Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [PdCl2(C13H14N2O2)], the central PdII atom is bonded to two pyridine N atoms and two terminal Cl atoms. The coordination geometry of the Pd atom is square planar with a slight tetrahedral distortion. The two Pd—N distances are 2.029 (3) and 2.057 (3) Å, and the N—Pd—N angle is 86.56 (13)°. The Pd—Cl distances are 2.2929 (11) and 2.2959 (11) Å, and the Cl—Pd—Cl angle is 90.84 (5)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021281/lh6009sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021281/lh6009Isup2.hkl
Contains datablock I

CCDC reference: 202307

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.032
  • wR factor = 0.078
  • Data-to-parameter ratio = 14.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
CELLV_02 Alert C The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 2 Calculated cell volume su = 4.22 Cell volume su given = 2.00
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The condensation products formed when metal complexes of di-2-pyridine ketone (dpk) are reacted with some nucleophiles, includung water, have been reported previously (Annibale et al., 1981; Sommerer et al., 1997). Herein we report the structure of the title compound, (I), which is formed via the reaction of dpk with PdCl2 in CH3CN/CH3CH2OH. In (I), the N1—Pd—N2 angle is narrower than the ideal value (for square-planar coordination) of 90° [86.56 (13)°]. This angle is also narrower than that observed in [Pd{dpk-(OH)2}]Cl2 and [Pd(2,2'-dipyridyl)]Cl2, where the N—Pd—N angles are 87.1 (2)(Annibale et al., 1981) and 80.5 (4)° (Beer et al., 1997), respectively. The N2—Pd—Cl2 and Cl1—Pd—Cl2 angles of 90.71 (9) and 90.84 (5), respectively, are closer to the ideal value of 90°; this indicates that the coordination geometry of the Pd atom is square planar with a slight tetrahedral distortion.

Experimental top

For the preparation of compound (I), p-phenylenediamine was combined with dpk in a 1:2 stoichiometric ratio in CH3CN/CH3CH2OH, followed by addition of PdCl2. The resulting solution was filtered and slow evaporation of the clear filtrate gave clear yellow crystals suitable for X-ray diffraction studies (yield: 0.07 g, 75%). Analysis calculated for C13H14Cl2N2O2Pd: C 38.43, H 3.48, N 6.90%; found: C 38.23, H 3.09, N 6.68%.

Refinement top

H atoms were included in caculated positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SHELXTL (Bruker, 1999); program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
(I) top
Crystal data top
[PdCl2(C13H14N2O2)]Z = 4
Mr = 407.56F(000) = 808
Monoclinic, P21/nDx = 1.801 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.8277 (1) Åθ = 2.3–25.0°
b = 12.0717 (3) ŵ = 1.59 mm1
c = 12.6885 (1) ÅT = 293 K
β = 93.162 (2)°Column, yellow
V = 1503.03 (2) Å30.36 × 0.22 × 0.20 mm
Data collection top
Siemens SMART CCD
diffractometer
2600 independent reflections
Radiation source: fine-focus sealed tube2270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.558, Tmax = 0.727k = 914
4510 measured reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0225P)2 + 2.9262P]
where P = (Fo2 + 2Fc2)/3
2600 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[PdCl2(C13H14N2O2)]V = 1503.03 (2) Å3
Mr = 407.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8277 (1) ŵ = 1.59 mm1
b = 12.0717 (3) ÅT = 293 K
c = 12.6885 (1) Å0.36 × 0.22 × 0.20 mm
β = 93.162 (2)°
Data collection top
Siemens SMART CCD
diffractometer
2600 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2270 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.727Rint = 0.019
4510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.15Δρmax = 0.32 e Å3
2600 reflectionsΔρmin = 0.63 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved by direct methods and successive Fourier difference syntheses. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.18888 (3)0.07957 (2)0.73840 (2)0.03211 (11)
Cl20.03247 (11)0.11059 (11)0.67829 (10)0.0508 (3)
Cl10.11749 (13)0.01755 (9)0.89699 (9)0.0501 (3)
O10.5394 (3)0.3071 (2)0.7049 (2)0.0411 (7)
H1A0.51280.36540.67770.062*
N20.2575 (3)0.1355 (3)0.6002 (3)0.0335 (7)
C70.3650 (4)0.2062 (3)0.6023 (3)0.0340 (9)
C60.4293 (4)0.2342 (3)0.7110 (3)0.0338 (9)
C110.2024 (4)0.1023 (4)0.5067 (3)0.0405 (10)
H11A0.12850.05410.50530.049*
C10.4288 (5)0.0453 (4)0.8291 (4)0.0455 (11)
H1B0.36320.09830.84250.055*
C40.6216 (4)0.1076 (4)0.7854 (4)0.0454 (11)
H4A0.68640.15960.76780.055*
C50.4846 (4)0.1269 (3)0.7626 (3)0.0349 (9)
C30.6610 (5)0.0093 (4)0.8351 (4)0.0556 (13)
H3A0.75240.00420.85360.067*
C20.5638 (5)0.0674 (4)0.8563 (4)0.0586 (14)
H2A0.58860.13400.88880.070*
N10.3898 (3)0.0507 (3)0.7840 (3)0.0365 (8)
C100.2511 (5)0.1370 (4)0.4127 (4)0.0483 (11)
H10A0.21120.11220.34880.058*
C80.4161 (4)0.2443 (4)0.5110 (3)0.0389 (10)
H8A0.48870.29390.51370.047*
C90.3596 (5)0.2088 (4)0.4144 (4)0.0484 (11)
H9A0.39450.23320.35180.058*
O20.3243 (2)0.2797 (2)0.7691 (2)0.0316 (6)
C120.3637 (4)0.3085 (4)0.8775 (3)0.0420 (10)
H12A0.41540.37700.87980.050*
H12B0.42000.25050.90990.050*
C130.2364 (5)0.3219 (4)0.9348 (4)0.0549 (13)
H13A0.25930.34091.00710.082*
H13B0.18620.25370.93200.082*
H13C0.18180.37970.90230.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03223 (18)0.02898 (18)0.03556 (18)0.00490 (13)0.00571 (12)0.00013 (13)
Cl20.0313 (5)0.0600 (7)0.0611 (7)0.0023 (5)0.0034 (5)0.0073 (6)
Cl10.0674 (7)0.0406 (6)0.0444 (6)0.0085 (5)0.0217 (5)0.0015 (5)
O10.0307 (14)0.0368 (16)0.0555 (18)0.0056 (12)0.0011 (13)0.0013 (14)
N20.0301 (17)0.0330 (18)0.0376 (19)0.0016 (14)0.0029 (14)0.0003 (15)
C70.029 (2)0.030 (2)0.042 (2)0.0039 (16)0.0043 (17)0.0028 (18)
C60.0249 (19)0.032 (2)0.045 (2)0.0039 (16)0.0048 (17)0.0036 (18)
C110.036 (2)0.042 (2)0.043 (2)0.0021 (19)0.0022 (18)0.001 (2)
C10.052 (3)0.034 (2)0.050 (3)0.000 (2)0.000 (2)0.006 (2)
C40.034 (2)0.045 (3)0.057 (3)0.002 (2)0.003 (2)0.005 (2)
C50.036 (2)0.032 (2)0.037 (2)0.0010 (17)0.0027 (17)0.0050 (17)
C30.048 (3)0.052 (3)0.065 (3)0.016 (2)0.010 (2)0.006 (3)
C20.066 (3)0.045 (3)0.064 (3)0.019 (3)0.007 (3)0.005 (2)
N10.0426 (19)0.0325 (19)0.0348 (19)0.0052 (15)0.0048 (15)0.0006 (15)
C100.043 (2)0.063 (3)0.038 (2)0.004 (2)0.0017 (19)0.002 (2)
C80.037 (2)0.038 (2)0.044 (2)0.0002 (18)0.0116 (19)0.0088 (19)
C90.048 (3)0.059 (3)0.039 (2)0.005 (2)0.010 (2)0.013 (2)
O20.0275 (13)0.0335 (15)0.0340 (14)0.0011 (11)0.0031 (11)0.0026 (12)
C120.045 (2)0.040 (2)0.041 (2)0.002 (2)0.0026 (19)0.0038 (19)
C130.061 (3)0.054 (3)0.051 (3)0.009 (3)0.019 (2)0.013 (2)
Geometric parameters (Å, º) top
Pd1—N22.029 (3)C4—C31.389 (7)
Pd1—N12.057 (3)C4—H4A0.9300
Pd1—Cl12.2929 (11)C5—N11.348 (5)
Pd1—Cl22.2959 (11)C3—C21.368 (7)
O1—C61.400 (4)C3—H3A0.9300
O1—H1A0.8200C2—H2A0.9300
N2—C111.337 (5)C10—C91.374 (6)
N2—C71.357 (5)C10—H10A0.9300
C7—C81.369 (6)C8—C91.386 (6)
C7—C61.523 (6)C8—H8A0.9300
C6—O21.412 (4)C9—H9A0.9300
C6—C51.537 (6)O2—C121.451 (5)
C11—C101.376 (6)C12—C131.490 (6)
C11—H11A0.9300C12—H12A0.9700
C1—N11.339 (5)C12—H12B0.9700
C1—C21.378 (7)C13—H13A0.9600
C1—H1B0.9300C13—H13B0.9600
C4—C51.380 (6)C13—H13C0.9600
N2—Pd1—N186.56 (13)C2—C3—C4119.2 (4)
N2—Pd1—Cl1178.32 (10)C2—C3—H3A120.4
N1—Pd1—Cl191.91 (10)C4—C3—H3A120.4
N2—Pd1—Cl290.71 (9)C3—C2—C1119.5 (5)
N1—Pd1—Cl2176.93 (10)C3—C2—H2A120.2
Cl1—Pd1—Cl290.84 (5)C1—C2—H2A120.2
C6—O1—H1A109.5C1—N1—C5119.5 (4)
C11—N2—C7118.9 (4)C1—N1—Pd1121.0 (3)
C11—N2—Pd1122.0 (3)C5—N1—Pd1119.4 (3)
C7—N2—Pd1119.1 (3)C9—C10—C11119.0 (4)
N2—C7—C8121.1 (4)C9—C10—H10A120.5
N2—C7—C6116.2 (3)C11—C10—H10A120.5
C8—C7—C6122.6 (4)C7—C8—C9119.8 (4)
O1—C6—O2112.0 (3)C7—C8—H8A120.1
O1—C6—C7111.9 (3)C9—C8—H8A120.1
O2—C6—C7106.2 (3)C10—C9—C8118.8 (4)
O1—C6—C5107.3 (3)C10—C9—H9A120.6
O2—C6—C5110.9 (3)C8—C9—H9A120.6
C7—C6—C5108.5 (3)C6—O2—C12115.1 (3)
N2—C11—C10122.3 (4)O2—C12—C13107.6 (3)
N2—C11—H11A118.8O2—C12—H12A110.2
C10—C11—H11A118.8C13—C12—H12A110.2
N1—C1—C2121.6 (4)O2—C12—H12B110.2
N1—C1—H1B119.2C13—C12—H12B110.2
C2—C1—H1B119.2H12A—C12—H12B108.5
C5—C4—C3119.0 (4)C12—C13—H13A109.5
C5—C4—H4A120.5C12—C13—H13B109.5
C3—C4—H4A120.5H13A—C13—H13B109.5
N1—C5—C4121.2 (4)C12—C13—H13C109.5
N1—C5—C6115.4 (3)H13A—C13—H13C109.5
C4—C5—C6123.3 (4)H13B—C13—H13C109.5

Experimental details

Crystal data
Chemical formula[PdCl2(C13H14N2O2)]
Mr407.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.8277 (1), 12.0717 (3), 12.6885 (1)
β (°) 93.162 (2)
V3)1503.03 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.36 × 0.22 × 0.20
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.558, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
4510, 2600, 2270
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.15
No. of reflections2600
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.63

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXTL (Bruker, 1999), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Pd1—N22.029 (3)Pd1—Cl12.2929 (11)
Pd1—N12.057 (3)Pd1—Cl22.2959 (11)
N2—Pd1—N186.56 (13)N1—Pd1—Cl2176.93 (10)
N2—Pd1—Cl1178.32 (10)Cl1—Pd1—Cl290.84 (5)
N1—Pd1—Cl191.91 (10)C11—N2—Pd1122.0 (3)
N2—Pd1—Cl290.71 (9)C7—N2—Pd1119.1 (3)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds