research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2,4,6-Tri­methyl­benzene)­sulfon­yl]phthalazin-1(2H)-one: crystal structure, Hirshfeld surface analysis and computational study

CROSSMARK_Color_square_no_text.svg

aDepartment of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria, bDepartment of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan, cDepartment of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by A. J. Lough, University of Toronto, Canada (Received 6 April 2020; accepted 11 April 2020; online 21 April 2020)

The X-ray crystal structure of the title phthalazin-1-one derivative, C17H16N2O3S {systematic name: 2-[(2,4,6-tri­methyl­benzene)­sulfon­yl]-1,2-di­hydro­phthalazin-1-one}, features a tetra­hedral sulfoxide-S atom, connected to phthalazin-1-one and mesityl residues. The dihedral angle [83.26 (4)°] between the organic substituents is consistent with the mol­ecule having the shape of the letter V. In the crystal, phthalazinone-C6-C—H⋯O(sulfoxide) and π(phthalazinone-N2C4)–π(phthalazinone-C6) stacking [inter-centroid distance = 3.5474 (9) Å] contacts lead to a linear supra­molecular tape along the a-axis direction; tapes assemble without directional inter­actions between them. The analysis of the calculated Hirshfeld surfaces confirm the importance of the C—H⋯O and π-stacking inter­actions but, also H⋯H and C—H⋯C contacts. The calculation of the inter­action energies indicate the importance of dispersion terms with the greatest energies calculated for the C—H⋯O and π-stacking inter­actions.

1. Chemical context

Phthalazin-1(2H)-one derivatives are a group of di­aza­heterobicycles that are noteworthy for their inter­esting medicinal applications. Thus, this class of compound has been reported to possess a wide variety of biological properties such as anti-diabetic (Mylari et al., 1992[Mylari, B. L., Beyer, T. A., Scott, P. J., Aldinger, C. E., Dee, M. F., Siegel, T. W. & Zembrowski, W. J. (1992). J. Med. Chem. 35, 457-465.]), anti-cancer (Menear et al., 2008[Menear, K. A., Adcock, C., Boulter, R., Cockcroft, X., Copsey, L., Cranston, A., Dillon, K. J., Drzewiecki, J., Garman, S., Gomez, S., Javaid, H., Kerrigan, F., Knights, C., Lau, A., Loh, V. M. Jr, Matthews, I. T. W., Moore, S., O'Connor, M. J., Smith, G. C. M. & Martin, N. M. B. (2008). J. Med. Chem. 51, 6581-6591.]), anti-inflammatory and analgesic (Pakulska et al., 2009[Pakulska, W., Malinowski, Z., Szczesniak, A. K., Czarnecka, E. & Epsztajn, J. (2009). Arch. Pharm. Chem. Life Sci. 342, 41-47.]), anti-histamine (Procopiou et al., 2011[Procopiou, P. A., Browning, C., Buckley, J. M., Clark, K. L., Fechner, L., Gore, P. M., Hancock, A. P., Hodgson, S. T., Holmes, D. S., Kranz, M., Looker, B. E., Morriss, K. M. L., Parton, D. L., Russell, L. J., Slack, R. J., Sollis, S. L., Vile, S. & Watts, C. J. (2011). J. Med. Chem. 54, 2183-2195.]), anti-hypertensive and anti-thrombotic (Cherkez et al., 1986[Cherkez, S., Herzig, J. & Yellin, H. (1986). J. Med. Chem. 29, 947-959.]) activities. Some N-substituted phthalazinones have attracted attention as a result of their potential role as anti-asthmatic agents (Ukita et al., 1999[Ukita, T., Sugahara, M., Terakawa, Y., Kuroda, T., Wada, K., Nakata, A., Ohmachi, Y., Kikkawa, H., Ikezawa, K. & Naito, K. (1999). J. Med. Chem. 42, 1088-1099.]), their ability to inhibit thromboxane A2 (TXA2) synthetase and to induce bronchodialation (Yamaguchi et al., 1993[Yamaguchi, M., Kamei, K., Koga, T., Akima, M., Kuroki, T. & Ohi, N. (1993). J. Med. Chem. 36, 4052-4060.]). At the present time, a number of phthalazin-1(2H)-one-based drugs are in use (Wu et al., 2012[Wu, X.-F., Neumann, H., Neumann, S. & Beller, M. (2012). Chem. Eur. J. 18, 8596-8599.]; Teran et al., 2019[Teran, C., Besada, P., Vila, N. & Costa-Lago, M. C. (2019). Eur. J. Med. Chem. 161, 468-478.]). A number of reaction pathways to the phthalazinone skeleton are known, notable among which include multi-step reactions involving cyclo­condensation reactions of phthalic anhydrides, phthalimides, phthalaldehydic acid or 2-acyl­benzoic acids with substituted hydrazines, in the presence of appropriate catal­ysts (Haider & Holzer, 2004[Haider, N. & Holzer, W. (2004). Science Synth. 16, 315-372.]). The conversion of phthalimides via Friedel–Crafts conditions or with organometallics to 2-keto benzoic acid hydrazides or 3,3-disubstituted indolin­ones, which are viable inter­mediates to substituted phthalazin-1(2H)-ones, have also been reported (Ismail et al., 1984[Ismail, M. F., El-Bassiouny, F. A. & Younes, H. A. (1984). Tetrahedron 40, 983-2984.]; Chun et al., 2004[Chun, T. G., Kim, K. S., Lee, S., Jeong, T. S., Lee, H. Y., Kim, Y. H. & Lee, W. S. (2004). Synth. Commun. 34, 1301-1308.]) . Several other synthetic routes, involving various inter­mediates, have also been reported (Mylari et al., 1991[Mylari, B. L., Larson, E. R., Beyer, T. A., Zembrowski, W. J., Aldinger, C. E., Dee, M. F., Siegel, T. W. & Singleton, D. H. (1991). J. Med. Chem. 34, 108-122.]; Yamaguchi et al., 1993[Yamaguchi, M., Kamei, K., Koga, T., Akima, M., Kuroki, T. & Ohi, N. (1993). J. Med. Chem. 36, 4052-4060.]; Acosta et al., 1995[Acosta, A., de la Cruz, P., De Miguel, P., Diez-Barra, E., de la Hoz, A., Langa, F., Loupy, A., Majdoub, M., Martin, N., Sanchez, C. & Seoane, C. (1995). Tetrahedron Lett. 36, 2165-2168.]; Bele & Darabantu, 2003[Bele, C. & Darabantu, M. (2003). Heterocycl. Commun. 9, 641-646.]; Mahmoodi & Salehpour, 2003[Mahmoodi, N. O. & Salehpour, M. J. (2003). Heterocycl. Chem. 40, 875-878.]; Cockcroft et al., 2006[Cockcroft, X. L., Dillon, K. J., Dixon, L., Drzewiecki, J., Kerrigan, F., Loh, V. M. Jr, Martin, N. M. B., Meneara, K. A. & Smith, G. C. M. (2006). Bioorg. Med. Chem. Lett. 16, 1040-1044.]; Del Olmo et al., 2006[Del Olmo, E., Barboza, B., Ybarra, M. I., Lopez-Perez, J. L., Carron, R., Sevilla, M. A., Bosellid, C. & San Feliciano, A. (2006). Bioorg. Med. Chem. Lett. 16, 2786-2790.]). In an earlier communication (Asegbeloyin et al., 2018[Asegbeloyin, J. N., Izuogu, D. C., Oyeka, E. E., Okpareke, O. C. & Ibezim, A. (2018). J. Mol. Struct. 1175, 219-229.]), the dysprosium(III)-catalysed conversion of 2-{[2-(phenyl­sulfon­yl)hydrazinyl­idene] meth­yl}benzoic acid to 2-(phenyl­sulfon­yl)phthalazin-1-(2H)-one was described. In the present study, the title compound, 2-[(2,4,6-tri­methyl­benzene)­sulfon­yl]-1,2-di­hydro­phthalazin-1-one, (I)[link], was obtained by the catalytic conversion of 2-{[2-(2,4,6-tri­methyl­phenyl­sulfon­yl)hydrazinyl­idene]meth­yl}benzoic acid. Herein, the crystal and mol­ecular structures of (I)[link] are described as is a detailed analysis of the mol­ecular packing by an evaluation of the calculated Hirshfeld surfaces augmented by a computational chemistry study.

[Scheme 1]

2. Structural commentary

The mol­ecule of (I)[link], Fig. 1[link], may be conveniently described as a central SO2 residue with mesityl and phthalazin-1-one substituents. The geometry about the S1 atom is distorted tetra­hedral with the range of angles subtended at S1 being a narrow 103.58 (6)° for N1—S1—C1, involving the singly-bonded N1 and C1 atoms, to a wide 118.39 (6)°, for O1—S1—O2, involving the doubly-bonded sulfoxide-O1, O2 atoms. The organic residues lie to the opposite side of the mol­ecule to the SO2 residue, forming dihedral angles of 67.35 (4)° [phthalazin-1-one with r.m.s. deviation = 0.0105 Å] and 49.79 (6)° [mesit­yl]. The dihedral angle between the organic residues of 83.26 (4)° indicates a close to orthogonal relationship. The N2—N1—C10—O3 torsion angle of −179.88 (12)° indicates a co-planar arrangement for these atoms, which allows for the close approach of the N2 and O3 atoms, i.e. 2.6631 (15) Å, suggestive of a stabilizing contact (Nakanishi et al., 2007[Nakanishi, W., Nakamoto, T., Hayashi, S., Sasamori, T. & Tokitoh, N. (2007). Chem. Eur. J. 13, 255-268.]). Globally, the mol­ecule has the shape of the letter V. Within the hetero-ring of the phthalazin-1-one substituent, the N1—N2 bond length is 1.3808 (15) Å and C10—N1 = 1.4003 (17) Å. In each of the C17=N2 [1.2911 (18) Å] and C10=O3 [1.2175 (15) Å] bonds, double-bond character is noted. The bond angles about the N1 atom are non-symmetric, with the endocyclic N2—N1—C10 angle of 126.97 (11) Å being significantly wider than the exocyclic N2—N1—S1 [113.93 (9) Å] and C10—N1—S1 [118.89 (8) Å] angles.

[Figure 1]
Figure 1
The mol­ecular structures of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

The formation of a supra­molecular tape sustained by phthal­a­zinone-C6-C—H⋯O(sulfoxide) contacts, Table 1[link], and π(phthalazinone)–π(phthalazinone) stacking is the main feature of the mol­ecular packing in the crystal of (I)[link], Fig. 2[link](a). The π-stacking occurs between centrosymmetrically related phthalazinone rings, i.e. between the N2C4 and C6i rings with an inter-centroid distance = 3.5474 (9) Å, angle of inclination = 1.17 (7)° for symmetry operation (i) 1 − x, 1 − y, 2 − z. As shown in Fig. 2[link](b), the tapes inter-digitate along the c-axis direction allowing for putative π-stacking between mesityl rings but, the inter-centroid separation is long at 4.1963 (8) Å. The assemblies shown in Fig. 2[link](b) stack along the a-axis direction, again without directional inter­actions between them, Fig. 2[link](c).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.49 3.3395 (18) 149
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
Mol­ecular packing in the crystal of (I)[link]: (a) supra­molecular tape sustained by phthalazinone-C—H⋯O(sulfoxide) and π(phthalazinone)–π(phthalazinone) stacking interactions shown as orange and purple dashed lines, respectively, (b) a view of the unit-cell contents down the a axis showing the inter-digitation of tapes and (c) a view of the unit-cell contents down the c axis showing the stacking of assemblies of (b) along the a-axis direction.

4. Hirshfeld surface analysis

In order to probe the inter­actions between mol­ecules of (I)[link] in the crystal, the Hirshfeld surfaces and two-dimensional fingerprint plots were calculated with the program Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) using established procedures described by Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). In addition to the bright-red spots appearing near the sulfoxide-O2 and phthalazinone-H12 atoms on the Hirshfeld surface in Fig. 3[link](a),(b), the presence of diminutive red spots near methyl-C7 and benzene-H5 are indicative of inter­molecular C—H⋯C contacts as C—H⋯π contacts are not preferred because of the V-shaped mol­ecular geometry of (I)[link]. Also, the group of faint-red spots near alternate carbon atoms C10, C12, C14 and C16 of the phthalazinone-C6 ring on the dnorm-mapped Hirshfeld surface in Fig. 3[link](b) is indicative of short intra-chain C⋯C contacts [Table 2[link] and Fig. 2[link](a)] and is consistent with the significant contribution from ππ stacking between centrosymmetrically related phthalazinone-N2C4 and C6 rings, encompassing connections between phthalazinone-C6 rings [3.6657 (9) Å with angle of inclination = 0.03 (7)°]. The involvement of the methyl-C8 atom in C—H⋯O [to provide links between the chains shown in Fig. 2[link](b)] and C—H⋯C contacts, Table 2[link], is highlighted in Fig. 3[link](c). The blue and red regions corres­ponding to positive and negative electrostatic potentials, respectively, on the Hirshfeld surface mapped over electrostatic potential shown in Fig. 4[link] represent the involvement of different atoms in the inter­molecular inter­actions in the crystal.

Table 2
A summary of short inter­atomic contacts (Å) in (I)a

Contact Distance Symmetry operation
C10⋯C14 3.345 (2) 1 − x, 1 − y, 2 − z
C12⋯C16 3.351 (2) 1 − x, 1 − y, 2 − z
O1⋯H9C 2.58 1 + x, y, z
O1⋯H14 2.61 1 − x, 1 − y, 2 − z
O3⋯H8A 2.60 x, 1 − y, 1 − z
C5⋯H7C 2.78 1 − x, 2 − y, 1 − z
C7⋯H5 2.61 1 + x, y, z
C10⋯H8A 2.79 x, 1 − y, 1 − z
H12⋯H9A 2.20 x, −1 + y, z
Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) whereby the X—H bond lengths are adjusted to their neutron values; (b) these inter­actions correspond to conventional hydrogen bonds.
[Figure 3]
Figure 3
(a)–(c) Three views of Hirshfeld surface mapped over dnorm for (I)[link] in the range −0.128 to + 1.298 arbitrary units. The inter­molecular C-H⋯O and short inter­atomic C⋯C contacts are represented with black dashed lines, and the short inter­atomic H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts with sky-blue, yellow and red dashed lines, respectively.
[Figure 4]
Figure 4
(a) and (b) Two views of the calculated electrostatic potential mapped onto the Hirshfeld surface within the isosurface range −0.093 to 0.040 atomic units. The red and blue regions represent negative and positive electrostatic potentials, respectively.

The overall two-dimensional fingerprint plots for (I)[link] and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts are illustrated in Fig. 5[link](a)–(e), respectively; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are summarized in Table 3[link]. A short inter­atomic H⋯H contact involving the phthalazinone-H12 and methyl-H9A atoms, Table 2[link], appears as a small peak at de + di ∼2.2 Å in the fingerprint plot delineated into H⋯H contacts, Fig. 5[link](b). In the fingerprint plot delineated into O⋯H/H⋯O contacts illustrated in Fig. 5[link](c), a pair of forceps-like tips at de + di ∼2.3 Å, indicate the inter­molecular C—H⋯O inter­action involving the phthalazinone-H12 and sulfoxide-O2 atoms, whereas the other inter­atomic O⋯H/H⋯O contacts are merged within the plot and appear as a pair of intense blue spikes at de + di ∼2.8 Å. Despite the observation that inter­molecular C—H⋯π contacts are usually preferred by methyl groups, none are found involving those substituted at (C1–C6) benzene ring in the crystal due to the V-shaped geometry. Rather, the involvement of methyl-C7 and H5A atoms, and benzene-C5 and H7C atoms [to provide links between the chains shown in Fig. 2[link](b)] in C—H⋯C inter­actions, Table 2[link], are characterized as the pair of forceps-like flat tips about de + di ∼2.8 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts, Fig. 5[link](d). The presence of ππ stacking inter­actions between symmetry-related phthalazinone-N2C4 and C6 rings is also evident as the arrow-shaped distribution of points around de, di ∼1.8 Å in the fingerprint plot delineated into C⋯C contacts, Fig. 5[link](e). The contribution from other inter­atomic contacts, summarized in Table 2[link], show a negligible effect on the calculated Hirshfeld surface of (I)[link].

Table 3
Percentage contributions to inter­molecular contacts on the Hirshfeld surface calculated for (I)

Contact Percentage contribution
H⋯H 44.9
O⋯H/H⋯O 24.0
C⋯H/H⋯C 18.1
C⋯C 6.5
N⋯H/H⋯ N 4.0
C⋯O/O⋯C 1.1
C⋯N/N⋯C 0.7
N⋯N 0.4
C⋯S/S⋯C 0.2
[Figure 5]
Figure 5
(a) The overall two-dimensional fingerprint plots for (I)[link], and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) C⋯C contacts.

5. Computational chemistry

The pairwise inter­action energies between the mol­ecules within the crystal of (I)[link] were calculated by summing up four energy components, comprising electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange–repulsion (Erep) following Turner et al. (2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). The energies were obtained by using the wave function calculated at the B3LYP/6-31G(d,p) level of theory. The nature and strength of the inter­molecular inter­actions in terms of their energies are qu­anti­tatively summarized in Table 4[link], where it is clear that the dispersive component makes the major contribution to the inter­action energies in the crystal in the absence of conventional hydrogen bonding. It is revealed from the inter­action energies listed in Table 4[link], that the ππ stacking inter­action between phthalazinone-N2C4 and C6 rings and the short inter­atomic O1⋯H14 contact have the greatest energy. The short inter­atomic C5⋯H7C, O3⋯H8A and C10⋯H8A contacts also have significant inter­action energies due to their participation in inversion-related contacts. Lower energies, compared to above inter­actions, are calculated for the H12⋯H9A, C7⋯H5 and O1⋯H9C contacts.

Table 4
A summary of inter­action energies (kJ mol−1) calculated for (I)

Contact R (Å) Eele Epol Edis Erep Etot
Cg(N2C4)⋯Cg(C6)i +            
Cg(C6)⋯Cg(C6)i + 8.12 −28.9 −5.0 −64.7 48.2 −60.8
O1⋯H14i            
C5⋯H7Cii 7.84 −21.3 −5.5 −60.9 43.5 −52.8
O3 ⋯H8Aiii +            
C10 ⋯H8Aiii 7.54 −10.7 −2.0 −56.8 32.6 −42.1
C12—H12⋯O2iv +            
H12⋯H9Aiv 8.17 −4.4 −4.6 −20.5 18.0 −14.8
O1⋯H9Cv +            
C7⋯H5v 7.98 −3.1 −2.0 −16.9 14.2 −10.6
Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) 1 − x, 2 − y, 1 − z; (iii) − x, 1 − y, 1 − z; (iv) x, −1 + y, z; (v) 1 + x, y, z.

Fig. 6[link] illustrates the magnitudes of inter­molecular energies represented graphically by energy frameworks to highlight the supra­molecular architecture of the crystal through cylinders joining the centroids of mol­ecular pairs using red, green and blue colour codes for the components Eele, Edisp and Etot, respectively. The images emphasize the importance of dispersion inter­actions in the mol­ecular packing.

[Figure 6]
Figure 6
Perspective views of the energy frameworks calculated for (I)[link], showing the (a) electrostatic force, (b) dispersion force and (c) total energy. The radii of the cylinders are proportional to the relative strength of the corresponding energies and were adjusted to the same scale factor of 50 with a cut-off value of 3 kJ mol−1 within 4 × 4 × 4 unit cells.

6. Database survey

There is only a single direct analogue to (I)[link] in the crystallographic literature, namely 2-(phenyl­sulfon­yl)phthalazin-1(2H)-one (Asegbeloyin et al., 2018[Asegbeloyin, J. N., Izuogu, D. C., Oyeka, E. E., Okpareke, O. C. & Ibezim, A. (2018). J. Mol. Struct. 1175, 219-229.]), (II). A comparison of key geometric parameters for (I)[link] and (II) is given in Table 5[link]. The data in Table 5[link] confirm the closeness of the salient bond lengths, but also show significant differences in the torsion angles about the N1—S1 and C1—S1 bonds, i.e. by up to 18 and 8°, respectively. These conformational differences are highlighted in the overlay diagram of Fig. 7[link] and in the dihedral angles between the aromatic residues of 83.26 (4) and 78.12 (4)° for (I)[link] and (II), respectively.

Table 5
A comparison of key geometric parameters (Å, °) for (I)[link] and (II)

  (I) (II)
N1—N2 1.3808 (15) 1.384 (2)
C10—O3 1.2175 (15 1.212 (3)
C10—N1 1.4003 (17) 1.406 (2)
C17—N2 1.2911 (18) 1.283 (2)
N2⋯O2 2.6631 (15) 2.6394 (19)
N2—N1—S1—O1 120.33 (10) 138.71 (12)
N2—N1—S1—O2 −5.52 (11) 9.59 (13)
N1—S1—C1—C2 −111.55 (11) −103.95 (16)
N1—S1—C1—C6 69.70 (11) 76.49 (17)
[Figure 7]
Figure 7
An overlay diagram for (I)[link] (red image) and (II) (blue). The mol­ecules have been overlapped so the hetero-rings are coincident.

7. Synthesis and crystallization

2-{[2-(2,4,6-Tri­methyl­phenyl­sulfon­yl)hydrazinyl­idene]meth­yl}benzoic acid (III) was obtained by a method reported earlier (Asegbeloyin et al., 2018[Asegbeloyin, J. N., Izuogu, D. C., Oyeka, E. E., Okpareke, O. C. & Ibezim, A. (2018). J. Mol. Struct. 1175, 219-229.]). Compound (I)[link] was obtained from the following reaction. An ethanol solution (10 ml) of Dy(O2CCH3)3·4H2O (Wako Chemicals, Japan; 1 mmol, 411.692 mg) was added with constant stirring to an ethanol solution (20 ml) of (III) (1,039.2 mg, 3 mmol). The resulting mixture was refluxed for 3 h in an oil bath. The obtained colourless solution was concentrated to afford a colourless precipitate, which was filtered, dried under suction and further dried in vacuo over CaCl2. The precipitates were dissolved in ethanol, the resultant colourless solution was filtered and left at room temperature for 48 h to obtain colourless crystals of (I)[link].

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 6
Experimental details

Crystal data
Chemical formula C17H16N2O3S
Mr 328.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.9782 (4), 8.1711 (5), 12.6661 (7)
α, β, γ (°) 92.214 (2), 93.423 (1), 114.274 (1)
V3) 749.55 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.38 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.924, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11665, 5913, 4625
Rint 0.027
(sin θ/λ)max−1) 0.804
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 1.02
No. of reflections 5913
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[(2,4,6-Trimethylbenzene)sulfonyl]phthalazin-1(2H)-one top
Crystal data top
C17H16N2O3SZ = 2
Mr = 328.38F(000) = 344
Triclinic, P1Dx = 1.455 Mg m3
a = 7.9782 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1711 (5) ÅCell parameters from 5241 reflections
c = 12.6661 (7) Åθ = 2.7–34.7°
α = 92.214 (2)°µ = 0.23 mm1
β = 93.423 (1)°T = 100 K
γ = 114.274 (1)°Prism, colourless
V = 749.55 (7) Å30.38 × 0.12 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
4625 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
ω scansθmax = 34.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.924, Tmax = 1.000k = 137
11665 measured reflectionsl = 1919
5913 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.3671P]
where P = (Fo2 + 2Fc2)/3
5913 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52952 (4)0.91549 (4)0.73039 (2)0.00972 (8)
O10.70758 (13)0.91524 (14)0.72487 (8)0.01414 (19)
O20.51875 (14)1.07825 (13)0.76724 (7)0.01422 (19)
O30.45530 (14)0.53580 (14)0.72961 (7)0.01357 (19)
N10.42015 (15)0.76225 (15)0.82277 (8)0.0107 (2)
N20.36966 (17)0.83676 (16)0.90820 (9)0.0138 (2)
C10.38648 (17)0.82486 (17)0.61201 (9)0.0097 (2)
C20.44783 (17)0.75451 (17)0.52613 (10)0.0103 (2)
C30.32852 (18)0.69064 (18)0.43396 (10)0.0116 (2)
H30.3671890.6433770.3751420.014*
C40.15518 (18)0.69371 (18)0.42516 (10)0.0126 (2)
C50.09886 (18)0.76139 (19)0.51177 (10)0.0133 (2)
H50.0202890.7617100.5066650.016*
C60.21077 (18)0.82878 (18)0.60579 (10)0.0116 (2)
C70.63166 (18)0.7437 (2)0.52408 (11)0.0141 (2)
H7A0.6366400.6837300.4565940.021*
H7B0.6471940.6750140.5826990.021*
H7C0.7307200.8654700.5316220.021*
C80.0315 (2)0.6274 (2)0.32396 (11)0.0190 (3)
H8A0.0945630.6080960.3379690.028*
H8B0.0320990.5137410.2967200.028*
H8C0.0762890.7170570.2713170.028*
C90.1341 (2)0.9043 (2)0.69211 (11)0.0190 (3)
H9A0.1849911.0356340.6910390.028*
H9B0.1683710.8717350.7612070.028*
H9C0.0005990.8544230.6800260.028*
C100.40551 (17)0.58589 (17)0.80886 (10)0.0099 (2)
C110.32443 (17)0.47264 (18)0.89581 (10)0.0106 (2)
C120.30524 (18)0.29500 (18)0.89276 (10)0.0132 (2)
H120.3430820.2460950.8342850.016*
C130.23047 (19)0.19062 (19)0.97587 (11)0.0153 (3)
H130.2168140.0694230.9741850.018*
C140.17479 (19)0.2621 (2)1.06236 (11)0.0160 (3)
H140.1231290.1890231.1187630.019*
C150.19460 (19)0.4382 (2)1.06607 (11)0.0154 (3)
H150.1570150.4863751.1249860.018*
C160.27053 (18)0.54625 (18)0.98247 (10)0.0118 (2)
C170.2996 (2)0.73194 (19)0.98264 (10)0.0145 (2)
H170.2644660.7812981.0420860.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00989 (13)0.01011 (14)0.00894 (13)0.00401 (11)0.00008 (10)0.00083 (10)
O10.0094 (4)0.0174 (5)0.0147 (4)0.0047 (4)0.0002 (3)0.0018 (4)
O20.0193 (5)0.0103 (4)0.0128 (4)0.0061 (4)0.0007 (4)0.0004 (3)
O30.0168 (5)0.0153 (5)0.0105 (4)0.0083 (4)0.0033 (3)0.0004 (3)
N10.0139 (5)0.0110 (5)0.0083 (4)0.0060 (4)0.0022 (4)0.0010 (4)
N20.0203 (6)0.0139 (5)0.0094 (4)0.0093 (5)0.0019 (4)0.0013 (4)
C10.0105 (5)0.0107 (5)0.0082 (5)0.0046 (4)0.0002 (4)0.0007 (4)
C20.0109 (5)0.0109 (5)0.0106 (5)0.0054 (4)0.0030 (4)0.0023 (4)
C30.0139 (5)0.0121 (6)0.0094 (5)0.0059 (5)0.0025 (4)0.0006 (4)
C40.0121 (5)0.0128 (6)0.0113 (5)0.0035 (5)0.0001 (4)0.0009 (4)
C50.0107 (5)0.0176 (6)0.0130 (5)0.0073 (5)0.0002 (4)0.0008 (5)
C60.0115 (5)0.0143 (6)0.0107 (5)0.0071 (5)0.0010 (4)0.0005 (4)
C70.0118 (5)0.0181 (6)0.0151 (5)0.0086 (5)0.0035 (5)0.0016 (5)
C80.0167 (6)0.0226 (7)0.0134 (6)0.0050 (6)0.0036 (5)0.0036 (5)
C90.0186 (6)0.0309 (8)0.0138 (6)0.0172 (6)0.0002 (5)0.0043 (5)
C100.0091 (5)0.0112 (5)0.0094 (5)0.0045 (4)0.0012 (4)0.0005 (4)
C110.0100 (5)0.0122 (6)0.0094 (5)0.0044 (4)0.0004 (4)0.0010 (4)
C120.0140 (6)0.0125 (6)0.0132 (5)0.0059 (5)0.0001 (4)0.0003 (4)
C130.0143 (6)0.0119 (6)0.0185 (6)0.0041 (5)0.0009 (5)0.0038 (5)
C140.0135 (6)0.0188 (7)0.0149 (6)0.0052 (5)0.0024 (5)0.0069 (5)
C150.0148 (6)0.0207 (7)0.0116 (5)0.0079 (5)0.0031 (5)0.0020 (5)
C160.0114 (5)0.0137 (6)0.0108 (5)0.0060 (5)0.0003 (4)0.0006 (4)
C170.0195 (6)0.0167 (6)0.0103 (5)0.0104 (5)0.0025 (5)0.0008 (4)
Geometric parameters (Å, º) top
S1—O11.4273 (10)C7—H7C0.9800
S1—O21.4300 (10)C8—H8A0.9800
S1—N11.7422 (11)C8—H8B0.9800
S1—C11.7646 (12)C8—H8C0.9800
O3—C101.2175 (15)C9—H9A0.9800
N1—N21.3808 (15)C9—H9B0.9800
N1—C101.4003 (17)C9—H9C0.9800
N2—C171.2911 (18)C10—C111.4694 (18)
C1—C61.4130 (18)C11—C121.3943 (19)
C1—C21.4142 (17)C11—C161.4034 (18)
C2—C31.3975 (18)C12—C131.3847 (19)
C2—C71.5066 (18)C12—H120.9500
C3—C41.3913 (19)C13—C141.400 (2)
C3—H30.9500C13—H130.9500
C4—C51.3883 (18)C14—C151.380 (2)
C4—C81.5055 (19)C14—H140.9500
C5—C61.3917 (18)C15—C161.4059 (19)
C5—H50.9500C15—H150.9500
C6—C91.5125 (18)C16—C171.438 (2)
C7—H7A0.9800C17—H170.9500
C7—H7B0.9800
O1—S1—O2118.39 (6)C4—C8—H8B109.5
O1—S1—N1106.22 (6)H8A—C8—H8B109.5
O2—S1—N1104.37 (6)C4—C8—H8C109.5
O1—S1—C1112.48 (6)H8A—C8—H8C109.5
O2—S1—C1110.28 (6)H8B—C8—H8C109.5
N1—S1—C1103.58 (6)C6—C9—H9A109.5
N2—N1—C10126.97 (11)C6—C9—H9B109.5
N2—N1—S1113.93 (9)H9A—C9—H9B109.5
C10—N1—S1118.89 (8)C6—C9—H9C109.5
C17—N2—N1116.47 (12)H9A—C9—H9C109.5
C6—C1—C2121.56 (11)H9B—C9—H9C109.5
C6—C1—S1117.50 (9)O3—C10—N1120.86 (12)
C2—C1—S1120.94 (10)O3—C10—C11124.94 (12)
C3—C2—C1117.37 (12)N1—C10—C11114.19 (11)
C3—C2—C7116.62 (11)C12—C11—C16120.62 (12)
C1—C2—C7126.01 (11)C12—C11—C10120.00 (11)
C4—C3—C2122.42 (12)C16—C11—C10119.36 (12)
C4—C3—H3118.8C13—C12—C11119.31 (12)
C2—C3—H3118.8C13—C12—H12120.3
C5—C4—C3118.48 (12)C11—C12—H12120.3
C5—C4—C8120.39 (12)C12—C13—C14120.60 (13)
C3—C4—C8121.12 (12)C12—C13—H13119.7
C4—C5—C6122.33 (12)C14—C13—H13119.7
C4—C5—H5118.8C15—C14—C13120.31 (13)
C6—C5—H5118.8C15—C14—H14119.8
C5—C6—C1117.83 (11)C13—C14—H14119.8
C5—C6—C9116.57 (12)C14—C15—C16119.85 (13)
C1—C6—C9125.58 (12)C14—C15—H15120.1
C2—C7—H7A109.5C16—C15—H15120.1
C2—C7—H7B109.5C11—C16—C15119.30 (13)
H7A—C7—H7B109.5C11—C16—C17117.99 (12)
C2—C7—H7C109.5C15—C16—C17122.69 (12)
H7A—C7—H7C109.5N2—C17—C16125.01 (12)
H7B—C7—H7C109.5N2—C17—H17117.5
C4—C8—H8A109.5C16—C17—H17117.5
O1—S1—N1—N2120.33 (10)C2—C1—C6—C50.2 (2)
O2—S1—N1—N25.52 (11)S1—C1—C6—C5178.53 (10)
C1—S1—N1—N2120.99 (10)C2—C1—C6—C9178.71 (14)
O1—S1—N1—C1054.70 (11)S1—C1—C6—C90.02 (19)
O2—S1—N1—C10179.45 (10)N2—N1—C10—O3179.88 (12)
C1—S1—N1—C1063.98 (11)S1—N1—C10—O35.57 (17)
C10—N1—N2—C170.8 (2)N2—N1—C10—C110.98 (18)
S1—N1—N2—C17175.38 (10)S1—N1—C10—C11175.29 (9)
O1—S1—C1—C6176.04 (10)O3—C10—C11—C122.1 (2)
O2—S1—C1—C641.49 (12)N1—C10—C11—C12178.79 (11)
N1—S1—C1—C669.70 (11)O3—C10—C11—C16179.23 (12)
O1—S1—C1—C22.71 (13)N1—C10—C11—C160.13 (17)
O2—S1—C1—C2137.26 (11)C16—C11—C12—C130.6 (2)
N1—S1—C1—C2111.55 (11)C10—C11—C12—C13179.29 (12)
C6—C1—C2—C30.74 (19)C11—C12—C13—C140.1 (2)
S1—C1—C2—C3177.95 (10)C12—C13—C14—C150.3 (2)
C6—C1—C2—C7179.99 (13)C13—C14—C15—C160.2 (2)
S1—C1—C2—C71.30 (19)C12—C11—C16—C150.75 (19)
C1—C2—C3—C40.3 (2)C10—C11—C16—C15179.40 (12)
C7—C2—C3—C4179.65 (12)C12—C11—C16—C17177.93 (12)
C2—C3—C4—C50.6 (2)C10—C11—C16—C170.72 (18)
C2—C3—C4—C8178.73 (13)C14—C15—C16—C110.3 (2)
C3—C4—C5—C61.2 (2)C14—C15—C16—C17178.29 (13)
C8—C4—C5—C6178.16 (13)N1—N2—C17—C160.2 (2)
C4—C5—C6—C10.8 (2)C11—C16—C17—N20.9 (2)
C4—C5—C6—C9177.86 (14)C15—C16—C17—N2179.58 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.493.3395 (18)149
Symmetry code: (i) x, y1, z.
A summary of short interatomic contacts (Å) in (I)a top
ContactDistanceSymmetry operation
C10···C143.345 (2)1 - x, 1 - y, 2 - z
C12···C163.351 (2)1 - x, 1 - y, 2 - z
O1···H9C2.581 + x, y, z
O1···H142.611 - x, 1 - y, 2 - z
O3···H8A2.60- x, 1 - y, 1 - z
C5···H7C2.781 - x, 2 - y, 1 - z
C7···H52.611 + x, y, z
C10···H8A2.79- x, 1 - y, 1 - z
H12···H9A2.20x, -1 + y, z
Notes: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values; (b) these interactions correspond to conventional hydrogen bonds.
Percentage contributions to intermolecular contacts on the Hirshfeld surface calculated for (I) top
ContactPercentage contribution
H···H44.9
O···H/H···O24.0
C···H/H···C18.1
C···C6.5
N···H/H··· N4.0
C···O/O···C1.1
C···N/N···C0.7
N···N0.4
C···S/S···C0.2
A summary of interaction energies (kJ mol-1) calculated for (I) top
ContactR (Å)EeleEpolEdisErepEtot
Cg(N2C4)···Cg(C6)i +
Cg(C6)···Cg(C6)i +8.12-28.9-5.0-64.748.2-60.8
O1···H14i
C5···H7Cii7.84-21.3-5.5-60.943.5-52.8
O3 ···H8Aiii +
C10 ···H8Aiii7.54-10.7-2.0-56.832.6-42.1
C12—H12···O2iv +
H12···H9Aiv8.17-4.4-4.6-20.518.0-14.8
O1···H9Cv +
C7···H5v7.98-3.1-2.0-16.914.2-10.6
Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, 2 - y, 1 - z; (iii) - x, 1 - y, 1 - z; (iv) x, -1 + y, z; (v) 1 + x, y, z.
A comparison of key geometric parameters (Å; °) for (I) and (II) top
N1—N21.3808 (15)1.384 (2)
C10—O31.2175 (151.212 (3)
C10—N11.4003 (17)1.406 (2)
C17—N21.2911 (18)1.283 (2)
N2···O22.6631 (15)2.6394 (19)
N2—N1—S1—O1120.33 (10)138.71 (12)
N2—N1—S1—O2-5.52 (11)9.59 (13)
N1—S1—C1—C2-111.55 (11)-103.95 (16)
N1—S1—C1—C669.70 (11)76.49 (17)
 

Footnotes

Additional correspondence author, e-mail: niyi.asegbeloyin@unn.edu.ng.

Acknowledgements

The authors are grateful to Professor Masahiro Yamashita of the Department of Chemistry, Tohoku University, for the X-ray intensity data.

Funding information

Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. STR-RCTR-RCCM-001-2019).

References

First citationAcosta, A., de la Cruz, P., De Miguel, P., Diez-Barra, E., de la Hoz, A., Langa, F., Loupy, A., Majdoub, M., Martin, N., Sanchez, C. & Seoane, C. (1995). Tetrahedron Lett. 36, 2165–2168.  CrossRef CAS Google Scholar
First citationAsegbeloyin, J. N., Izuogu, D. C., Oyeka, E. E., Okpareke, O. C. & Ibezim, A. (2018). J. Mol. Struct. 1175, 219–229.  CSD CrossRef Google Scholar
First citationBele, C. & Darabantu, M. (2003). Heterocycl. Commun. 9, 641–646.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCherkez, S., Herzig, J. & Yellin, H. (1986). J. Med. Chem. 29, 947–959.  CrossRef CAS PubMed Google Scholar
First citationChun, T. G., Kim, K. S., Lee, S., Jeong, T. S., Lee, H. Y., Kim, Y. H. & Lee, W. S. (2004). Synth. Commun. 34, 1301–1308.  CrossRef CAS Google Scholar
First citationCockcroft, X. L., Dillon, K. J., Dixon, L., Drzewiecki, J., Kerrigan, F., Loh, V. M. Jr, Martin, N. M. B., Meneara, K. A. & Smith, G. C. M. (2006). Bioorg. Med. Chem. Lett. 16, 1040–1044.  CrossRef PubMed CAS Google Scholar
First citationDel Olmo, E., Barboza, B., Ybarra, M. I., Lopez-Perez, J. L., Carron, R., Sevilla, M. A., Bosellid, C. & San Feliciano, A. (2006). Bioorg. Med. Chem. Lett. 16, 2786–2790.  PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaider, N. & Holzer, W. (2004). Science Synth. 16, 315–372.  CAS Google Scholar
First citationIsmail, M. F., El-Bassiouny, F. A. & Younes, H. A. (1984). Tetrahedron 40, 983–2984.  Google Scholar
First citationMahmoodi, N. O. & Salehpour, M. J. (2003). Heterocycl. Chem. 40, 875–878.  CrossRef CAS Google Scholar
First citationMenear, K. A., Adcock, C., Boulter, R., Cockcroft, X., Copsey, L., Cranston, A., Dillon, K. J., Drzewiecki, J., Garman, S., Gomez, S., Javaid, H., Kerrigan, F., Knights, C., Lau, A., Loh, V. M. Jr, Matthews, I. T. W., Moore, S., O'Connor, M. J., Smith, G. C. M. & Martin, N. M. B. (2008). J. Med. Chem. 51, 6581–6591.  CrossRef PubMed CAS Google Scholar
First citationMylari, B. L., Beyer, T. A., Scott, P. J., Aldinger, C. E., Dee, M. F., Siegel, T. W. & Zembrowski, W. J. (1992). J. Med. Chem. 35, 457–465.  CrossRef PubMed CAS Google Scholar
First citationMylari, B. L., Larson, E. R., Beyer, T. A., Zembrowski, W. J., Aldinger, C. E., Dee, M. F., Siegel, T. W. & Singleton, D. H. (1991). J. Med. Chem. 34, 108–122.  CSD CrossRef PubMed CAS Google Scholar
First citationNakanishi, W., Nakamoto, T., Hayashi, S., Sasamori, T. & Tokitoh, N. (2007). Chem. Eur. J. 13, 255–268.  CSD CrossRef PubMed CAS Google Scholar
First citationPakulska, W., Malinowski, Z., Szczesniak, A. K., Czarnecka, E. & Epsztajn, J. (2009). Arch. Pharm. Chem. Life Sci. 342, 41–47.  CrossRef CAS Google Scholar
First citationProcopiou, P. A., Browning, C., Buckley, J. M., Clark, K. L., Fechner, L., Gore, P. M., Hancock, A. P., Hodgson, S. T., Holmes, D. S., Kranz, M., Looker, B. E., Morriss, K. M. L., Parton, D. L., Russell, L. J., Slack, R. J., Sollis, S. L., Vile, S. & Watts, C. J. (2011). J. Med. Chem. 54, 2183–2195.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeran, C., Besada, P., Vila, N. & Costa-Lago, M. C. (2019). Eur. J. Med. Chem. 161, 468–478.  CAS PubMed Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationUkita, T., Sugahara, M., Terakawa, Y., Kuroda, T., Wada, K., Nakata, A., Ohmachi, Y., Kikkawa, H., Ikezawa, K. & Naito, K. (1999). J. Med. Chem. 42, 1088-1099.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X.-F., Neumann, H., Neumann, S. & Beller, M. (2012). Chem. Eur. J. 18, 8596-8599.  CrossRef CAS PubMed Google Scholar
First citationYamaguchi, M., Kamei, K., Koga, T., Akima, M., Kuroki, T. & Ohi, N. (1993). J. Med. Chem. 36, 4052–4060.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds