research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, synthesis and thermal properties of bis­­(4-benzoyl­pyridine-κN)bis­­(iso­thio­cyanato-κN)bis­­(methanol-κN)iron(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth. Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cwellm@ac.uni-kiel.de

Edited by A. J. Lough, University of Toronto, Canada (Received 10 January 2020; accepted 28 January 2020; online 31 January 2020)

In the crystal structure of the title compound, [Fe(NCS)2(C12H9NO)2(CH4O)2], the FeII cations are octa­hedrally coordinated by two N atoms of 4-benzoyl­pyridine ligands, two N atoms of two terminal iso­thio­cyanate anions and two methanol mol­ecules into discrete complexes that are located on centres of inversion. These complexes are linked via inter­molecular O—H⋯O hydrogen bonds between the methanol O—H H atoms and the carbonyl O atoms of the 4-benzoyl­pyridine ligands, forming layers parallel to (101). Powder X-ray diffraction proved that a pure sample was obtained but that this compound is unstable and transforms into an unknown crystalline phase within several weeks. However, the solvent mol­ecules can be removed by heating in a thermobalance, which for the aged sample as well as the title compound leads to the formation of a compound with the composition Fe(NCS)2(4-benzoyl­pyridine)2, which exhibits a powder pattern that is similar to that of Mn(NCS)2(4-benzoyl­pyridine)2.

1. Chemical context

The synthesis of new coordination compounds is still an important topic in modern coordination chemistry. In most cases, such compounds are prepared in solution but there are alternative routes such as, for example, mol­ecular milling or synthesis in molten flux (Braga et al., 2005[Braga, D., Curzi, M., Grepioni, F. & Polito, M. (2005). Chem. Commun. pp. 2915-2917.], 2006[Braga, D., Giaffreda, S. L., Grepioni, F., Pettersen, A., Maini, L., Curzi, M. & Polito, M. (2006). Dalton Trans. pp. 1249-1263.]; James et al., 2012[James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W. & Waddell, D. C. (2012). Chem. Soc. Rev. 41, 413-447.]; Höller et al., 2010[Höller, C. J., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2010). Dalton Trans. 39, 461-468.]; Schönfeld et al., 2012[Schönfeld, F., Meyer, L. V., Winter, F., Niehaus, O., Rodewald, U. C., Pöttgen, R. & Müller-Buschbaum, K. (2012). Z. Anorg. Allg. Chem. 638, 2062-2068.]). In this context, thermal annealing is also of inter­est, especially for precursors that contain volatile ligands. This approach has been proven to be particularly useful for the synthesis of thio­cyanate coord­ination polymers, in which the metal cations are linked by the anionic ligands, because such compounds are frequently difficult to prepare in solution because their counterparts with terminally N-bonded anionic ligands are usually more stable (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). This is one of the reasons why we became inter­ested in this class of compounds several years ago. In most cases, our precursors consist of discrete complexes, in which the metal cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and four pyridine-based co-ligands. If the described compounds are heated, the co-ligands are removed in a stepwise manner, which enforces the formation of compounds with bridging anions because the octa­hedral coordination is usually retained (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). One additional advantage of this approach is the fact that frequently different polymorphs or isomers can be obtained, if compared to the synthesis from solution (Wöhlert et al., 2014[Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902-1913.]; Werner et al., 2015[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. pp. 3236-3245.]; Neumann et al., 2018a[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018a). Inorg. Chem. 57, 3305-3314.]), which might be traced back to the fact that this anionic ligand exhibits a large structural variety (Mautner et al., 2016a[Mautner, F. A., Berger, C., Fischer, R. & Massoud, S. S. (2016a). Inorg. Chim. Acta, 448, 34-41.],b[Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016b). Inorg. Chim. Acta, 439, 69-76.], 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]). Following this approach, in most cases compounds are obtained in which the metal cations are octa­hedrally coordinated by two N- and two S-bonding thio­cyanate anions as well as two coligands, all of them in trans-positions, and are linked into chains by pairs of μ-1,3-bridging anions (Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A. & Plass, W. (2020). Chem. Eur. J. https://doi.org/10.1002/chem.201903924]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]). However, in some cases a ciscistrans coordination is observed, which can lead to the formation of linear but also to corrugated chains (Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]; Neumann et al., 2020[Neumann, T., Gallo, G., Jess, I., Dinnebier, R. & Näther, C. (2020). CrystEngComm, 22, 184-194.]).

[Scheme 1]

This is the case for e.g. [M(NCS)2(4-benzoyl­pyridine)2]n (M = Co, Ni), in which the two N and two S atoms of the bridging anionic ligands are in cis-positions, whereas the two apical 4-benzoyl­pyridine ligands are trans-coordinating (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]). This is in contrast to the corresponding Cd compound, in which the CdII cations shows the usual all-trans coordination (Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]). In this context, we became inter­ested in the corresponding compounds based on MnII and FeII. However, the compounds with bridging anionic ligands are not available from solution and therefore, we tried to prepare them by thermal decomposition of discrete complexes with the composition M(NCS)2(4-benzoyl­pyridine)4 (M = Mn and Fe; Wellm et al., 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.], 2019a[Wellm, C. & Näther, C. (2019a). Acta Cryst. E75, 917-920.]). Unfortunately, the X-ray powder pattern of the residues are of low quality and don't seem to be isotypic to the CoII, NiII or CdII phases. Therefore, we looked for a precursor that consists of two different coligands, one of which is more volatile and we found that, with methanol as solvent, crystals with the composition Fe(NCS)2(4-benzoyl­pyridine)2(CH3OH)2 can be obtained. Comparison of the experimental XRPD patterns with that calculated from single-crystal data proves that a pure phase has been obtained (Fig. 1[link]). We also have found that on storage over weeks, the title compound transforms into a new crystalline phase that exhibits a powder pattern completely different from that of the title compound (see Figure S1 in the supporting information). Compared to the title compound, the CN stretching vibration of the thio­cyanate anions is shifted from 2050 cm−1 to 2074 cm−1, and from thermogravimetric measurements it is indicated that about half of the methanol mol­ecules are removed (Figure S2). If the solvent is removed completely from this crystalline phase, the CN stretching vibration shifts to 2084 cm−1 and a powder pattern is observed that cannot be indexed and that is different from those calculated for the known phases of [M(NCS)2(4-benzoyl­pyridine)2]n (M = Co, Ni, Cd; Figure S1). However, if the title compound is heated in a thermobalance, two mass losses are observed that are in reasonable agreement with that calculated for the removal of the methanol mol­ecules in the first and the remaining 4-benzoyl­pyridine ligands in the second step (calculated: 10.6% and 60.5%). If the residue formed after methanol removal is investigated by XRPD, it is obvious that the same crystalline phase has been obtained that will form if the discrete complex Fe(NCS)2(4-benzoyl­pyridine)4 is thermally decomposed (Figures S1 and S2; Wellm, & Näther, 2019a[Wellm, C. & Näther, C. (2019a). Acta Cryst. E75, 917-920.]). There are some similarities to the pattern of the residue obtained by thermal decomposition of Mn(NCS)2(4-benzoyl­pyridine)4 (Wellm & Näther, 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.]), but it is different from those calculated for [M(NCS)2(4-benzoyl­pyridine)2]n (M = Co, Ni, Cd; Figure S1).

[Figure 1]
Figure 1
Experimental (top) and calculated (bottom) powder pattern of the title compound.

2. Structural commentary

The asymmetric unit of the title compound [Fe(NCS)2(C12H9NO)2(MeOH)2] consists of one terminal N-bonded thio­cyanate anion, one O-bonded methanol and one N-bonded 4-benzoyl­pyridine ligand in general positions and one FeII cation located on a centre of inversion (Fig. 2[link]). The FeII cation is octa­hedrally coordinated by two thio­cyanate anions, two methanol and two 4-benzoyl­pyridine ligands, with each pair of the same ligand in the trans-position. The Fe—N bond length to the 4-benzoyl­pyridine ligand [2.2270 (12) Å] is longer than that to the thio­cyanate anion [2.0823 (15) Å] (Table 1[link]). From the bond angles around the metal centers as well as the value for the angle variance (0.93) and the quadratic elongation (1.002) calculated by a procedure published by Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]), it is obvious that the octa­hedra are slightly distorted. The 4-benzoyl­pyridine ligands are not coplanar as demonstrated by the values of the dihedral angles between the pyridine ring (N11/C11–C15) and the carbonyl group (C13/C16/C17/O11) of 47.9 (1)° and between the carbonyl group (C13/C16/ C17/O11) and the phenyl ring (C17–C22) of 16.6 (1)°.

Table 1
Selected geometric parameters (Å, °)

Fe1—N1i 2.0823 (15) Fe1—O1 2.1780 (12)
Fe1—N1 2.0823 (15) Fe1—N11i 2.2270 (12)
Fe1—O1i 2.1780 (12) Fe1—N11 2.2270 (12)
       
N1i—Fe1—N1 180.00 (8) O1i—Fe1—N11i 88.57 (5)
N1i—Fe1—O1i 89.31 (6) O1—Fe1—N11i 91.43 (5)
N1—Fe1—O1i 90.69 (6) N1i—Fe1—N11 90.13 (5)
N1i—Fe1—O1 90.69 (6) N1—Fe1—N11 89.87 (5)
N1—Fe1—O1 89.31 (6) O1i—Fe1—N11 91.43 (5)
O1i—Fe1—O1 180.00 (4) O1—Fe1—N11 88.57 (5)
N1i—Fe1—N11i 89.87 (5) N11i—Fe1—N11 180.0
N1—Fe1—N11i 90.13 (5)    
Symmetry code: (i) -x, -y, -z+1.
[Figure 2]
Figure 2
View of a discrete complex with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x, −y, −z + 1.

3. Supra­molecular features

In the crystal of the title compound, the discrete complex mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds between the hydroxyl H atom of the methanol ligand and the carbonyl oxygen atom of a 4-benzoyl­pyridine ligand of a neighbouring complex (Table 2[link]). Each of the complexes are linked to four symmetry-equivalent complexes into layers parallel to (101) (Fig. 3[link]). Between these layers, no pronounced inter­molecular inter­actions are observed (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O11ii 0.84 1.92 2.7574 (16) 174
Symmetry code: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along (101) with inter­molecular O—H⋯O hydrogen bonding shown as dashed lines.
[Figure 4]
Figure 4
Crystal packing of the title compound viewed along the crystallographic b axis with inter­molecular O—H⋯O hydrogen bonding shown as dashed lines.

4. Database survey

According to the Cambridge Structural Database (CSD, version 5.40, updated Feb. 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), several compounds based on 4-benzoyl­pyridine and transition-metal thio­cyanates have been reported. This includes one square-planar copper complex with the composition [Cu(NCS)2(4-benzoyl­pyridine)2] (Bai et al., 2011[Bai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A, 79, 1338-1344.]) and the Zn complex [Zn(NCS)2(4-benzoyl­pyridine)2], in which the ZnII cations are tetra­hedrally coordinated (Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]). In all of the remaining compounds the metal cations are octa­hedrally coordinated. Some of them are coordination polymers with the general composition [M(NCS)2(4-benzoyl­pyridine)2]n (M = CdII, NiII, CoII), in which the metal centres are bridged by pairs of μ-1,3-coordinating thio­cyanate anions into chains (Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]). The remaining compounds are octa­hedrally coordinated complexes with two terminal thio­cyanate anions and either four 4-benzoyl­pyridine ligands or two 4-benzoyl­pyridine ligands and two additional solvate ligands (Drew et al., 1985[Drew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434-1437.]; Neumann et al., 2018b[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.]; Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]; Suckert et al., 2017a[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017a). Acta Cryst. E73, 365-368.],b[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Acta Cryst. E73, 616-619.]; Wellm & Näther, 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.], 2019a[Wellm, C. & Näther, C. (2019a). Acta Cryst. E75, 917-920.],b[Wellm, C. & Näther, C. (2019b). Acta Cryst. E75, 299-303.],c[Wellm, C. & Näther, C. (2019c). Acta Cryst. E75, 1685-1688.]).

5. Synthesis and crystallization

FeCl2·4 H2O and KSCN were purchased from Merck and 4-benzoyl­pyridine was purchased from Alfa Aesar.

Synthesis:

Crystals of the title compound suitable for single-crystal X-ray diffraction were obtained by the reaction of 59.6 mg FeCl2·4H2O (0.3 mmol) and 58.3 mg of KSCN (0.6 mmol) with 27.5 mg of 4-benzoyl­pyridine (0.15 mmol) in methanol (1.5 mL) within a few days.

For the synthesis of larger amounts of a polycrystalline powder, 398 mg of FeCl2·4H2O (2 mmol) and 396 mg of KSCN (4 mmol) were stirred in methanol (2 mL) for 16 h and the precipitating KCl was filtered off and washed two times with methanol (0.5 mL). 366 mg of (2 mmol) 4-benzoyl­pyridine were added and this reaction mixture was stirred for four days. The product was filtered off and directly analysed, because it proved to be unstable at room temperature if stored for a longer time.

Experimental details:

Differential thermoanalysis and thermogravimetry (DTA–TG) was performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using an STA PT1600 thermobalance from Linseis. The XRPD measurements were performed using a Stoe Transmission Powder Diffraction System (STADI P) with Cu Kα radiation that was equipped with a linear position-sensitive MYTHEN detector from STOE & Cie. The IR data were measured using a Bruker Alpha-P ATR-IR Spectrometer.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H H atoms were positioned with idealized geometry and were refined with fixed isotropic displacement parameters Uiso(H) = 1.2 Ueq(C) for aromatic and Uiso(H) = 1.5 Ueq(C) for methyl H atoms using a riding model. The O—H H atom was located in a difference map, its bond length was set to an ideal value of 0.84 Å and finally, it was refined with Uiso(H) = 1.5 Ueq(O) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Fe(NCS)2(C12H9NO)2(CH4O)2]
Mr 602.50
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 12.1111 (8), 7.2385 (3), 16.1716 (12)
β (°) 94.730 (8)
V3) 1412.87 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.12 × 0.08 × 0.06
 
Data collection
Diffractometer STOE IPDS1
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.834, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 19758, 3422, 3012
Rint 0.038
(sin θ/λ)max−1) 0.663
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.03
No. of reflections 3422
No. of parameters 179
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.51
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)bis(methanol-κN)iron(II) top
Crystal data top
[Fe(NCS)2(C12H9NO)2(CH4O)2]F(000) = 624
Mr = 602.50Dx = 1.416 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.1111 (8) ÅCell parameters from 19758 reflections
b = 7.2385 (3) Åθ = 2.5–28.1°
c = 16.1716 (12) ŵ = 0.72 mm1
β = 94.730 (8)°T = 200 K
V = 1412.87 (15) Å3Block, light yellow
Z = 20.12 × 0.08 × 0.06 mm
Data collection top
STOE IPDS-1
diffractometer
3012 reflections with I > 2σ(I)
Phi scansRint = 0.038
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
θmax = 28.1°, θmin = 2.5°
Tmin = 0.834, Tmax = 0.973h = 1616
19758 measured reflectionsk = 99
3422 independent reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.430P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.36 e Å3
3422 reflectionsΔρmin = 0.51 e Å3
179 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.033 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.00000.50000.02289 (12)
N10.11410 (12)0.1948 (2)0.45147 (10)0.0371 (3)
C10.19503 (13)0.2661 (2)0.42451 (10)0.0281 (3)
S10.30854 (4)0.36594 (7)0.38796 (3)0.04332 (15)
N110.13430 (11)0.14836 (18)0.44116 (8)0.0258 (3)
C110.21746 (13)0.0529 (2)0.41200 (10)0.0277 (3)
H110.22280.07560.42360.033*
C120.29604 (13)0.1328 (2)0.36572 (9)0.0270 (3)
H120.35210.05940.34420.032*
C130.29163 (12)0.3217 (2)0.35128 (9)0.0248 (3)
C140.20752 (13)0.4230 (2)0.38307 (10)0.0298 (3)
H140.20310.55290.37520.036*
C150.13013 (13)0.3312 (2)0.42649 (10)0.0301 (3)
H150.07150.40060.44680.036*
C160.37576 (13)0.4045 (2)0.29890 (9)0.0270 (3)
C170.43593 (12)0.5737 (2)0.32626 (10)0.0264 (3)
C180.49691 (14)0.6691 (2)0.27018 (11)0.0346 (4)
H180.49530.62970.21410.042*
C190.55965 (16)0.8209 (3)0.29656 (14)0.0433 (4)
H190.60010.88710.25830.052*
C200.56366 (16)0.8766 (3)0.37870 (15)0.0450 (5)
H200.60740.98020.39670.054*
C210.50409 (16)0.7819 (3)0.43474 (13)0.0399 (4)
H210.50750.82020.49110.048*
C220.43953 (13)0.6315 (2)0.40878 (10)0.0310 (3)
H220.39780.56790.44710.037*
O110.39260 (11)0.32281 (19)0.23480 (7)0.0377 (3)
C230.1420 (2)0.2043 (4)0.64942 (14)0.0593 (6)
H23A0.13670.28680.69700.089*
H23B0.17410.08610.66860.089*
H23C0.18920.26110.61010.089*
O10.03337 (11)0.1736 (2)0.60921 (7)0.0384 (3)
H10.01320.17450.64490.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01880 (17)0.02661 (18)0.02419 (17)0.00042 (10)0.00730 (11)0.00354 (10)
N10.0278 (7)0.0385 (8)0.0454 (8)0.0046 (6)0.0063 (6)0.0136 (6)
C10.0294 (7)0.0260 (7)0.0300 (7)0.0012 (6)0.0080 (6)0.0049 (6)
S10.0333 (2)0.0431 (3)0.0525 (3)0.00961 (18)0.00278 (19)0.0089 (2)
N110.0226 (6)0.0289 (6)0.0271 (6)0.0030 (5)0.0089 (5)0.0019 (5)
C110.0258 (7)0.0269 (7)0.0316 (7)0.0003 (6)0.0096 (6)0.0031 (6)
C120.0232 (7)0.0290 (7)0.0301 (7)0.0008 (6)0.0104 (6)0.0018 (6)
C130.0222 (7)0.0290 (7)0.0238 (6)0.0045 (6)0.0054 (5)0.0017 (5)
C140.0286 (8)0.0247 (7)0.0375 (8)0.0009 (6)0.0104 (6)0.0014 (6)
C150.0259 (7)0.0277 (7)0.0382 (8)0.0002 (6)0.0129 (6)0.0008 (6)
C160.0239 (7)0.0313 (7)0.0264 (7)0.0013 (6)0.0063 (5)0.0059 (6)
C170.0199 (6)0.0281 (7)0.0313 (7)0.0001 (6)0.0034 (5)0.0058 (6)
C180.0310 (8)0.0350 (8)0.0388 (8)0.0036 (7)0.0082 (7)0.0086 (7)
C190.0333 (9)0.0351 (9)0.0625 (12)0.0087 (7)0.0109 (8)0.0111 (8)
C200.0318 (9)0.0300 (8)0.0730 (14)0.0049 (7)0.0034 (9)0.0040 (8)
C210.0357 (9)0.0342 (9)0.0494 (10)0.0004 (7)0.0008 (8)0.0081 (8)
C220.0274 (7)0.0316 (8)0.0341 (8)0.0002 (6)0.0035 (6)0.0004 (6)
O110.0429 (7)0.0434 (7)0.0288 (6)0.0114 (6)0.0157 (5)0.0027 (5)
C230.0489 (12)0.0856 (17)0.0439 (11)0.0272 (12)0.0077 (9)0.0189 (11)
O10.0357 (6)0.0517 (8)0.0293 (6)0.0068 (6)0.0123 (5)0.0080 (5)
Geometric parameters (Å, º) top
Fe1—N1i2.0823 (15)C16—O111.225 (2)
Fe1—N12.0823 (15)C16—C171.474 (2)
Fe1—O1i2.1780 (12)C17—C221.396 (2)
Fe1—O12.1780 (12)C17—C181.398 (2)
Fe1—N11i2.2270 (12)C18—C191.383 (3)
Fe1—N112.2270 (12)C18—H180.9500
N1—C11.160 (2)C19—C201.385 (3)
C1—S11.6209 (17)C19—H190.9500
N11—C111.339 (2)C20—C211.386 (3)
N11—C151.345 (2)C20—H200.9500
C11—C121.385 (2)C21—C221.385 (2)
C11—H110.9500C21—H210.9500
C12—C131.388 (2)C22—H220.9500
C12—H120.9500C23—O11.436 (3)
C13—C141.388 (2)C23—H23A0.9800
C13—C161.502 (2)C23—H23B0.9800
C14—C151.386 (2)C23—H23C0.9800
C14—H140.9500O1—H10.8401
C15—H150.9500
N1i—Fe1—N1180.00 (8)N11—C15—H15118.5
N1i—Fe1—O1i89.31 (6)C14—C15—H15118.5
N1—Fe1—O1i90.69 (6)O11—C16—C17122.83 (14)
N1i—Fe1—O190.69 (6)O11—C16—C13116.92 (14)
N1—Fe1—O189.31 (6)C17—C16—C13120.23 (13)
O1i—Fe1—O1180.00 (4)C22—C17—C18119.69 (15)
N1i—Fe1—N11i89.87 (5)C22—C17—C16120.78 (14)
N1—Fe1—N11i90.13 (5)C18—C17—C16119.34 (15)
O1i—Fe1—N11i88.57 (5)C19—C18—C17119.90 (17)
O1—Fe1—N11i91.43 (5)C19—C18—H18120.1
N1i—Fe1—N1190.13 (5)C17—C18—H18120.1
N1—Fe1—N1189.87 (5)C18—C19—C20120.13 (17)
O1i—Fe1—N1191.43 (5)C18—C19—H19119.9
O1—Fe1—N1188.57 (5)C20—C19—H19119.9
N11i—Fe1—N11180.0C19—C20—C21120.28 (17)
C1—N1—Fe1163.04 (14)C19—C20—H20119.9
N1—C1—S1179.32 (16)C21—C20—H20119.9
C11—N11—C15117.66 (13)C22—C21—C20120.13 (18)
C11—N11—Fe1119.92 (10)C22—C21—H21119.9
C15—N11—Fe1122.13 (10)C20—C21—H21119.9
N11—C11—C12123.04 (15)C21—C22—C17119.86 (16)
N11—C11—H11118.5C21—C22—H22120.1
C12—C11—H11118.5C17—C22—H22120.1
C11—C12—C13118.94 (14)O1—C23—H23A109.5
C11—C12—H12120.5O1—C23—H23B109.5
C13—C12—H12120.5H23A—C23—H23B109.5
C12—C13—C14118.52 (13)O1—C23—H23C109.5
C12—C13—C16117.99 (14)H23A—C23—H23C109.5
C14—C13—C16123.44 (14)H23B—C23—H23C109.5
C15—C14—C13118.83 (15)C23—O1—Fe1123.95 (12)
C15—C14—H14120.6C23—O1—H1109.2
C13—C14—H14120.6Fe1—O1—H1118.2
N11—C15—C14122.95 (14)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O11ii0.841.922.7574 (16)174
Symmetry code: (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/6–1) and the State of Schleswig-Holstein.

References

First citationBai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A, 79, 1338–1344.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Curzi, M., Grepioni, F. & Polito, M. (2005). Chem. Commun. pp. 2915–2917.  Web of Science CSD CrossRef Google Scholar
First citationBraga, D., Giaffreda, S. L., Grepioni, F., Pettersen, A., Maini, L., Curzi, M. & Polito, M. (2006). Dalton Trans. pp. 1249–1263.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDrew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434–1437.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHöller, C. J., Mai, M., Feldmann, C. & Müller-Buschbaum, K. (2010). Dalton Trans. 39, 461–468.  Google Scholar
First citationJames, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W. & Waddell, D. C. (2012). Chem. Soc. Rev. 41, 413–447.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779–4789.  Web of Science CSD CrossRef Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. & Massoud, S. S. (2016a). Inorg. Chim. Acta, 448, 34–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016b). Inorg. Chim. Acta, 439, 69–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018a). Inorg. Chem. 57, 3305–3314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNeumann, T., Gallo, G., Jess, I., Dinnebier, R. & Näther, C. (2020). CrystEngComm, 22, 184–194.  CrossRef CAS Google Scholar
First citationNeumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018b). Inorg. Chim. Acta, 478, 15–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A. & Plass, W. (2020). Chem. Eur. J. https://doi.org/10.1002/chem.201903924  Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSchönfeld, F., Meyer, L. V., Winter, F., Niehaus, O., Rodewald, U. C., Pöttgen, R. & Müller-Buschbaum, K. (2012). Z. Anorg. Allg. Chem. 638, 2062–2068.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115–125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Werner, J., Jess, I. & Näther, C. (2017a). Acta Cryst. E73, 365–368.  CrossRef IUCr Journals Google Scholar
First citationSuckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Acta Cryst. E73, 616–619.  CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899–1902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2019a). Acta Cryst. E75, 917–920.  CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2019b). Acta Cryst. E75, 299–303.  CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2019c). Acta Cryst. E75, 1685–1688.  CrossRef IUCr Journals Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. pp. 3236–3245.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902–1913.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds