Download citation
Download citation
link to html
As part of our studies on NiII complexes, the structure of the title compound, [Ni(CH2NS2)2], was redetermined at 100 K. The crystal structure reveals a square-planar coordination geometry, with two di­thio­carbamate ligands. The crystal packing is stabilized by N—H...S intermolecular interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001600/lh6028sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001600/lh6028Isup2.hkl
Contains datablock I

CCDC reference: 204662

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](N-C) = 0.005 Å
  • R factor = 0.033
  • wR factor = 0.094
  • Data-to-parameter ratio = 16.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The structure of (I) was originally determined by Gasparri et al. (1967) using data measured from Weissenberg photographs. In the present redetermination, data were collected at low temperature, using a CCD area-detector diffractometer, in order to obtain more precise structural results.

As shown in Fig. 1, the structure of the title compound, (I), is composed of neutral [Ni(S2CNH2)2] complex molecules. The results show that the cordination around NiII is square planar, with four dithiocarbamate S atoms from two separate groups bonded to Ni [Ni—S1 = 2.2118 (9) Å, Ni—S2 = 2.2106 (9) Å, Ni—S3 = 2.2082 (10) Å and Ni—S4 = 2.2082 (10) Å]. The S—C bond lengths in (I) are between the mean values obtained for a single covalent bond ( 1.642 Å) and a double covalent bond ( 1.760 Å) (Table 1), found in the September 2002 version of the Cambridge Structural Database (Allen, 2002) (see Figs. 2 and 3).

The structure is stabilized by intermolecular N—H···S hydrogen bonds between the NH2 groups and the S atoms of neighbouring molecules (Table 2). These intermolecular interactions give rise to a three-dimensional network.

Experimental top

Ammonium dithiocarbamate was prepared according to the literature (Booth et al., 1939) and mixed with a nickelII chloride aqueos solution. The green crystals obtained was recrystallized from ethanol furnishing green crystals. The IR spectrum showed the same bands reported in the literature (Nakamoto et al., 1963).

Refinement top

H atoms were placed in calculated positions, with N—H = 0.88 Å and angles of 120°, and were included in the final cycles of refinement riding on their parent N atoms.

Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Distribuition of the single S—C bond lengths.
[Figure 3] Fig. 3. Distribuition of the double S—C bond lengths.
(I) top
Crystal data top
[Ni(CH2NS2)2]F(000) = 488
Mr = 243.02Dx = 2.096 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6006 reflections
a = 7.1310 (4) Åθ = 1.0–27.5°
b = 12.9170 (8) ŵ = 3.51 mm1
c = 10.9590 (5) ÅT = 100 K
β = 130.293 (3)°Prism, brown
V = 769.95 (7) Å30.21 × 0.2 × 0.04 mm
Z = 4
Data collection top
KappaCCD
diffractometer
1201 reflections with I > 2σ(I)
CCD rotation images, thick slices scansRint = 0.045
Absorption correction: analytical
(Alcock, 1970)
θmax = 25°, θmin = 2.9°
Tmin = 0.478, Tmax = 0.858h = 88
4294 measured reflectionsk = 1513
1355 independent reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0583P)2 + 1.443P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 0.93Δρmax = 1.20 e Å3
1355 reflectionsΔρmin = 0.53 e Å3
82 parameters
Crystal data top
[Ni(CH2NS2)2]V = 769.95 (7) Å3
Mr = 243.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1310 (4) ŵ = 3.51 mm1
b = 12.9170 (8) ÅT = 100 K
c = 10.9590 (5) Å0.21 × 0.2 × 0.04 mm
β = 130.293 (3)°
Data collection top
KappaCCD
diffractometer
1355 independent reflections
Absorption correction: analytical
(Alcock, 1970)
1201 reflections with I > 2σ(I)
Tmin = 0.478, Tmax = 0.858Rint = 0.045
4294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.93Δρmax = 1.20 e Å3
1355 reflectionsΔρmin = 0.53 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.88596 (7)0.12825 (3)0.02346 (5)0.02028 (19)
S10.53494 (16)0.13003 (7)0.22613 (10)0.0259 (3)
S21.22705 (16)0.13200 (7)0.27658 (10)0.0259 (3)
S30.83187 (16)0.01067 (7)0.11501 (10)0.0286 (3)
S40.92893 (15)0.27244 (7)0.06459 (10)0.0245 (2)
N11.2054 (6)0.0218 (3)0.4327 (4)0.0335 (7)
H1A1.13290.07580.43530.04*
H1B1.34590.00090.52150.04*
N20.5427 (5)0.2907 (2)0.3787 (4)0.0279 (7)
H2A0.39930.27030.46730.033*
H2B0.61380.34620.37930.033*
C11.1049 (6)0.0248 (3)0.2973 (4)0.0275 (8)
C20.6502 (6)0.2387 (3)0.2458 (4)0.0240 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0183 (3)0.0204 (3)0.0139 (3)0.00065 (15)0.0066 (2)0.00106 (16)
S10.0228 (5)0.0252 (5)0.0153 (5)0.0032 (3)0.0059 (4)0.0017 (3)
S20.0203 (4)0.0293 (5)0.0167 (5)0.0019 (3)0.0068 (4)0.0000 (3)
S30.0272 (5)0.0225 (5)0.0218 (5)0.0048 (4)0.0095 (4)0.0004 (3)
S40.0206 (4)0.0251 (5)0.0201 (4)0.0014 (3)0.0097 (4)0.0007 (4)
N10.0274 (16)0.0327 (18)0.0250 (17)0.0010 (14)0.0100 (14)0.0039 (14)
N20.0256 (15)0.0269 (17)0.0218 (16)0.0046 (12)0.0111 (13)0.0011 (13)
C10.0312 (18)0.0261 (19)0.0235 (19)0.0051 (15)0.0169 (16)0.0007 (15)
C20.0228 (16)0.0275 (19)0.0208 (17)0.0027 (14)0.0137 (15)0.0001 (15)
Geometric parameters (Å, º) top
Ni1—S42.2082 (10)S4—C21.726 (3)
Ni1—S32.2082 (10)N1—C11.304 (5)
Ni1—S22.2106 (9)N2—C21.310 (5)
Ni1—S12.2118 (9)N1—H1A0.88
S1—C21.709 (4)N1—H1B0.88
S2—C11.728 (4)N2—H2A0.88
S3—C11.721 (4)N2—H2B0.88
S4—Ni1—S3176.68 (4)N1—C1—S2124.5 (3)
S4—Ni1—S2100.30 (3)S3—C1—S2110.4 (2)
S3—Ni1—S279.71 (3)N2—C2—S1125.3 (3)
S4—Ni1—S179.44 (3)N2—C2—S4124.1 (3)
S3—Ni1—S1100.36 (3)S1—C2—S4110.6 (2)
S2—Ni1—S1176.81 (4)C1—N1—H1A120.0
C2—S1—Ni184.98 (12)C1—N1—H1B120.0
C1—S2—Ni184.73 (12)C2—N2—H2A120.0
C1—S3—Ni184.97 (13)C2—N2—H2B120.0
C2—S4—Ni184.71 (13)H1A—N1—H1B120.0
N1—C1—S3125.1 (3)H2A—N2—H2B120.0
S4—Ni1—S1—C23.24 (12)Ni1—S3—C1—N1175.8 (3)
S3—Ni1—S1—C2179.87 (12)Ni1—S3—C1—S23.59 (16)
S4—Ni1—S2—C1173.97 (12)Ni1—S2—C1—N1175.8 (3)
S3—Ni1—S2—C12.66 (12)Ni1—S2—C1—S33.59 (16)
S2—Ni1—S3—C12.67 (12)Ni1—S1—C2—N2176.4 (3)
S1—Ni1—S3—C1174.08 (12)Ni1—S1—C2—S44.36 (16)
S2—Ni1—S4—C2179.98 (11)Ni1—S4—C2—N2176.4 (3)
S1—Ni1—S4—C23.21 (11)Ni1—S4—C2—S14.37 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S4i0.882.623.445 (4)157
N1—H1B···S1ii0.882.733.461 (4)142
N2—H2A···S2iii0.882.853.541 (3)137
N2—H2A···S4iv0.882.843.527 (4)136
N2—H2B···S3v0.882.663.538 (3)178
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x1, y, z1; (iv) x1, y+1/2, z1/2; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(CH2NS2)2]
Mr243.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1310 (4), 12.9170 (8), 10.9590 (5)
β (°) 130.293 (3)
V3)769.95 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.51
Crystal size (mm)0.21 × 0.2 × 0.04
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionAnalytical
(Alcock, 1970)
Tmin, Tmax0.478, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
4294, 1355, 1201
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 0.93
No. of reflections1355
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.53

Computer programs: COLLECT (Nonius, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni1—S42.2082 (10)S2—C11.728 (4)
Ni1—S32.2082 (10)S3—C11.721 (4)
Ni1—S22.2106 (9)S4—C21.726 (3)
Ni1—S12.2118 (9)N1—C11.304 (5)
S1—C21.709 (4)N2—C21.310 (5)
S4—Ni1—S3176.68 (4)C1—S3—Ni184.97 (13)
S4—Ni1—S2100.30 (3)C2—S4—Ni184.71 (13)
S3—Ni1—S279.71 (3)N1—C1—S3125.1 (3)
S4—Ni1—S179.44 (3)N1—C1—S2124.5 (3)
S3—Ni1—S1100.36 (3)S3—C1—S2110.4 (2)
S2—Ni1—S1176.81 (4)N2—C2—S1125.3 (3)
C2—S1—Ni184.98 (12)N2—C2—S4124.1 (3)
C1—S2—Ni184.73 (12)S1—C2—S4110.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S4i0.882.623.445 (4)157
N1—H1B···S1ii0.882.733.461 (4)142
N2—H2A···S2iii0.882.853.541 (3)137
N2—H2A···S4iv0.882.843.527 (4)136
N2—H2B···S3v0.882.663.538 (3)178
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x1, y, z1; (iv) x1, y+1/2, z1/2; (v) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds