.0234 (9)0.0006 (8)0.0002 (7)0.0026 (8)
C60.0200 (10)0.0201 (9)0.0133 (8)0.0070 (8)0.0005 (7)0.0011 (7)
O10.0274 (9)0.0256 (9)0.0274 (9)0.0011 (7)0.0075 (7)0.0026 (7)
C70.0253 (10)0.0163 (9)0.0169 (9)0.0042 (8)0.0046 (8)0.0001 (7)
O20.0317 (10)0.0266 (9)0.0273 (8)0.0121 (7)0.0028 (7)0.0035 (7)
C80.0174 (9)0.0136 (8)0.0147 (9)0.0036 (7)0.0010 (7)0.0009 (6)
C90.0197 (9)0.0148 (9)0.0138 (8)0.0032 (8)0.0007 (6)0.0008 (7)
Ru10.01264 (8)0.01049 (8)0.01590 (8)0.00021 (6)0.00059 (6)0.00026 (6)
Fe1A0.01264 (8)0.01049 (8)0.01590 (8)0.00021 (6)0.00059 (6)0.00026 (6)
C1A0.0181 (10)0.0178 (9)0.0289 (11)0.0041 (8)0.0008 (9)0.0041 (8)
C2A0.0213 (11)0.0300 (12)0.0270 (11)0.0024 (9)0.0034 (10)0.0083 (10)
C3A0.0182 (11)0.0415 (14)0.0198 (10)0.0029 (10)0.0020 (8)0.0096 (9)
C4A0.0145 (10)0.0195 (10)0.0320 (12)0.0019 (8)0.0008 (9)0.0046 (8)
C5A0.0187 (10)0.0233 (11)0.0220 (10)0.0002 (8)0.0039 (8)0.0024 (8)
C6A0.0188 (9)0.0166 (10)0.0225 (9)0.0012 (8)0.0057 (8)0.0052 (8)
O1A0.0189 (8)0.0347 (10)0.0309 (9)0.0005 (7)0.0023 (6)0.0119 (7)
C7A0.0236 (11)0.0170 (10)0.0260 (11)0.0050 (8)0.0001 (9)0.0022 (8)
O2A0.0327 (10)0.0279 (9)0.0385 (10)0.0013 (8)0.0051 (8)0.0125 (8)
C8A0.0186 (10)0.0142 (9)0.0152 (9)0.0003 (7)0.0020 (7)0.0005 (7)
Geometric parameters (Å, º) top
Fe1—C61.762 (2)C9—H9A0.9900
Fe1—C71.770 (2)C9—H9B0.9900
Fe1—C82.089 (2)Ru1—C6A1.834 (2)
Fe1—C12.152 (2)Ru1—C7A1.839 (2)
Fe1—C22.154 (2)Ru1—C8A2.140 (2)
Fe1—C32.157 (2)Ru1—C2A2.223 (2)
Fe1—C42.161 (2)Ru1—C3A2.223 (3)
Fe1—C52.168 (2)Ru1—C5A2.234 (2)
C1—C51.421 (3)Ru1—C1A2.238 (2)
C1—C21.437 (3)Ru1—C4A2.250 (2)
C1—H10.9500C1A—C2A1.409 (3)
C2—C31.405 (3)C1A—C5A1.429 (3)
C2—H20.9500C1A—H1A0.9500
C3—C41.426 (3)C2A—C3A1.426 (4)
C3—H30.9500C2A—H2A0.9500
C4—C51.418 (3)C3A—C4A1.404 (4)
C4—H40.9500C3A—H3A0.9500
C5—H50.9500C4A—C5A1.416 (3)
C6—O11.148 (3)C4A—H4A0.9500
C7—O21.151 (3)C5A—H5A0.9500
C8—C91.533 (3)C6A—O1A1.143 (3)
C8—H8A0.9900C7A—O2A1.142 (3)
C8—H8B0.9900C8A—H8C0.9900
C9—C8A1.525 (3)C8A—H8D0.9900
C6—Fe1—C793.02 (11)C8A—C9—H9B109.5
C6—Fe1—C884.90 (9)C8—C9—H9B109.5
C7—Fe1—C890.62 (9)H9A—C9—H9B108.0
C6—Fe1—C1102.41 (9)C6A—Ru1—C7A92.17 (11)
C7—Fe1—C1159.51 (9)C6A—Ru1—C8A87.82 (9)
C8—Fe1—C1103.98 (8)C7A—Ru1—C8A87.07 (9)
C6—Fe1—C299.69 (9)C6A—Ru1—C2A100.02 (10)
C7—Fe1—C2125.47 (9)C7A—Ru1—C2A124.43 (11)
C8—Fe1—C2142.93 (8)C8A—Ru1—C2A146.76 (9)
C1—Fe1—C238.99 (8)C6A—Ru1—C3A97.65 (10)
C6—Fe1—C3128.78 (9)C7A—Ru1—C3A160.68 (10)
C7—Fe1—C395.36 (10)C8A—Ru1—C3A109.80 (10)
C8—Fe1—C3145.19 (9)C2A—Ru1—C3A37.40 (10)
C1—Fe1—C364.46 (8)C6A—Ru1—C5A159.15 (9)
C2—Fe1—C338.04 (8)C7A—Ru1—C5A106.53 (10)
C6—Fe1—C4163.93 (9)C8A—Ru1—C5A101.98 (9)
C7—Fe1—C497.89 (10)C2A—Ru1—C5A61.94 (9)
C8—Fe1—C4106.64 (9)C3A—Ru1—C5A61.79 (9)
C1—Fe1—C464.43 (9)C6A—Ru1—C1A131.89 (9)
C2—Fe1—C464.34 (9)C7A—Ru1—C1A99.27 (10)
C3—Fe1—C438.57 (9)C8A—Ru1—C1A138.97 (8)
C6—Fe1—C5135.03 (9)C2A—Ru1—C1A36.83 (9)
C7—Fe1—C5131.09 (9)C3A—Ru1—C1A61.91 (9)
C8—Fe1—C586.21 (8)C5A—Ru1—C1A37.27 (8)
C1—Fe1—C538.40 (8)C6A—Ru1—C4A127.03 (9)
C2—Fe1—C564.49 (8)C7A—Ru1—C4A140.22 (10)
C3—Fe1—C564.21 (9)C8A—Ru1—C4A87.90 (9)
C4—Fe1—C538.24 (8)C2A—Ru1—C4A61.53 (10)
C5—C1—C2107.60 (18)C3A—Ru1—C4A36.57 (9)
C5—C1—Fe171.42 (12)C5A—Ru1—C4A36.81 (8)
C2—C1—Fe170.60 (12)C1A—Ru1—C4A61.53 (9)
C5—C1—H1126.2C2A—C1A—C5A107.8 (2)
C2—C1—H1126.2C2A—C1A—Ru171.02 (13)
Fe1—C1—H1123.4C5A—C1A—Ru171.22 (12)
C3—C2—C1107.92 (19)C2A—C1A—H1A126.1
C3—C2—Fe171.10 (13)C5A—C1A—H1A126.1
C1—C2—Fe170.41 (12)Ru1—C1A—H1A123.3
C3—C2—H2126.0C1A—C2A—C3A108.1 (2)
C1—C2—H2126.0C1A—C2A—Ru172.15 (13)
Fe1—C2—H2124.1C3A—C2A—Ru171.31 (14)
C2—C3—C4108.5 (2)C1A—C2A—H2A126.0
C2—C3—Fe170.86 (12)C3A—C2A—H2A126.0
C4—C3—Fe170.85 (13)Ru1—C2A—H2A122.3
C2—C3—H3125.8C4A—C3A—C2A107.9 (2)
C4—C3—H3125.8C4A—C3A—Ru172.73 (14)
Fe1—C3—H3124.1C2A—C3A—Ru171.29 (15)
C5—C4—C3107.86 (19)C4A—C3A—H3A126.0
C5—C4—Fe171.16 (12)C2A—C3A—H3A126.0
C3—C4—Fe170.58 (13)Ru1—C3A—H3A121.7
C5—C4—H4126.1C3A—C4A—C5A108.5 (2)
C3—C4—H4126.1C3A—C4A—Ru170.70 (14)
Fe1—C4—H4123.8C5A—C4A—Ru170.99 (13)
C4—C5—C1108.15 (18)C3A—C4A—H4A125.7
C4—C5—Fe170.60 (12)C5A—C4A—H4A125.7
C1—C5—Fe170.18 (12)Ru1—C4A—H4A124.2
C4—C5—H5125.9C4A—C5A—C1A107.6 (2)
C1—C5—H5125.9C4A—C5A—Ru172.19 (13)
Fe1—C5—H5124.9C1A—C5A—Ru171.51 (13)
O1—C6—Fe1176.95 (19)C4A—C5A—H5A126.2
O2—C7—Fe1178.8 (2)C1A—C5A—H5A126.2
C9—C8—Fe1113.45 (12)Ru1—C5A—H5A121.8
C9—C8—H8A108.9O1A—C6A—Ru1177.00 (19)
Fe1—C8—H8A108.9O2A—C7A—Ru1179.87 (16)
C9—C8—H8B108.9C9—C8A—Ru1113.41 (13)
Fe1—C8—H8B108.9C9—C8A—H8C108.9
H8A—C8—H8B107.7Ru1—C8A—H8C108.9
C8A—C9—C8110.91 (16)C9—C8A—H8D108.9
C8A—C9—H9A109.5Ru1—C8A—H8D108.9
C8—C9—H9A109.5H8C—C8A—H8D107.7
Fe1—C8—C9—C8A175.08 (14)C2—C3—C4—C50.6 (3)
C6—Fe1—C8—C965.20 (16)C3—C4—C5—C11.0 (2)
C7—Fe1—C8—C9158.18 (16)C4—C5—C1—C21.0 (2)
Ru1—C8A—C9—C8175.36 (14)C5A—C1A—C2A—C3A0.6 (3)
C6A—Ru1—C8A—C958.35 (16)C1A—C2A—C3A—C4A0.8 (3)
C7A—Ru1—C8A—C9150.64 (17)C2A—C3A—C4A—C5A1.8 (3)
C5—C1—C2—C30.7 (2)C3A—C4A—C5A—C1A2.1 (3)
C1—C2—C3—C40.1 (3)C4A—C5A—C1A—C2A1.7 (3)

Experimental details

Crystal data
Chemical formula[RuFe(C3H6)(C5H5)2(CO)4]
Mr441.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.834 (3), 11.358 (4), 21.303 (9)
V3)1653.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15516, 5254, 5017
Rint0.053
(sin θ/λ)max1)0.740
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.11
No. of reflections5254
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.81
Absolute structureFlack (1983), 2204 Friedel pairs
Absolute structure parameter0.040 (18)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2001), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2003).

Selected torsion angles (º) top
Fe1—C8—C9—C8A175.08 (14)Ru1—C8A—C9—C8175.36 (14)
C6—Fe1—C8—C965.20 (16)C6A—Ru1—C8A—C958.35 (16)
C7—Fe1—C8—C9158.18 (16)C7A—Ru1—C8A—C9150.64 (17)
The coordination of M (M = Fe or Ru, Å, °) in (I), (II) and (III)a top
IIIbIIIb
M = Fe1M = Ru1M = Fe1M = Ru1M = Ru2
Cg—M1.7880 (12)1.8805 (13)1.7371.9361.942
C6—M1.762 (2)1.834 (2)1.7381.860 (8)1.868 (8)
C7—M1.770 (2)1.839 (2)1.7531.871 (9)1.888 (8)
C8—M2.089 (2)2.140 (2)2.08152.179 (8)2.164 (8)
Cg—M—C6130.33126.71127.2129.6127.3
Cg—M—C7125.48130.29127.6128.3129.8
Cg—M—C8120.12119.85122.4120.9123.5
C6—M—C793.02 (11)92.17 (11)92.890.2 (4)89.3 (4)
C6—M—C884.90 (9)87.82 (9)87.286.1 (3)88.2 (3)
C7—M—C890.62 (9)87.07 (9)87.088.4 (4)85.2 (3)
Notes: (a) atom designations are precisely as for Fe and, neglecting the suffix A, for Ru in (I). Distances and angles involving the cyclopentadienyl ligand are expressed in terms of its centroid, Cg, and mostly lack s.u. values as a consequence. (b) Values calculated (PLATON; Spek, 2003) from CIF data (PRCFEC; Pope et al. 1976), which lacks s.u. values, for (II) and for (III) (JEHVUN; Finch et al. 1989), extracted from the Cambridge Structural Database (Version 24; Allen, 2002), accessed at the Chemical Database Service (Fletcher et al., 1996) of the EPSRC at Daresbury, England.
Intermolecular contacts (Å, °) in (I) top
C1A—H1A···O2ivC2—H2···Cgv
Type Hydrogen bondC—H···πa
C—H0.950.95
H···A2.572.82
Hperpb2.81
C···A3.414 (3)3.574
C—H···A148137
γc5.6
Notes: (a) acceptor A is the centroid of the five membered ring C1 to C5; (b) perpendicular from H2 to the ring plane; (c) angle between H···A and Hperp. Symmetry codes: (iv) 1+x, 1+y, z; (v) x-1/2, -y-1/2, 1-z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds