Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Li(C12H10O2P)(C4H8O)]n, the O atoms of adjacent and bridging di­phenyl­phosphinate ligands and that from a tetra­hydro­furan (thf) mol­ecule are arranged in a tetrahedral manner around the Li atoms, resulting in a one-dimensional array (parallel to the a axis) of alternate eight-membered and rectangular planar four-membered rings [the two Li—O distances are 1.962 (6) and 1.991 (6) Å, and the Li—O—Li and O—Li—O angles are 88.3 (2) and 91.7 (2)°, respectively]. The Li—O distances for the O atoms of the phosphinate ligand are 1.992 (6) (for the μ-O atom) and 1.897 (6) Å, and the distance from Li to the O atom of the thf ligand is 2.028 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020986/lh6016sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020986/lh6016Isup2.hkl
Contains datablock I

CCDC reference: 202292

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.050
  • wR factor = 0.130
  • Data-to-parameter ratio = 13.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

There has been only one previous reported structure of a lithium diorganophosphinate complex, namely Li[Mes2PO2] (Beswick et al., 1997). This complex consists of discrete dimeric molecules with two bridging Mes2PO2 (dimesitylphosphinate) ligands attached to two Li+ cations forming eight-membered rings. Two THF molecules, attached to each Li+ cation via lone pairs on the O atoms, complete the coordination geometry for these distinct dimers.

In contrast, the title compound, (I), has a linear polymeric arrangement with two types of rings alternate to one another. As seen in Fig. 1, there is an eight-membered ring, previously observed with bridging dimesitylphosphinate ligands, and also rectangular planar arrays consisting of two Li and two O atoms from adjacent phosphinate ligands (as seen in the packing diagram, Fig. 2). The rectangular part is a result of the eight-membered ring dimers binding with each other. An O atom from a THF molecule completes the tetrahedral geometry around each Li+ atom. This arrangement no doubt results as this Ph2PO2 ligand is less sterically hindered than the Mes2PO2 one. The linear arrangement appears to be very stable as the compound resists disolution in common organic solvents.

Experimental top

1,4-dibromo-2,3-dinitro-benzene was reacted with 2 equivalents of n-butyllithium (anhydrous THF, 173 K), followed by the addition of 2.5 equivalents of diphenylchlorophosphine (anhydrous THF, 193 K). The following workup (filtration, solvent removal, washings with diethyl ether) yielded a pale brown powder as a mixture of reaction products. Crystals of the title compound were obtained by allowing diethyl ether diffusion into a THF solution of the product mixture.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON (Spek, 1990); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of (I), shown with 50% probability displacement ellipsoids. H atoms are not indicated.
[Figure 2] Fig. 2. PLATON (Spek, 1990) diagram of the crystal packing. Color code: green P, yellow Li, red O and black C.
(I) top
Crystal data top
[Li(C18H18O3P)]F(000) = 624
Mr = 296.21Dx = 1.306 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 5.790 (1) Åθ = 10–15°
b = 16.655 (3) ŵ = 0.19 mm1
c = 15.782 (3) ÅT = 293 K
β = 98.07 (2)°Prism, light yellow
V = 1506.9 (6) Å30.35 × 0.15 × 0.10 mm
Z = 4
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
Rint = 0.023
non–profiled ω/2θ scansθmax = 25.0°, θmin = 1.8°
Absorption correction: ψ-scan
(North, Phillips & Mathews, 1968)
h = 06
Tmin = 0.941, Tmax = 0.981k = 019
2913 measured reflectionsl = 1818
2635 independent reflections3 standard reflections every 166 min
1602 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.9374P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max = 0.006
S = 1.03Δρmax = 0.30 e Å3
2635 reflectionsΔρmin = 0.29 e Å3
190 parameters
Crystal data top
[Li(C18H18O3P)]V = 1506.9 (6) Å3
Mr = 296.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.790 (1) ŵ = 0.19 mm1
b = 16.655 (3) ÅT = 293 K
c = 15.782 (3) Å0.35 × 0.15 × 0.10 mm
β = 98.07 (2)°
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
1602 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North, Phillips & Mathews, 1968)
Rint = 0.023
Tmin = 0.941, Tmax = 0.9813 standard reflections every 166 min
2913 measured reflections intensity decay: 2%
2635 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2635 reflectionsΔρmin = 0.29 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.78088 (15)0.08508 (5)0.39213 (6)0.0283 (2)
O10.6158 (4)0.03503 (12)0.43570 (13)0.0315 (6)
O21.0371 (4)0.07388 (13)0.41791 (14)0.0360 (6)
Li10.7060 (9)0.0032 (3)0.5553 (3)0.0334 (13)
C10.7098 (6)0.18983 (19)0.4046 (2)0.0311 (8)
C20.8569 (7)0.2494 (2)0.3822 (2)0.0478 (10)
H20.99380.2350.36150.057*
C30.8039 (8)0.3296 (2)0.3899 (3)0.0602 (12)
H30.90340.36870.37350.072*
C40.6049 (8)0.3517 (2)0.4217 (3)0.0632 (12)
H40.57060.40570.42830.076*
C50.4579 (7)0.2940 (3)0.4435 (3)0.0623 (12)
H50.32180.3090.46450.075*
C60.5073 (6)0.2135 (2)0.4351 (2)0.0464 (10)
H60.40410.17490.450.056*
C70.7130 (6)0.07102 (18)0.2776 (2)0.0307 (8)
C80.8756 (7)0.0932 (2)0.2249 (2)0.0471 (10)
H81.02180.11130.24930.056*
C90.8236 (9)0.0886 (3)0.1371 (2)0.0597 (12)
H90.93450.10370.10290.072*
C100.6103 (10)0.0622 (3)0.1004 (3)0.0639 (13)
H100.57420.06040.04110.077*
C110.4492 (8)0.0382 (3)0.1508 (3)0.0630 (12)
H110.30530.01850.12580.076*
C120.5003 (7)0.0432 (2)0.2391 (2)0.0478 (10)
H120.38890.02740.27290.057*
O500.7923 (4)0.09484 (15)0.62916 (17)0.0531 (8)
C510.6510 (9)0.1517 (3)0.6643 (3)0.0808 (16)
H51A0.60710.13160.71750.097*
H51B0.50990.16170.62480.097*
C520.7878 (9)0.2271 (3)0.6802 (4)0.0879 (17)
H52A0.70460.27190.65090.105*
H52B0.81720.23890.74090.105*
C531.0093 (8)0.2122 (3)0.6460 (3)0.0755 (15)
H53A1.00570.23590.58960.091*
H53B1.14070.23420.68380.091*
C541.0246 (7)0.1237 (2)0.6417 (3)0.0638 (13)
H54A1.10530.10760.59460.077*
H54B1.10870.10260.69450.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0217 (4)0.0296 (4)0.0336 (5)0.0005 (4)0.0039 (3)0.0053 (4)
O10.0242 (12)0.0340 (13)0.0369 (13)0.0020 (10)0.0067 (10)0.0082 (10)
O20.0211 (12)0.0402 (14)0.0461 (14)0.0009 (10)0.0024 (10)0.0078 (11)
Li10.029 (3)0.035 (3)0.037 (3)0.005 (2)0.009 (3)0.006 (2)
C10.0289 (19)0.0303 (19)0.0324 (19)0.0019 (14)0.0021 (15)0.0015 (14)
C20.044 (2)0.040 (2)0.062 (3)0.0037 (18)0.014 (2)0.0028 (19)
C30.072 (3)0.035 (2)0.074 (3)0.012 (2)0.012 (3)0.006 (2)
C40.068 (3)0.035 (2)0.081 (3)0.004 (2)0.008 (3)0.012 (2)
C50.045 (3)0.051 (3)0.090 (3)0.009 (2)0.008 (2)0.021 (2)
C60.037 (2)0.039 (2)0.064 (3)0.0022 (18)0.0096 (19)0.0081 (19)
C70.0308 (19)0.0230 (18)0.0385 (19)0.0031 (15)0.0051 (15)0.0042 (14)
C80.050 (2)0.051 (2)0.042 (2)0.001 (2)0.0133 (18)0.0075 (19)
C90.080 (3)0.062 (3)0.041 (2)0.005 (3)0.022 (2)0.008 (2)
C100.097 (4)0.056 (3)0.036 (2)0.013 (3)0.002 (3)0.003 (2)
C110.064 (3)0.065 (3)0.055 (3)0.001 (2)0.012 (2)0.009 (2)
C120.043 (2)0.052 (2)0.048 (2)0.0045 (19)0.0058 (19)0.0004 (19)
O500.0354 (15)0.0499 (17)0.075 (2)0.0066 (13)0.0123 (13)0.0233 (14)
C510.062 (3)0.070 (3)0.119 (4)0.003 (3)0.042 (3)0.023 (3)
C520.080 (4)0.056 (3)0.127 (5)0.008 (3)0.012 (3)0.036 (3)
C530.068 (3)0.055 (3)0.103 (4)0.016 (3)0.006 (3)0.014 (3)
C540.036 (3)0.060 (3)0.097 (4)0.009 (2)0.011 (2)0.025 (3)
Geometric parameters (Å, º) top
P1—O21.494 (2)C7—C81.391 (5)
P1—O11.505 (2)C8—C91.377 (5)
P1—C11.810 (3)C8—H80.93
P1—C71.811 (3)C9—C101.362 (6)
P1—Li13.049 (5)C9—H90.93
O1—Li1i1.962 (6)C10—C111.368 (6)
O1—Li11.991 (6)C10—H100.93
O2—Li1ii1.897 (6)C11—C121.386 (5)
Li1—O2ii1.897 (6)C11—H110.93
Li1—O1i1.962 (6)C12—H120.93
Li1—O502.028 (6)O50—C511.414 (5)
Li1—Li1i2.754 (11)O50—C541.416 (4)
C1—C61.386 (5)C51—C521.487 (6)
C1—C21.385 (5)C51—H51A0.97
C2—C31.381 (5)C51—H51B0.97
C2—H20.93C52—C531.481 (6)
C3—C41.370 (6)C52—H52A0.97
C3—H30.93C52—H52B0.97
C4—C51.360 (6)C53—C541.478 (6)
C4—H40.93C53—H53A0.97
C5—C61.381 (5)C53—H53B0.97
C5—H50.93C54—H54A0.97
C6—H60.93C54—H54B0.97
C7—C121.375 (5)
O2—P1—O1118.46 (13)C12—C7—C8117.7 (3)
O2—P1—C1108.86 (14)C12—C7—P1122.6 (3)
O1—P1—C1108.38 (14)C8—C7—P1119.5 (3)
O2—P1—C7108.89 (14)C9—C8—C7121.1 (4)
O1—P1—C7108.76 (14)C9—C8—H8119.5
C1—P1—C7102.28 (14)C7—C8—H8119.5
O2—P1—Li187.89 (14)C10—C9—C8120.2 (4)
C1—P1—Li1108.15 (15)C10—C9—H9119.9
C7—P1—Li1138.09 (15)C8—C9—H9119.9
P1—O1—Li1i148.6 (2)C9—C10—C11119.9 (4)
P1—O1—Li1120.7 (2)C9—C10—H10120.1
Li1i—O1—Li188.3 (2)C11—C10—H10120.1
P1—O2—Li1ii148.8 (2)C10—C11—C12120.1 (4)
O2ii—Li1—O1i122.6 (3)C10—C11—H11120
O2ii—Li1—O1120.2 (3)C12—C11—H11120
O1i—Li1—O191.7 (2)C7—C12—C11121.0 (4)
O2ii—Li1—O50104.4 (3)C7—C12—H12119.5
O1i—Li1—O50109.6 (3)C11—C12—H12119.5
O1—Li1—O50107.3 (3)C51—O50—C54107.9 (3)
O2ii—Li1—Li1i138.4 (4)C51—O50—Li1130.9 (3)
O1i—Li1—Li1i46.29 (17)C54—O50—Li1120.4 (3)
O1—Li1—Li1i45.40 (17)O50—C51—C52107.9 (4)
O50—Li1—Li1i117.0 (3)O50—C51—H51A110.1
O2ii—Li1—P1106.7 (2)C52—C51—H51A110.1
O1i—Li1—P1116.1 (2)O50—C51—H51B110.1
O1—Li1—P125.11 (10)C52—C51—H51B110.1
O50—Li1—P192.5 (2)H51A—C51—H51B108.4
Li1i—Li1—P170.1 (2)C53—C52—C51105.4 (4)
C6—C1—C2117.8 (3)C53—C52—H52A110.7
C6—C1—P1121.9 (3)C51—C52—H52A110.7
C2—C1—P1120.3 (3)C53—C52—H52B110.7
C3—C2—C1121.2 (4)C51—C52—H52B110.7
C3—C2—H2119.4H52A—C52—H52B108.8
C1—C2—H2119.4C54—C53—C52104.1 (4)
C4—C3—C2120.1 (4)C54—C53—H53A110.9
C4—C3—H3120C52—C53—H53A110.9
C2—C3—H3120C54—C53—H53B110.9
C5—C4—C3119.4 (4)C52—C53—H53B110.9
C5—C4—H4120.3H53A—C53—H53B109
C3—C4—H4120.3O50—C54—C53106.5 (3)
C4—C5—C6121.1 (4)O50—C54—H54A110.4
C4—C5—H5119.5C53—C54—H54A110.4
C6—C5—H5119.5O50—C54—H54B110.4
C5—C6—C1120.4 (4)C53—C54—H54B110.4
C5—C6—H6119.8H54A—C54—H54B108.6
C1—C6—H6119.8
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Li(C18H18O3P)]
Mr296.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.790 (1), 16.655 (3), 15.782 (3)
β (°) 98.07 (2)
V3)1506.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerEnraf-Nonius TurboCAD-4
diffractometer
Absorption correctionψ-scan
(North, Phillips & Mathews, 1968)
Tmin, Tmax0.941, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
2913, 2635, 1602
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.130, 1.03
No. of reflections2635
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLUTON (Spek, 1990), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) top
P1—O21.494 (2)O1—Li1i1.962 (6)
P1—O11.505 (2)O1—Li11.991 (6)
P1—C11.810 (3)Li1—O2ii1.897 (6)
P1—C71.811 (3)Li1—O502.028 (6)
P1—O1—Li1i148.6 (2)O1i—Li1—O191.7 (2)
P1—O1—Li1120.7 (2)O2ii—Li1—O50104.4 (3)
Li1i—O1—Li188.3 (2)O1i—Li1—O50109.6 (3)
O2ii—Li1—O1i122.6 (3)O1—Li1—O50107.3 (3)
O2ii—Li1—O1120.2 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds