research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of (E)-2-({2-[aza­niumyl­­idene(methyl­sulfan­yl)meth­yl]hydrazinyl­­idene}meth­yl)benzene-1,4-diol hydrogen sulfate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Inorganique et Environnement, Université de Tlemcen, BP 119, 13000 Tlemcen, Algeria, and bCentre de Diffractometrie X, UMR 6226 CNRS, Unit Sciences Chimiques de Rennes, Universite de Rennes I, 263 Avenue du General Leclerc, 35042 Rennes, France
*Correspondence e-mail: oussamanehar@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 26 September 2019; accepted 17 October 2019; online 29 October 2019)

The title mol­ecular salt, C9H12N3O2S+·HSO4, was obtained through the protonation of the azomethine N atom in a sulfuric acid medium. The crystal com­prises two entities, a thio­semicarbazide cation and a hydrogen sulfate anion. The cation is essentially planar and is further stabilized by a strong intra­molecular O—H⋯N hydrogen bond. In the crystal, a three-dimensional network is established through O—H⋯O and N—H⋯O hydrogen bonds. A weak intermolecular C—H⋯O hydrogen bond is also observed. The hydrogen sulfate anion exhibits disorder over two sets of sites and was modelled with refined occupancies of 0.501 (6) and 0.499 (6).

1. Chemical context

Thio­semicarbazones and their com­plexes are well known for their pharmacological properties, as anti­microbial (Plech et al., 2011[Plech, T., Wujec, M., Siwek, A., Kosikowska, U. & Malm, A. (2011). Eur. J. Med. Chem. 46, 241-248.]; Pandeya et al., 1999[Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25-31.]; Küçükgüzel et al., 2006[Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]), anti-inflammatory (Palaska et al., 2002[Palaska, E., Şahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101-107.]) and anti­umoural (de Oliveira et al., 2015[Oliveira, J. F. de, da Silva, A. L., Vendramini-Costa, D. B., da Cruz Amorim, C. A., Campos, J. F., Ribeiro, A. G., Olímpio de Moura, R., Neves, J. L., Ruiz, A. L., Ernesto de Carvalho, J. & Alves de Lima, M. C. (2015). Eur. J. Med. Chem. 104, 148-156.]) agents. Complexes of thio­semicarbazones are studied in the literature as drug candidates, biomarkers and biocatalysts (Hayne et al., 2014[Hayne, D. J., Lim, S. & Donnelly, P. S. (2014). Chem. Soc. Rev. 43, 6701-6715.]; Lim et al., 2010[Lim, S., Paterson, B. M., Fodero-Tavoletti, M. T., O'Keefe, G. J., Cappai, R., Barnham, K. J., Villemagne, V. L. & Donnelly, P. S. (2010). Chem. Commun. 46, 5437-5439.]). It is believed that the biological activity of these com­pounds has a strong relationship with the nature of the aldehydes and ketones from which those thio­semicarbazones were obtained (Teoh et al., 1999[Teoh, S.-G., Ang, S.-H., Fun, H.-K. & Ong, C.-W. (1999). J. Organomet. Chem. 580, 17-21.]), and also on the substituents attached at the +NH2 N atom (Beraldo & Gambino, 2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 159-165.]). An inter­esting attribute of thio­semicarbazones is their ability to exhibit thione–thiol tautomerism and they can also exist as E and Z isomers. Thio­semicarbazones have an excellent capacity to com­plex transition metals, acting as chelating agents; this process usually takes place via dissociation of the acidic proton (Pal et al., 2002[Pal, I., Basuli, F. & Bhattacharya, S. (2002). J. Chem. Sci. 114, 255-268.]). The crystal structure of the title mol­ecular salt was determined in order to investigate its biological and catalytic activities.

2. Structural commentary

The mol­ecular structure of the title mol­ecular salt is illustrated in Fig. 1[link]. It com­prises two entities, i.e. a thio­semicarbazone cation and a hydrogen sulfate anion. The cation is essentially planar and shows an E conformation with regard to the C6—N5 bond, the maximum deviation from the mean plane through the 15 non-H atoms being 0.1 (2) Å for atom C6. This planarity is due to electron delocalization along the cation backbone, which is further stabilized by an intra­molecular O13—H13⋯N5 hydrogen bond (Zhu et al., 2004[Zhu, J., Wang, X.-Z., Chen, Y.-Q., Jiang, X.-K., Chen, X.-Z. & Li, Z.-T. (2004). J. Org. Chem. 69, 6221-6227.]). The bond lengths and angles resemble those observed for similar thio­semicarbazone derivatives (Gangadharan et al., 2015[Gangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305-308.]; Joseph et al., 2004[Joseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H.-K. (2004). J. Mol. Struct. 705, 63-70.]; Nehar et al., 2016[Nehar, O., Louhibi, S., Boukli-Hacene, L. & Roisnel, T. (2016). Acta Cryst. E72, 1326-1329.]; Houari et al., 2013[Houari, B., Louhibi, S., Boukli-Hacene, L., Roisnel, T. & Taleb, M. (2013). Acta Cryst. E69, o1469.]). The anion (hydrogen sulfate) is disordered, split over two sets of siteswith relative occupancies of 0.501 (6) and 0.499 (6), and labelled with A and B suffixes.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, showing the labelling and with displacement ellipsoids drawn at the 50% probability level. The disordered hydrogen sulfate anion is shown.

3. Supra­molecular features

In the crystal, the three-dimensional structure is established through an extensive network of O—H⋯O and N—H⋯O hydrogen bonds. Also within this network exists a weak C—H⋯O inter­molecular hydrogen bond (Table 1[link] and Fig. 2[link]). The crystal packing is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O12Ai 0.95 2.60 3.541 (10) 170
N3—H3A⋯O12Aii 0.89 (2) 1.85 (2) 2.738 (12) 178 (3)
N3—H3A⋯O12Bii 0.89 (2) 1.98 (2) 2.841 (11) 163 (3)
N3—H3B⋯O14iii 0.86 (2) 2.05 (2) 2.874 (3) 160 (3)
N4—H4⋯O13Aii 0.86 (3) 2.00 (3) 2.849 (5) 167 (3)
N4—H4⋯O13Bii 0.86 (3) 2.00 (3) 2.841 (5) 164 (3)
O13—H13⋯N5 0.78 (3) 2.03 (3) 2.685 (3) 142 (3)
O14—H14⋯O11Aiv 0.83 (4) 1.90 (4) 2.716 (16) 167 (3)
O14—H14⋯O11Biv 0.83 (4) 1.82 (4) 2.62 (2) 162 (3)
O14A—H14A⋯O11Aiv 0.84 2.28 3.123 (17) 180
O14B—H14B⋯S2Bii 0.84 2.73 3.490 (9) 152
O14B—H14B⋯O13Bii 0.84 1.73 2.567 (7) 180
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z.
[Figure 2]
Figure 2
Projection along the a axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dashed lines.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.4, May 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the S-meth­yl(methyl­idene)thio­semicarbazidium cation yielded three results, viz. S-methyl-N-(pyrrolyl-2-methyl­ene)iso­thio­semi­car­bazidium iodide monohydrate (CSD refcode JIHZUV; Bourosh et al., 1990[Bourosh, P. N., Jampolskaia, M. A., Dvorkin, A. A., Gerbeleu, N. V., Simonov, Yu. A. & Malinovskii, T. I. (1990). Dokl. Akad. Nauk SSSR, 311, 1119-1122.]), 8-quinoline­aldehyde S-methyl­thio­semicarbazone hydro­chloride dihydrate (RUJXOK; Botoshansky et al., 2009[Botoshansky, M., Bourosh, P. N., Revenco, M. D., Korja, I. D., Simonov, Yu. A. & Panfilie, T. (2009). Zh. Strukt. Khim. 50, 188-191.]) and ((E)-{2-[(E)-(4-hy­droxy­naphthalen-1-yl)methyl­idene]hydrazin-1-yl}(methyl­sulfan­yl)methyl­idene)aza­nium hydrogen sulfate monohydrate. The three-dimensional coordinates for the first structure are unavailable. A com­parison of the structures reveals that the cation in the RUJXOK structure is less planar than the cation in ESOTIR, the latter being more similar to the cation of the title com­pound. However, for structures RUJXOK and ESOTIR, the bond lengths and angles are similar to those of the title mol­ecular salt.

5. Synthesis and crystallization

An equimolar amount of thio­semicarbazide (10 mmol, 0.91 g) and 2,5-di­hydroxy­benzaldehyde (10 mmol, 1.38 g) were dissolved in a methanol–water solution in the presence of sulfuric acid. The mixture was then refluxed for 3 h. The solution was filtered and left to evaporate at room temperature. After slow evaporation, brown crystals suitable for X-ray diffraction analysis were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen sulfate anion is disordered and had to be modelled as two conformations A and B, with relative occupancies of 0.501 (6) and 0.499 (6), respectively. H atoms were located in difference Fourier maps, but were subsequently included in calculated positions and treated as riding on their parent atoms with constrained thermal parameters: Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å for methyl H atoms, and Uiso(H) = 1.2Ueq(C,N) and C—H = 0.95 Å or N—H = 0.88 Å otherwise.

Table 2
Experimental details

Crystal data
Chemical formula C9H12N3O2S+·HSO4
Mr 323.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 4.9411 (8), 16.139 (2), 16.426 (3)
β (°) 100.440 (7)
V3) 1288.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.38 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.838, 0.948
No. of measured, independent and observed [I > 2σ(I)] reflections 7962, 2846, 2014
Rint 0.045
(sin θ/λ)max−1) 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.03
No. of reflections 2846
No. of parameters 243
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.46
Computer programs: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SXGRAPH (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and CRYSCALC (T. Roisnel, local program).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: APEX2 (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SXGRAPH (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSCALC (T. Roisnel, local program, 2019).

(E)-2-({2-[Azaniumylidene(methylsulfanyl)methyl]hydrazinylidene}\ methyl)benzene-1,4-diol sulfate top
Crystal data top
C9H12N3O2S+·HSO4F(000) = 672
Mr = 323.34Dx = 1.667 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.9411 (8) ÅCell parameters from 2859 reflections
b = 16.139 (2) Åθ = 2.5–27.0°
c = 16.426 (3) ŵ = 0.44 mm1
β = 100.440 (7)°T = 150 K
V = 1288.2 (3) Å3Prism, colourless
Z = 40.38 × 0.15 × 0.12 mm
Data collection top
Bruker APEXII
diffractometer
2846 independent reflections
Radiation source: fine-focus sealed tube2014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
CCD rotation images, thin slices scansθmax = 27.3°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
h = 64
Tmin = 0.838, Tmax = 0.948k = 1920
7962 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.086P)2]
where P = (Fo2 + 2Fc2)/3
2846 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.36 e Å3
8 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.99180 (14)0.09724 (4)0.39012 (4)0.0247 (2)
C11.1843 (6)0.05832 (18)0.31564 (19)0.0283 (7)
H1A1.1037650.0791270.2605120.042*
H1B1.1786440.0023770.3154740.042*
H1C1.3757610.0769560.3302290.042*
C21.0137 (5)0.20289 (18)0.37549 (16)0.0196 (6)
N31.1584 (4)0.23722 (15)0.32555 (15)0.0212 (5)
H3A1.163 (6)0.2922 (11)0.3217 (18)0.025*
H3B1.253 (5)0.2090 (17)0.2961 (16)0.025*
N40.8734 (5)0.25101 (15)0.41903 (15)0.0221 (5)
H40.897 (6)0.304 (2)0.4220 (19)0.027*
N50.7288 (4)0.21422 (15)0.47329 (14)0.0209 (5)
C60.6012 (5)0.26348 (17)0.51479 (17)0.0207 (6)
H60.6112340.3215650.5064370.025*
C70.4421 (5)0.23214 (17)0.57410 (16)0.0179 (6)
C80.4293 (5)0.14784 (17)0.59347 (17)0.0204 (6)
C90.2738 (5)0.12280 (18)0.65151 (18)0.0239 (6)
H90.2652690.0656630.6647100.029*
C100.1324 (5)0.17925 (17)0.69007 (17)0.0225 (6)
H100.0259880.1610370.7293730.027*
C110.1446 (5)0.26363 (17)0.67161 (17)0.0199 (6)
C120.2983 (5)0.28879 (17)0.61429 (16)0.0209 (6)
H120.3069230.3460850.6017280.025*
O130.5640 (4)0.08764 (12)0.55849 (13)0.0270 (5)
H130.648 (7)0.106 (2)0.527 (2)0.032*
O140.0054 (4)0.31741 (13)0.71335 (13)0.0279 (5)
H140.001 (6)0.366 (2)0.697 (2)0.034*
S2A0.8844 (12)0.5353 (4)0.6254 (4)0.0254 (10)0.501 (6)
O11A1.081 (3)0.4743 (10)0.6620 (9)0.031 (3)0.501 (6)
O12A0.810 (2)0.5938 (7)0.6848 (5)0.030 (2)0.501 (6)
O13A0.9688 (11)0.5797 (2)0.5572 (3)0.0297 (14)0.501 (6)
O14A0.6216 (9)0.4839 (3)0.5891 (3)0.0302 (13)0.501 (6)
H14A0.4762180.4813370.6086970.045*0.501 (6)
S2B0.9553 (12)0.5327 (5)0.6250 (5)0.0292 (12)0.499 (6)
O11B1.084 (4)0.4751 (12)0.6870 (8)0.038 (3)0.499 (6)
O12B0.767 (2)0.5891 (7)0.6534 (6)0.038 (2)0.499 (6)
O13B1.1639 (10)0.5733 (3)0.5857 (3)0.0294 (13)0.499 (6)
O14B0.7723 (10)0.4819 (4)0.5562 (3)0.0506 (17)0.499 (6)
H14B0.7938680.4637610.5098520.076*0.499 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0307 (4)0.0178 (4)0.0285 (4)0.0005 (3)0.0136 (3)0.0018 (3)
C10.0313 (14)0.0220 (15)0.0354 (18)0.0012 (12)0.0162 (13)0.0003 (13)
C20.0205 (11)0.0207 (14)0.0172 (14)0.0001 (11)0.0027 (11)0.0014 (11)
N30.0252 (11)0.0175 (12)0.0236 (13)0.0011 (10)0.0114 (10)0.0049 (10)
N40.0285 (11)0.0178 (12)0.0228 (13)0.0013 (10)0.0121 (10)0.0013 (10)
N50.0226 (10)0.0229 (12)0.0188 (12)0.0018 (9)0.0079 (9)0.0010 (10)
C60.0230 (11)0.0178 (14)0.0220 (15)0.0004 (11)0.0057 (11)0.0001 (11)
C70.0197 (11)0.0182 (13)0.0162 (14)0.0007 (10)0.0040 (10)0.0011 (11)
C80.0214 (11)0.0185 (14)0.0211 (15)0.0003 (10)0.0035 (11)0.0024 (11)
C90.0285 (13)0.0185 (14)0.0252 (15)0.0032 (12)0.0063 (12)0.0006 (12)
C100.0249 (12)0.0238 (15)0.0201 (15)0.0030 (11)0.0075 (11)0.0009 (12)
C110.0214 (11)0.0191 (14)0.0202 (14)0.0002 (11)0.0064 (11)0.0040 (11)
C120.0244 (12)0.0172 (14)0.0213 (15)0.0008 (11)0.0043 (11)0.0002 (11)
O130.0342 (11)0.0182 (10)0.0329 (13)0.0024 (9)0.0175 (9)0.0009 (9)
O140.0363 (10)0.0186 (10)0.0336 (12)0.0014 (9)0.0186 (9)0.0015 (9)
S2A0.038 (3)0.0164 (14)0.0231 (13)0.0028 (16)0.0076 (16)0.0061 (9)
O11A0.028 (3)0.020 (3)0.043 (8)0.003 (3)0.007 (5)0.010 (5)
O12A0.040 (4)0.026 (3)0.026 (4)0.010 (3)0.009 (3)0.005 (3)
O13A0.050 (3)0.018 (2)0.026 (3)0.004 (2)0.021 (2)0.0035 (18)
O14A0.031 (2)0.025 (2)0.038 (3)0.0049 (18)0.016 (2)0.0021 (19)
S2B0.037 (3)0.0182 (14)0.0338 (15)0.0054 (16)0.0117 (17)0.0075 (10)
O11B0.051 (4)0.030 (4)0.035 (7)0.001 (3)0.014 (5)0.007 (5)
O12B0.038 (4)0.017 (3)0.062 (7)0.005 (3)0.021 (5)0.011 (5)
O13B0.030 (3)0.025 (2)0.036 (3)0.0028 (19)0.014 (2)0.008 (2)
O14B0.042 (3)0.068 (4)0.044 (3)0.018 (3)0.012 (3)0.029 (3)
Geometric parameters (Å, º) top
S1—C21.728 (3)C9—H90.9500
S1—C11.794 (3)C10—C111.399 (4)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C11—O141.367 (3)
C1—H1C0.9800C11—C121.374 (3)
C2—N31.305 (3)C12—H120.9500
C2—N41.332 (3)O13—H130.78 (3)
N3—H3A0.890 (18)O14—H140.83 (4)
N3—H3B0.861 (17)S2A—O11A1.435 (8)
N4—N51.374 (3)S2A—O12A1.452 (7)
N4—H40.86 (3)S2A—O13A1.453 (6)
N5—C61.285 (3)S2A—O14A1.564 (8)
C6—C71.449 (3)O14A—H14A0.8399
C6—H60.9500S2B—O12B1.437 (7)
C7—C121.395 (4)S2B—O11B1.439 (8)
C7—C81.401 (4)S2B—O13B1.467 (6)
C8—O131.362 (3)S2B—O14B1.549 (9)
C8—C91.388 (4)O14B—H14B0.8401
C9—C101.371 (4)
C2—S1—C1101.32 (13)C10—C9—H9119.5
S1—C1—H1A109.5C8—C9—H9119.5
S1—C1—H1B109.5C9—C10—C11120.1 (2)
H1A—C1—H1B109.5C9—C10—H10120.0
S1—C1—H1C109.5C11—C10—H10120.0
H1A—C1—H1C109.5O14—C11—C12123.2 (3)
H1B—C1—H1C109.5O14—C11—C10117.6 (2)
N3—C2—N4119.2 (3)C12—C11—C10119.2 (2)
N3—C2—S1124.2 (2)C11—C12—C7121.5 (3)
N4—C2—S1116.7 (2)C11—C12—H12119.2
C2—N3—H3A119.5 (19)C7—C12—H12119.2
C2—N3—H3B123 (2)C8—O13—H13112 (2)
H3A—N3—H3B118 (3)C11—O14—H14115 (2)
C2—N4—N5118.6 (2)O11A—S2A—O12A113.5 (9)
C2—N4—H4122 (2)O11A—S2A—O13A113.2 (7)
N5—N4—H4118 (2)O12A—S2A—O13A109.8 (7)
C6—N5—N4116.1 (2)O11A—S2A—O14A104.4 (10)
N5—C6—C7121.3 (3)O12A—S2A—O14A107.9 (5)
N5—C6—H6119.4O13A—S2A—O14A107.6 (5)
C7—C6—H6119.4S2A—O14A—H14A126.1
C12—C7—C8118.7 (2)O12B—S2B—O11B114.1 (9)
C12—C7—C6118.3 (2)O12B—S2B—O13B114.0 (7)
C8—C7—C6123.0 (2)O11B—S2B—O13B110.1 (9)
O13—C8—C9117.1 (2)O12B—S2B—O14B104.2 (6)
O13—C8—C7123.4 (2)O11B—S2B—O14B107.4 (11)
C9—C8—C7119.5 (2)O13B—S2B—O14B106.2 (5)
C10—C9—C8121.0 (3)S2B—O14B—H14B133.8
C1—S1—C2—N34.6 (3)C6—C7—C8—C9179.5 (2)
C1—S1—C2—N4175.8 (2)O13—C8—C9—C10179.7 (2)
N3—C2—N4—N5178.0 (2)C7—C8—C9—C100.1 (4)
S1—C2—N4—N51.6 (3)C8—C9—C10—C110.4 (4)
C2—N4—N5—C6178.8 (2)C9—C10—C11—O14178.4 (2)
N4—N5—C6—C7179.8 (2)C9—C10—C11—C120.3 (4)
N5—C6—C7—C12177.1 (2)O14—C11—C12—C7178.7 (2)
N5—C6—C7—C83.7 (4)C10—C11—C12—C70.1 (4)
C12—C7—C8—O13179.3 (2)C8—C7—C12—C110.4 (4)
C6—C7—C8—O130.1 (4)C6—C7—C12—C11179.6 (2)
C12—C7—C8—C90.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O12Ai0.952.603.541 (10)170
N3—H3A···O12Aii0.89 (2)1.85 (2)2.738 (12)178 (3)
N3—H3A···O12Bii0.89 (2)1.98 (2)2.841 (11)163 (3)
N3—H3B···O14iii0.86 (2)2.05 (2)2.874 (3)160 (3)
N4—H4···O13Aii0.86 (3)2.00 (3)2.849 (5)167 (3)
N4—H4···O13Bii0.86 (3)2.00 (3)2.841 (5)164 (3)
O13—H13···N50.78 (3)2.03 (3)2.685 (3)142 (3)
O14—H14···O11Aiv0.83 (4)1.90 (4)2.716 (16)167 (3)
O14—H14···O11Biv0.83 (4)1.82 (4)2.62 (2)162 (3)
O14A—H14A···O11Aiv0.842.283.123 (17)180
O14B—H14B···S2Bii0.842.733.490 (9)152
O14B—H14B···O13Bii0.841.732.567 (7)180
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y+1/2, z1/2; (iv) x1, y, z.
 

Acknowledgements

The authors are grateful for the support provided by the Algerian Ministry for Education and Research.

References

First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 159–165.  Web of Science CrossRef Google Scholar
First citationBotoshansky, M., Bourosh, P. N., Revenco, M. D., Korja, I. D., Simonov, Yu. A. & Panfilie, T. (2009). Zh. Strukt. Khim. 50, 188–191.  Google Scholar
First citationBourosh, P. N., Jampolskaia, M. A., Dvorkin, A. A., Gerbeleu, N. V., Simonov, Yu. A. & Malinovskii, T. I. (1990). Dokl. Akad. Nauk SSSR, 311, 1119–1122.  Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305–308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHayne, D. J., Lim, S. & Donnelly, P. S. (2014). Chem. Soc. Rev. 43, 6701–6715.  CrossRef CAS PubMed Google Scholar
First citationHouari, B., Louhibi, S., Boukli-Hacene, L., Roisnel, T. & Taleb, M. (2013). Acta Cryst. E69, o1469.  CSD CrossRef IUCr Journals Google Scholar
First citationJoseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H.-K. (2004). J. Mol. Struct. 705, 63–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationKüçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science PubMed Google Scholar
First citationLim, S., Paterson, B. M., Fodero-Tavoletti, M. T., O'Keefe, G. J., Cappai, R., Barnham, K. J., Villemagne, V. L. & Donnelly, P. S. (2010). Chem. Commun. 46, 5437–5439.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNehar, O., Louhibi, S., Boukli-Hacene, L. & Roisnel, T. (2016). Acta Cryst. E72, 1326–1329.  CrossRef IUCr Journals Google Scholar
First citationOliveira, J. F. de, da Silva, A. L., Vendramini-Costa, D. B., da Cruz Amorim, C. A., Campos, J. F., Ribeiro, A. G., Olímpio de Moura, R., Neves, J. L., Ruiz, A. L., Ernesto de Carvalho, J. & Alves de Lima, M. C. (2015). Eur. J. Med. Chem. 104, 148–156.  PubMed Google Scholar
First citationPal, I., Basuli, F. & Bhattacharya, S. (2002). J. Chem. Sci. 114, 255–268.  CrossRef CAS Google Scholar
First citationPalaska, E., Şahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPlech, T., Wujec, M., Siwek, A., Kosikowska, U. & Malm, A. (2011). Eur. J. Med. Chem. 46, 241–248.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeoh, S.-G., Ang, S.-H., Fun, H.-K. & Ong, C.-W. (1999). J. Organomet. Chem. 580, 17–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, J., Wang, X.-Z., Chen, Y.-Q., Jiang, X.-K., Chen, X.-Z. & Li, Z.-T. (2004). J. Org. Chem. 69, 6221–6227.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds