Download citation
Download citation
link to html
In the title salt, (C10H9N2)2[Zn(C4N2S2)2]·C2H3N or [4,4′-bipyH][Zn(mnt)2]·C2H3N, where mnt2− denotes maleo­nitrile­di­thio­late and 4,4′-bipyH is monoprotonated 4,4′-bipyridine, the ZnII ion is tetrahedrally surrounded by four S atoms of two mnt2− ligands. The counter-cations, 4,4′-bipyH+, form one-dimensional chains through strong (pyridine)N—H...N(pyridine) hydrogen-bonding interactions. Anions and cations stack in alternating layers which are nearly parallel to the bc plane of the crystallographic unit cell.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021293/lh6017sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021293/lh6017Isup2.hkl
Contains datablock I

CCDC reference: 202301

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.088
  • Data-to-parameter ratio = 13.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(1) - C(2) = 1.43 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(3) - C(4) = 1.42 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(5) - C(6) = 1.42 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(7) - C(8) = 1.43 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

In recent years, the principles of supramolecular chemistry, in which a great deal new concepts concern intermolecular non-covalent interactions, such as hydrogen-bonding and π-π-stacking interactions, have been introduced into the area of materials science (Saadeh et al., 2000; Lawrence et al., 1999). Some of the resulting materials have exhibited novel properties (Gardner et al., 1995; Venkataraman et al., 1995; Fujita et al., 1994; Yaghi et al., 1995).

More recently, we have paid attention to the construction of [M(mnt)2] (M = NiIII, PdIII and PtIII) with pyridinium derivatives, in which the CN groups of the mnt2− ligand and the H—N groups of the pyridinium derivatives may exist with hydrogen-bonding interactions, and have found that there are strong bifurcated hydrogen-bonding interactions between these molecules (Ren Chen et al., 2002; Ren, Lu et al., 2002). We have obtained one-dimensional to three-dimensional molecular magnets based on this class of building block. It has been known that a number of salts consisting of pyridinium and some anions with tetrahedral configurations, namely, tetrafluoroborate, perchlorate, periodate, fluorosulfonate and perrhenate, appear to be ferroelectric (Czarnecki et al., 1994a,b; Wasicki et al., 1997; Pajak et al., 1998, 2000, 2002; Szafranski et al., 2002). It is also worth noting that there exist bifuracated hydrogen-bonding interactions between O or F atoms of anions and H atom of pyridiniums in those ferroelectric materials referred to above. The molecular geometries of the anion of [M(mnt)2]2−, where M denotes Zn2+ or Cd2+ ions, are tetrahedral and similar to those inorganic anions referred to above, so it is expected that new ferroelectric material families based on ion-pair complexes, which form bipyridinum derivatives and [Zn(mnt)2]2− ([Cd(mnt)2]2−) can be obtained. In this communication, we report the crystal structure of [4,4'-bipyH]2[Zn(mnt)2], (I).

The structure of (I) is composed of 4,4'-bipyH+ monovalent cations and [Zn(mnt)2]2−, together with an acetonitrile solvent molecule (Fig. 1). The anion consists a ZnII ion surrounded by four S atoms of two mnt2− ligands, forming a distorted tetrahedron (ZnS4). The Zn—S distances range from 2.3223 (9) to 2.3373 (9) Å, with internal S—Zn—S chelating angles ranging between 92.22 (3) and 92.95 (3)° (Table 1). The dihedral angle between the Zn1/S1/C2/C3/S2 and Zn1/S3/C6/C7/S4 least-squares planes is 87.61 (4)° and hence almost perpendicular to each other. These results are in agreement with that of [Et4N]2[Zn(mnt)2] (Stach et al., 1986). In (I), the cations of the two bipyridyl rings twist away from one another, and the dihedral angles between the two bipyridyl rings of 4,4'-bipyridine is 18.9 (2)° for the molecule containing N5, and 22.2 (2)° for the molecule containing N7. The H atoms bonded to the N atoms of 4,4'-bipyridine are disordered, this was also found in other compounds containing bipyridine (Lough et al., 2000). The relative occupancies of the H atoms are 0.25/0.75 for H5A/H6A and 0.25/0.75 for H7A/H8A. The adjacent 4,4'-bipyridinium molecules are linked by strong hydrogen-bonding interactions to form an one-dimensional chains along the c axis of the unit cell (Fig. 2). The corresponding hydrogen-bonding parameters are listed in Table 2, but there are no hydrogen-bonding interactions between N atoms of CN (mnt) and N atoms of 4,4'-bipyridinium. The anions and cations form alternating layers, which are nearly parallel bc plane of the crystallographic unit cell (Fig. 3).

Experimental top

Disodium maleonitriledithiolate (Na2mnt) was prepared following the procedure in the literature (Davison et al., 1967). 4,4'-Bipyridinium chloride was prepared using 4,4'-bipyridine and one equivalent of dilute hydrochloride acid. A similar method for synthesizing [Bu4N]2[Zn(mnt)2] (Davison et al., 1967) was used to prepare [4,4'-bipyH]2[Zn(mnt)2]. Good quality light-red single crystals suitable for X-ray analysis were obtained about a week after dispersing ethyl ether into an acetonitrile solution of (I).

Refinement top

All H atoms were placed in geometrically calculated positions (C—H = 0.93 and 0.97 Å), with Uiso = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The one-dimensional cations chain formed by hydrogen-bond interactions.
[Figure 3] Fig. 3. The layered packing of alternating anions and cations in (I).
(I) top
Crystal data top
(C10H9N2)2[Zn(C4N2S2)2]·C2H3NV = 1567.8 (3) Å3
Mr = 701.17Z = 2
Triclinic, P1F(000) = 716
Hall symbol: -P 1Dx = 1.485 Mg m3
a = 9.591 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.086 (1) Åθ = 2.5–25.0°
c = 16.659 (2) ŵ = 1.09 mm1
α = 88.22 (1)°T = 293 K
β = 76.84 (1)°Needle, light-red
γ = 88.00 (1)°0.15 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
5422 independent reflections
Radiation source: fine-focus sealed tube3920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(North et al., 1984)
h = 119
Tmin = 0.847, Tmax = 0.901k = 1011
7842 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
5422 reflections(Δ/σ)max = 0.001
398 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
(C10H9N2)2[Zn(C4N2S2)2]·C2H3Nγ = 88.00 (1)°
Mr = 701.17V = 1567.8 (3) Å3
Triclinic, P1Z = 2
a = 9.591 (1) ÅMo Kα radiation
b = 10.086 (1) ŵ = 1.09 mm1
c = 16.659 (2) ÅT = 293 K
α = 88.22 (1)°0.15 × 0.10 × 0.10 mm
β = 76.84 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5422 independent reflections
Absorption correction: empirical (using intensity measurements)
(North et al., 1984)
3920 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.901Rint = 0.062
7842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
5422 reflectionsΔρmin = 0.28 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.91975 (4)0.22278 (4)0.19796 (2)0.05554 (14)
S11.06773 (10)0.12157 (9)0.08465 (5)0.0628 (2)
S20.79122 (9)0.34407 (9)0.11682 (5)0.0623 (2)
S30.81168 (11)0.08240 (10)0.30560 (5)0.0763 (3)
S41.02371 (9)0.34514 (8)0.28479 (4)0.0543 (2)
N11.1847 (3)0.2131 (3)0.13412 (17)0.0767 (9)
N20.8497 (3)0.4513 (3)0.09892 (18)0.0796 (9)
N30.8170 (3)0.0126 (3)0.51978 (18)0.0757 (9)
N41.0675 (4)0.3286 (4)0.49470 (18)0.0936 (11)
N50.4833 (3)0.6824 (3)0.08961 (15)0.0588 (7)
H5A0.47560.64270.13680.071*0.25
N60.5655 (3)1.0253 (3)0.28556 (14)0.0583 (7)
H6A0.57701.07140.33080.070*0.75
N70.5453 (3)0.1932 (3)0.58722 (14)0.0631 (8)
H7A0.55160.15070.63190.076*0.25
N80.4902 (3)0.5494 (2)0.22851 (14)0.0556 (7)
H8A0.48230.59670.18580.067*0.75
N90.7971 (4)0.2318 (4)0.7203 (2)0.0999 (12)
C11.1096 (4)0.2169 (3)0.0705 (2)0.0580 (8)
C21.0191 (3)0.2256 (3)0.01010 (17)0.0513 (8)
C30.9067 (3)0.3142 (3)0.02262 (17)0.0503 (8)
C40.8787 (3)0.3906 (3)0.0455 (2)0.0587 (9)
C51.0230 (4)0.2906 (3)0.4423 (2)0.0615 (9)
C60.9717 (3)0.2488 (3)0.37373 (16)0.0504 (8)
C70.8874 (3)0.1403 (3)0.38149 (17)0.0541 (8)
C80.8512 (3)0.0701 (3)0.45923 (19)0.0594 (9)
C90.5818 (4)0.6421 (3)0.02533 (19)0.0608 (9)
H90.64220.57060.03210.073*
C100.5982 (3)0.7022 (3)0.05117 (17)0.0532 (8)
H100.66740.67090.09560.064*
C110.5102 (3)0.8097 (3)0.06097 (16)0.0434 (7)
C120.4076 (3)0.8492 (3)0.00666 (16)0.0519 (8)
H120.34560.92050.00190.062*
C130.3967 (4)0.7838 (3)0.08111 (17)0.0584 (9)
H130.32690.81140.12640.070*
C140.4437 (4)1.0370 (3)0.23035 (18)0.0562 (8)
H140.37221.09500.24100.067*
C150.4203 (3)0.9660 (3)0.15794 (16)0.0520 (8)
H150.33300.97400.11990.062*
C160.5280 (3)0.8816 (3)0.14158 (16)0.0434 (7)
C170.6534 (3)0.8714 (3)0.20085 (16)0.0534 (8)
H170.72710.81450.19200.064*
C180.6704 (4)0.9448 (3)0.27331 (17)0.0595 (9)
H180.75530.93770.31340.071*
C190.4485 (4)0.1632 (3)0.54675 (19)0.0661 (10)
H190.38630.09550.56800.079*
C200.4343 (4)0.2266 (3)0.47433 (18)0.0604 (9)
H200.36520.20150.44700.073*
C210.5257 (3)0.3289 (3)0.44337 (16)0.0460 (7)
C220.6255 (3)0.3600 (3)0.48591 (16)0.0521 (8)
H220.68850.42790.46660.063*
C230.6329 (4)0.2907 (3)0.55766 (17)0.0581 (9)
H230.70140.31310.58610.070*
C240.6120 (3)0.5451 (3)0.25274 (17)0.0555 (8)
H240.68890.59240.22270.067*
C250.6279 (3)0.4727 (3)0.32097 (16)0.0531 (8)
H250.71490.47070.33680.064*
C260.5141 (3)0.4025 (3)0.36623 (15)0.0431 (7)
C270.3889 (3)0.4082 (3)0.33878 (17)0.0533 (8)
H270.30990.36210.36750.064*
C280.3801 (4)0.4811 (3)0.26978 (17)0.0572 (8)
H280.29550.48280.25140.069*
C290.9131 (5)0.2524 (4)0.7086 (2)0.0702 (10)
C301.0621 (4)0.2822 (4)0.6940 (2)0.0901 (12)
H30A1.09730.30520.63680.135*
H30B1.11490.20590.70840.135*
H30C1.07380.35540.72720.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0570 (2)0.0684 (3)0.0416 (2)0.00790 (19)0.01190 (17)0.00498 (17)
S10.0768 (6)0.0640 (6)0.0471 (4)0.0075 (5)0.0145 (4)0.0019 (4)
S20.0538 (5)0.0840 (7)0.0483 (4)0.0032 (5)0.0111 (4)0.0029 (4)
S30.0933 (7)0.0840 (7)0.0547 (5)0.0366 (6)0.0206 (5)0.0159 (5)
S40.0548 (5)0.0620 (5)0.0469 (4)0.0085 (4)0.0130 (4)0.0045 (4)
N10.086 (2)0.085 (2)0.0505 (16)0.0032 (18)0.0002 (17)0.0075 (16)
N20.086 (2)0.089 (2)0.0659 (18)0.0002 (18)0.0234 (18)0.0176 (17)
N30.072 (2)0.085 (2)0.0616 (18)0.0034 (17)0.0019 (16)0.0172 (17)
N40.115 (3)0.113 (3)0.0601 (19)0.004 (2)0.034 (2)0.0041 (19)
N50.0713 (19)0.0681 (19)0.0423 (15)0.0221 (16)0.0237 (15)0.0208 (14)
N60.0751 (19)0.0627 (18)0.0387 (14)0.0054 (15)0.0183 (14)0.0187 (13)
N70.078 (2)0.070 (2)0.0375 (14)0.0151 (17)0.0106 (15)0.0199 (13)
N80.0724 (19)0.0597 (17)0.0349 (13)0.0077 (15)0.0143 (13)0.0198 (12)
N90.093 (3)0.119 (3)0.089 (2)0.027 (2)0.018 (2)0.000 (2)
C10.064 (2)0.056 (2)0.054 (2)0.0075 (17)0.0144 (18)0.0054 (17)
C20.061 (2)0.057 (2)0.0377 (15)0.0126 (17)0.0122 (15)0.0031 (14)
C30.0518 (19)0.059 (2)0.0419 (16)0.0109 (16)0.0145 (15)0.0046 (15)
C40.054 (2)0.068 (2)0.0540 (19)0.0071 (17)0.0131 (17)0.0038 (18)
C50.060 (2)0.074 (2)0.0475 (18)0.0026 (18)0.0079 (17)0.0014 (18)
C60.0452 (18)0.066 (2)0.0391 (15)0.0077 (16)0.0080 (14)0.0026 (15)
C70.0519 (19)0.063 (2)0.0445 (17)0.0031 (17)0.0056 (15)0.0059 (15)
C80.055 (2)0.071 (2)0.0478 (18)0.0044 (17)0.0044 (16)0.0083 (18)
C90.074 (2)0.057 (2)0.057 (2)0.0033 (18)0.0290 (19)0.0237 (17)
C100.062 (2)0.055 (2)0.0423 (16)0.0027 (17)0.0151 (15)0.0157 (15)
C110.0505 (18)0.0471 (18)0.0350 (15)0.0102 (15)0.0148 (14)0.0104 (13)
C120.064 (2)0.0516 (19)0.0412 (16)0.0065 (16)0.0141 (16)0.0100 (14)
C130.068 (2)0.070 (2)0.0373 (17)0.0145 (19)0.0130 (16)0.0110 (16)
C140.067 (2)0.056 (2)0.0491 (18)0.0029 (17)0.0240 (17)0.0166 (16)
C150.0544 (19)0.062 (2)0.0398 (16)0.0013 (16)0.0130 (15)0.0133 (15)
C160.0553 (18)0.0433 (17)0.0344 (14)0.0042 (14)0.0170 (14)0.0074 (13)
C170.063 (2)0.057 (2)0.0398 (16)0.0044 (16)0.0137 (16)0.0108 (15)
C180.067 (2)0.071 (2)0.0387 (16)0.0004 (19)0.0089 (16)0.0126 (16)
C190.068 (2)0.069 (2)0.0543 (19)0.0067 (19)0.0039 (19)0.0314 (18)
C200.066 (2)0.065 (2)0.0504 (18)0.0059 (18)0.0175 (17)0.0232 (17)
C210.0520 (19)0.0488 (19)0.0335 (14)0.0041 (15)0.0041 (14)0.0104 (13)
C220.065 (2)0.0502 (19)0.0400 (16)0.0013 (16)0.0118 (16)0.0088 (14)
C230.072 (2)0.063 (2)0.0413 (17)0.0115 (18)0.0185 (16)0.0054 (16)
C240.056 (2)0.069 (2)0.0389 (16)0.0107 (17)0.0061 (15)0.0174 (15)
C250.0526 (19)0.067 (2)0.0392 (16)0.0047 (16)0.0101 (15)0.0124 (15)
C260.0548 (19)0.0419 (17)0.0308 (13)0.0026 (14)0.0073 (14)0.0092 (12)
C270.059 (2)0.057 (2)0.0433 (16)0.0161 (16)0.0107 (16)0.0168 (15)
C280.063 (2)0.067 (2)0.0462 (17)0.0095 (18)0.0227 (16)0.0179 (16)
C290.093 (3)0.065 (3)0.056 (2)0.010 (2)0.024 (2)0.0030 (18)
C300.084 (3)0.095 (3)0.097 (3)0.009 (2)0.035 (3)0.013 (2)
Geometric parameters (Å, º) top
Zn1—S32.3223 (9)C11—C121.376 (4)
Zn1—S22.3225 (10)C11—C161.484 (4)
Zn1—S12.3277 (10)C12—C131.371 (4)
Zn1—S42.3373 (9)C12—H120.9300
S1—C21.735 (3)C13—H130.9300
S2—C31.731 (3)C14—C151.361 (4)
S3—C71.721 (3)C14—H140.9300
S4—C61.731 (3)C15—C161.385 (4)
N1—C11.139 (4)C15—H150.9300
N2—C41.145 (4)C16—C171.374 (4)
N3—C81.135 (4)C17—C181.377 (4)
N4—C51.137 (4)C17—H170.9300
N5—C131.320 (4)C18—H180.9300
N5—C91.321 (4)C19—C201.380 (4)
N5—H5A0.8600C19—H190.9300
N6—C141.316 (4)C20—C211.386 (4)
N6—C181.318 (4)C20—H200.9300
N6—H6A0.8600C21—C221.364 (4)
N7—C191.313 (4)C21—C261.488 (4)
N7—C231.325 (4)C22—C231.380 (4)
N7—H7A0.8600C22—H220.9300
N8—C241.318 (4)C23—H230.9300
N8—C281.324 (3)C24—C251.367 (4)
N8—H8A0.8600C24—H240.9300
N9—C291.111 (4)C25—C261.381 (4)
C1—C21.426 (4)C25—H250.9300
C2—C31.358 (4)C26—C271.378 (4)
C3—C41.422 (4)C27—C281.362 (4)
C5—C61.424 (5)C27—H270.9300
C6—C71.368 (4)C28—H280.9300
C7—C81.434 (4)C29—C301.435 (5)
C9—C101.372 (4)C30—H30A0.9600
C9—H90.9300C30—H30B0.9600
C10—C111.380 (4)C30—H30C0.9600
C10—H100.9300
S3—Zn1—S2122.76 (4)N6—C14—C15121.3 (3)
S3—Zn1—S1116.27 (4)N6—C14—H14119.3
S2—Zn1—S192.95 (3)C15—C14—H14119.3
S3—Zn1—S492.22 (3)C14—C15—C16119.2 (3)
S2—Zn1—S4116.18 (4)C14—C15—H15120.4
S1—Zn1—S4118.89 (3)C16—C15—H15120.4
C2—S1—Zn196.49 (11)C17—C16—C15117.9 (2)
C3—S2—Zn197.14 (11)C17—C16—C11121.4 (3)
C7—S3—Zn198.70 (11)C15—C16—C11120.7 (3)
C6—S4—Zn198.18 (11)C16—C17—C18120.3 (3)
C13—N5—C9119.7 (3)C16—C17—H17119.8
C13—N5—H5A120.1C18—C17—H17119.8
C9—N5—H5A120.1N6—C18—C17119.6 (3)
C14—N6—C18121.7 (3)N6—C18—H18120.2
C14—N6—H6A119.1C17—C18—H18120.2
C18—N6—H6A119.1N7—C19—C20123.5 (3)
C19—N7—C23118.4 (3)N7—C19—H19118.2
C19—N7—H7A120.8C20—C19—H19118.2
C23—N7—H7A120.8C19—C20—C21118.2 (3)
C24—N8—C28120.1 (2)C19—C20—H20120.9
C24—N8—H8A119.9C21—C20—H20120.9
C28—N8—H8A119.9C22—C21—C20118.0 (3)
N1—C1—C2177.7 (4)C22—C21—C26121.3 (3)
C3—C2—C1118.7 (3)C20—C21—C26120.7 (3)
C3—C2—S1125.9 (2)C21—C22—C23120.0 (3)
C1—C2—S1115.4 (2)C21—C22—H22120.0
C2—C3—C4119.2 (3)C23—C22—H22120.0
C2—C3—S2125.1 (2)N7—C23—C22121.9 (3)
C4—C3—S2115.7 (2)N7—C23—H23119.1
N2—C4—C3176.9 (4)C22—C23—H23119.1
N4—C5—C6176.7 (4)N8—C24—C25121.6 (3)
C7—C6—C5120.0 (3)N8—C24—H24119.2
C7—C6—S4125.1 (2)C25—C24—H24119.2
C5—C6—S4114.8 (2)C24—C25—C26119.6 (3)
C6—C7—C8119.3 (3)C24—C25—H25120.2
C6—C7—S3125.3 (2)C26—C25—H25120.2
C8—C7—S3115.3 (3)C27—C26—C25117.3 (2)
N3—C8—C7176.8 (4)C27—C26—C21121.9 (3)
N5—C9—C10122.3 (3)C25—C26—C21120.8 (3)
N5—C9—H9118.9C28—C27—C26120.4 (3)
C10—C9—H9118.9C28—C27—H27119.8
C9—C10—C11118.9 (3)C26—C27—H27119.8
C9—C10—H10120.6N8—C28—C27121.0 (3)
C11—C10—H10120.6N8—C28—H28119.5
C12—C11—C10117.8 (2)C27—C28—H28119.5
C12—C11—C16121.3 (3)N9—C29—C30178.6 (5)
C10—C11—C16120.8 (3)C29—C30—H30A109.5
C13—C12—C11120.1 (3)C29—C30—H30B109.5
C13—C12—H12119.9H30A—C30—H30B109.5
C11—C12—H12119.9C29—C30—H30C109.5
N5—C13—C12121.2 (3)H30A—C30—H30C109.5
N5—C13—H13119.4H30B—C30—H30C109.5
C12—C13—H13119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N80.861.802.651 (3)170
N8—H8A···N50.861.802.651 (3)173
N6—H6A···N7i0.861.882.709 (3)162
N7—H7A···N6ii0.861.862.709 (3)167
Symmetry codes: (i) x, y+1, z1; (ii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula(C10H9N2)2[Zn(C4N2S2)2]·C2H3N
Mr701.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.591 (1), 10.086 (1), 16.659 (2)
α, β, γ (°)88.22 (1), 76.84 (1), 88.00 (1)
V3)1567.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1984)
Tmin, Tmax0.847, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
7842, 5422, 3920
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.088, 1.01
No. of reflections5422
No. of parameters398
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.28

Computer programs: SMART (Bruker, 1998), SMART, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Zn1—S32.3223 (9)Zn1—S12.3277 (10)
Zn1—S22.3225 (10)Zn1—S42.3373 (9)
S3—Zn1—S2122.76 (4)S3—Zn1—S492.22 (3)
S3—Zn1—S1116.27 (4)S2—Zn1—S4116.18 (4)
S2—Zn1—S192.95 (3)S1—Zn1—S4118.89 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N80.861.802.651 (3)170
N8—H8A···N50.861.802.651 (3)173
N6—H6A···N7i0.861.882.709 (3)162
N7—H7A···N6ii0.861.862.709 (3)167
Symmetry codes: (i) x, y+1, z1; (ii) x, y1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds