Download citation
Download citation
link to html
The Au atom in the title compound, (p-MeOC6H4)3PAu(S2COEt) or [Au(C3H5OS2)(C21H21O3P)], exists in a linear geometry, such that the Au-S bond length is 2.3004 (8) Å and Au-P is 2.2505 (7) Å, and the angle at gold is 175.87 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802023565/lh6024sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802023565/lh6024Isup2.hkl
Contains datablock I

CCDC reference: 204652

Key indicators

  • Single-crystal X-ray study
  • T = 208 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.028
  • wR factor = 0.068
  • Data-to-parameter ratio = 25.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.485 1.000 Tmin and Tmax expected: 0.184 0.479 RR = 1.260 Please check that your absorption correction is appropriate. General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.479 Tmax scaled 0.479 Tmin scaled 0.232
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Dithiocarbonate (i.e. xanthate or S2COR) ligands invariably coordinate to the metal centre in their phosphinegold(I) complexes via one of the S atoms, thereby leading to a linear P—Au—S arrangement (Tiekink, 1985; Siasios & Tiekink, 1992, 1993a,b). Weak intramolecular Au···X associations are also present and these can either involve the second S atom or the O atom. It is the requirements of efficient crystal packing that are thought to play a major role in determining the nature of the weaker intramolecular interactions to Au in these complexes. In this context, the molecular structure of (p-MeOC6H4)3PAu(S2COEt), (I) (Fig. 1 and Table 1), was investigated. The Au atom exists within a linear geometry [175.87 (3)°] defined by S [2.3004 (8) Å] and P [2.2505 (7) Å] donor atoms. The orientation of the xanthate ligand is such that the S2 atom in close proximity [3.4239 (11) Å] to the Au atom as is normally found in these systems. The dihedral angles formed between the aromatic rings are 59.01 (14), 86.03 (14) and 77.46 (14)°, respectively. The crystal lattice is stabilized by C—H···π interactions and weaker O/S···H contacts. Each of the aromatic rings appears to be involved in a C—H···π contact. C17—H17C is 2.94 Å from the centroid of C4i—C9i, with an angle at H17C of 163° [symmetry code: (i) 1 − x, y, 0.5 − z], C10—H10B is 2.92 Å from the centroid of C11ii—C16ii with an angle of 156° at H10B [symmetry code: (ii) 0.5 − x, 0.5 + y, 0.5 − z] and C3—H3A is 2.97 Å from the centroid of C18iii—C23iii with an angle of 154° at H3A [symmetry code: (iii) −0.5 + x, 0.5 − y, −0.5 + z].

Experimental top

The title compound was prepared in 65% yield from the reaction between (p-MeOC6H4)3PAuCl (Ho & Tiekink, 2001) and K[S2COEt] using established procedures (Tiekink, 1985). Yellow crystals were obtained from the vapour diffusion of diethyl ether into a chloroform solution of the compound; m.p. 409–410 K. 1H NMR (CDCl3): δ 7.48–7.28 (m, 6H), 6.98–6.95 (m, 6H), 4.54 (q, 2H, J = 7.1 Hz), 3.84 (s, 9H), 1.39 p.p.m. (t, 3H, J = 7.1 Hz). 31P{1H} NMR (CDCl3): δ 33.7 p.p.m. ESI-MS: m/z = 902 [{(p-MeOC6H5)3P}2Au]+ and 1220 [{(p-MeOC6H5)3P}2Au2(S2COEt)]+. IR (KBr): 1182 (νC—O) and 1047 cm−1 (νC-S).

Refinement top

H atoms were placed in calculated positions and included in the final refinement in the riding-model approximation. The residual electron-density peak was located in the vicinity of the Au atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHEXLTL.

Figures top
[Figure 1] Fig. 1. The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
(O-Ethyldithiocarbonato)[tris(p-methoxyphenyl)phosphine]gold(I) top
Crystal data top
[AuC3H5OS2)(C21H21O3P)]F(000) = 2624
Mr = 670.50Dx = 1.780 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 7220 reflections
a = 14.7524 (8) Åθ = 2.3–29.4°
b = 15.2702 (8) ŵ = 6.14 mm1
c = 22.7615 (14) ÅT = 208 K
β = 102.634 (2)°Block, yellow
V = 5003.4 (5) Å30.29 × 0.26 × 0.12 mm
Z = 8
Data collection top
Bruker AXS SMART CCD
diffractometer
7255 independent reflections
Radiation source: fine-focus sealed tube5989 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.039
ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1420
Tmin = 0.485, Tmax = 1k = 2119
20818 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0316P)2]
where P = (Fo2 + 2Fc2)/3
7255 reflections(Δ/σ)max < 0.001'
289 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[AuC3H5OS2)(C21H21O3P)]V = 5003.4 (5) Å3
Mr = 670.50Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.7524 (8) ŵ = 6.14 mm1
b = 15.2702 (8) ÅT = 208 K
c = 22.7615 (14) Å0.29 × 0.26 × 0.12 mm
β = 102.634 (2)°
Data collection top
Bruker AXS SMART CCD
diffractometer
7255 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5989 reflections with I > 2σ(I)'
Tmin = 0.485, Tmax = 1Rint = 0.039
20818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.00Δρmax = 1.15 e Å3
7255 reflectionsΔρmin = 0.80 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.151886 (7)0.231058 (7)0.210398 (5)0.02809 (4)
S10.06972 (6)0.10969 (5)0.16901 (4)0.03724 (19)
S20.06197 (7)0.22145 (5)0.05854 (5)0.0429 (2)
P10.23201 (5)0.34587 (5)0.25747 (3)0.02374 (14)
O10.03134 (14)0.07680 (14)0.06834 (10)0.0332 (5)
O20.25579 (17)0.64952 (16)0.09770 (11)0.0486 (6)
O30.62012 (15)0.24719 (16)0.37412 (12)0.0405 (6)
O40.07013 (16)0.49833 (16)0.45230 (11)0.0427 (6)
C10.03029 (19)0.13660 (18)0.09419 (13)0.0273 (6)
C20.0827 (2)0.0909 (3)0.00711 (15)0.0456 (9)
H2A0.04050.08940.02070.055*
H2B0.11340.14810.00370.055*
C30.1530 (2)0.0199 (3)0.00787 (18)0.0544 (10)
H3A0.18830.02760.04880.082*
H3B0.19460.02220.01970.082*
H3C0.12180.03640.00430.082*
C40.24305 (18)0.43398 (18)0.20631 (12)0.0235 (5)
C50.32546 (19)0.4789 (2)0.20754 (13)0.0291 (6)
H50.38060.46070.23380.035*
C60.3266 (2)0.5503 (2)0.17044 (15)0.0349 (7)
H60.38260.58050.17190.042*
C70.2466 (2)0.5777 (2)0.13128 (14)0.0340 (7)
C80.1640 (2)0.5318 (2)0.12786 (15)0.0390 (8)
H80.10940.54890.10060.047*
C90.1638 (2)0.4604 (2)0.16545 (15)0.0347 (7)
H90.10830.42900.16320.042*
C100.1746 (3)0.6828 (3)0.05867 (19)0.0611 (11)
H10A0.19060.73380.03770.092*
H10B0.12960.69910.08200.092*
H10C0.14820.63820.02960.092*
C110.34770 (17)0.31617 (19)0.29707 (12)0.0241 (6)
C120.40366 (19)0.37467 (19)0.33578 (13)0.0279 (6)
H120.37900.42900.34380.034*
C130.49517 (19)0.3546 (2)0.36283 (13)0.0290 (6)
H130.53260.39520.38820.035*
C140.5304 (2)0.2727 (2)0.35146 (14)0.0292 (6)
C150.4742 (2)0.2131 (2)0.31574 (15)0.0356 (7)
H150.49730.15710.31010.043*
C160.3843 (2)0.23439 (19)0.28816 (15)0.0310 (6)
H160.34710.19330.26300.037*
C170.6799 (2)0.3043 (3)0.41376 (16)0.0411 (8)
H17A0.74100.27790.42570.062*
H17B0.65500.31470.44920.062*
H17C0.68480.35950.39360.062*
C180.17834 (18)0.39701 (18)0.31295 (13)0.0253 (6)
C190.18678 (19)0.48619 (18)0.32537 (13)0.0264 (6)
H190.21790.52190.30250.032*
C200.15035 (19)0.52390 (19)0.37085 (13)0.0279 (6)
H200.15600.58440.37850.033*
C210.10545 (19)0.4702 (2)0.40466 (14)0.0305 (6)
C220.0941 (2)0.3823 (2)0.39165 (15)0.0366 (7)
H220.06160.34710.41390.044*
C230.1300 (2)0.3455 (2)0.34629 (14)0.0335 (7)
H230.12180.28540.33780.040*
C240.0891 (3)0.5853 (2)0.47295 (17)0.0476 (9)
H24A0.06040.59610.50670.071*
H24B0.06430.62590.44070.071*
H24C0.15580.59340.48560.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02705 (7)0.02513 (7)0.02992 (7)0.00406 (4)0.00148 (4)0.00516 (4)
S10.0424 (4)0.0281 (4)0.0336 (4)0.0103 (3)0.0082 (3)0.0002 (3)
S20.0517 (5)0.0326 (4)0.0479 (5)0.0068 (4)0.0185 (4)0.0040 (4)
P10.0243 (3)0.0234 (3)0.0225 (4)0.0012 (3)0.0030 (3)0.0030 (3)
O10.0329 (11)0.0329 (12)0.0302 (11)0.0052 (9)0.0014 (9)0.0017 (9)
O20.0605 (16)0.0422 (14)0.0454 (15)0.0048 (12)0.0167 (12)0.0170 (12)
O30.0259 (11)0.0458 (13)0.0473 (15)0.0104 (9)0.0025 (10)0.0015 (11)
O40.0517 (14)0.0396 (13)0.0452 (14)0.0016 (11)0.0290 (11)0.0069 (11)
C10.0259 (13)0.0231 (13)0.0325 (16)0.0007 (11)0.0055 (11)0.0043 (12)
C20.0420 (19)0.058 (2)0.0300 (18)0.0009 (16)0.0076 (14)0.0057 (16)
C30.0388 (19)0.079 (3)0.040 (2)0.0050 (18)0.0034 (15)0.017 (2)
C40.0253 (13)0.0238 (13)0.0210 (13)0.0007 (10)0.0040 (10)0.0024 (11)
C50.0268 (14)0.0348 (16)0.0251 (15)0.0012 (12)0.0045 (11)0.0018 (12)
C60.0339 (16)0.0390 (18)0.0322 (17)0.0056 (13)0.0078 (13)0.0002 (14)
C70.0442 (18)0.0308 (16)0.0290 (16)0.0026 (13)0.0126 (13)0.0017 (13)
C80.0336 (16)0.0421 (19)0.0364 (18)0.0069 (14)0.0027 (13)0.0089 (15)
C90.0271 (15)0.0376 (17)0.0373 (18)0.0026 (12)0.0022 (12)0.0040 (14)
C100.079 (3)0.054 (3)0.052 (2)0.021 (2)0.018 (2)0.026 (2)
C110.0251 (13)0.0236 (14)0.0249 (14)0.0012 (10)0.0081 (11)0.0004 (11)
C120.0285 (14)0.0245 (14)0.0290 (15)0.0030 (11)0.0026 (11)0.0011 (12)
C130.0296 (14)0.0307 (15)0.0251 (15)0.0013 (12)0.0022 (11)0.0006 (12)
C140.0225 (14)0.0387 (17)0.0271 (15)0.0036 (12)0.0071 (11)0.0028 (13)
C150.0384 (17)0.0304 (16)0.0377 (18)0.0082 (13)0.0074 (14)0.0063 (13)
C160.0342 (16)0.0257 (15)0.0318 (17)0.0005 (12)0.0048 (12)0.0058 (12)
C170.0259 (15)0.053 (2)0.0408 (19)0.0031 (15)0.0005 (13)0.0042 (17)
C180.0216 (13)0.0272 (14)0.0267 (14)0.0005 (10)0.0040 (10)0.0015 (11)
C190.0256 (13)0.0255 (14)0.0288 (15)0.0005 (11)0.0074 (11)0.0011 (11)
C200.0264 (14)0.0276 (14)0.0302 (16)0.0033 (11)0.0074 (11)0.0026 (12)
C210.0252 (14)0.0373 (17)0.0303 (16)0.0022 (12)0.0088 (11)0.0040 (13)
C220.0378 (17)0.0386 (17)0.0382 (18)0.0052 (14)0.0189 (14)0.0010 (15)
C230.0377 (16)0.0266 (15)0.0372 (18)0.0045 (13)0.0105 (13)0.0027 (13)
C240.062 (2)0.045 (2)0.041 (2)0.0054 (17)0.0230 (17)0.0095 (17)
Geometric parameters (Å, º) top
Au—P12.2505 (7)C9—H90.9400
Au—S12.3004 (8)C10—H10A0.9700
S1—C11.724 (3)C10—H10B0.9700
S2—C11.650 (3)C10—H10C0.9700
P1—C41.810 (3)C11—C121.392 (4)
P1—C111.805 (3)C11—C161.393 (4)
P1—C181.808 (3)C12—C131.390 (4)
O1—C11.331 (3)C12—H120.9400
O1—C21.449 (4)C13—C141.400 (4)
O2—C71.361 (4)C13—H130.9400
O2—C101.420 (4)C14—C151.373 (4)
O3—C141.368 (4)C15—C161.377 (4)
O3—C171.416 (4)C15—H150.9400
O4—C211.371 (4)C16—H160.9400
O4—C241.416 (4)C17—H17A0.9700
C2—C31.487 (5)C17—H17B0.9700
C2—H2A0.9800C17—H17C0.9700
C2—H2B0.9800C18—C191.391 (4)
C3—H3A0.9700C18—C231.393 (4)
C3—H3B0.9700C19—C201.391 (4)
C3—H3C0.9700C19—H190.9400
C4—C51.391 (4)C20—C211.388 (4)
C4—C91.385 (4)C20—H200.9400
C5—C61.381 (4)C21—C221.377 (4)
C5—H50.9400C22—C231.379 (4)
C6—C71.379 (4)C22—H220.9400
C6—H60.9400C23—H230.9400
C7—C81.394 (4)C24—H24A0.9700
C8—C91.386 (4)C24—H24B0.9700
C8—H80.9400C24—H24C0.9700
P1—Au—S1175.87 (3)H10B—C10—H10C109.5
Au—S1—C1104.25 (10)C12—C11—C16118.2 (2)
C4—P1—C11107.44 (13)C12—C11—P1121.3 (2)
C4—P1—C18104.06 (13)C16—C11—P1120.4 (2)
C11—P1—C18105.69 (12)C13—C12—C11121.5 (3)
Au—P1—C4112.62 (9)C13—C12—H12119.2
Au—P1—C11112.51 (10)C11—C12—H12119.2
Au—P1—C18113.85 (9)C12—C13—C14118.6 (3)
C1—O1—C2119.1 (3)C12—C13—H13120.7
C7—O2—C10117.8 (3)C14—C13—H13120.7
C14—O3—C17118.8 (3)O3—C14—C15116.3 (3)
C21—O4—C24118.3 (3)O3—C14—C13123.6 (3)
S1—C1—S2127.03 (17)C15—C14—C13120.1 (3)
S1—C1—O1108.9 (2)C16—C15—C14120.7 (3)
S2—C1—O1124.1 (2)C16—C15—H15119.7
O1—C2—C3107.7 (3)C14—C15—H15119.7
O1—C2—H2A110.2C15—C16—C11120.7 (3)
C3—C2—H2A110.2C15—C16—H16119.6
O1—C2—H2B110.2C11—C16—H16119.6
C3—C2—H2B110.2O3—C17—H17A109.5
H2A—C2—H2B108.5O3—C17—H17B109.5
C2—C3—H3A109.5H17A—C17—H17B109.5
C2—C3—H3B109.5O3—C17—H17C109.5
H3A—C3—H3B109.5H17A—C17—H17C109.5
C2—C3—H3C109.5H17B—C17—H17C109.5
H3A—C3—H3C109.5C19—C18—C23118.4 (3)
H3B—C3—H3C109.5C19—C18—P1122.1 (2)
C5—C4—C9118.4 (3)C23—C18—P1119.4 (2)
C5—C4—P1123.7 (2)C18—C19—C20121.6 (3)
C9—C4—P1117.8 (2)C18—C19—H19119.2
C6—C5—C4120.3 (3)C20—C19—H19119.2
C6—C5—H5119.8C21—C20—C19118.5 (3)
C4—C5—H5119.8C21—C20—H20120.7
C7—C6—C5120.8 (3)C19—C20—H20120.7
C7—C6—H6119.6C22—C21—O4115.2 (3)
C5—C6—H6119.6C22—C21—C20120.4 (3)
O2—C7—C6115.6 (3)O4—C21—C20124.3 (3)
O2—C7—C8124.6 (3)C21—C22—C23120.7 (3)
C6—C7—C8119.9 (3)C21—C22—H22119.7
C7—C8—C9118.7 (3)C23—C22—H22119.7
C7—C8—H8120.6C22—C23—C18120.2 (3)
C9—C8—H8120.6C22—C23—H23119.9
C8—C9—C4121.8 (3)C18—C23—H23119.9
C8—C9—H9119.1O4—C24—H24A109.5
C4—C9—H9119.1O4—C24—H24B109.5
O2—C10—H10A109.5H24A—C24—H24B109.5
O2—C10—H10B109.5O4—C24—H24C109.5
H10A—C10—H10B109.5H24A—C24—H24C109.5
O2—C10—H10C109.5H24B—C24—H24C109.5
H10A—C10—H10C109.5

Experimental details

Crystal data
Chemical formula[AuC3H5OS2)(C21H21O3P)]
Mr670.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)208
a, b, c (Å)14.7524 (8), 15.2702 (8), 22.7615 (14)
β (°) 102.634 (2)
V3)5003.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)6.14
Crystal size (mm)0.29 × 0.26 × 0.12
Data collection
DiffractometerBruker AXS SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.485, 1
No. of measured, independent and
observed [I > 2σ(I)'] reflections
20818, 7255, 5989
Rint0.039
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.00
No. of reflections7255
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.80

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHEXLTL.

Selected geometric parameters (Å, º) top
Au—P12.2505 (7)P1—C111.805 (3)
Au—S12.3004 (8)P1—C181.808 (3)
S1—C11.724 (3)O1—C11.331 (3)
S2—C11.650 (3)O1—C21.449 (4)
P1—C41.810 (3)
P1—Au—S1175.87 (3)Au—P1—C11112.51 (10)
Au—S1—C1104.25 (10)Au—P1—C18113.85 (9)
C4—P1—C11107.44 (13)C1—O1—C2119.1 (3)
C4—P1—C18104.06 (13)S1—C1—S2127.03 (17)
C11—P1—C18105.69 (12)S1—C1—O1108.9 (2)
Au—P1—C4112.62 (9)S2—C1—O1124.1 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds