research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT study of (2Z)-2-(4-fluoro­benzyl­­idene)-4-(prop-2-yn-1-yl)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, eNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and gMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
*Correspondence e-mail: brahimhni2018@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 31 January 2019; accepted 14 February 2019; online 22 February 2019)

The title compound, C18H12FNOS, is built up from a 4-fluoro­benzyl­idene moiety and a di­hydro­benzo­thia­zine unit with a propynyl substituent, with the heterocyclic portion of the di­hydro­benzo­thia­zine unit adopting a shallow boat conformation with the propynyl substituent nearly perpendicular to it. The two benzene rings are oriented at a dihedral angle of 43.02 (6)°. In the crystal, C—HFlurphen⋯FFlurphen (Flurphen = fluoro­phen­yl) hydrogen bonds link the mol­ecules into inversion dimers, enclosing R22(8) ring motifs, with the dimers forming oblique stacks along the a-axis direction. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (33.9%), H⋯C/C⋯H (26.7%), H⋯F/F⋯H (10.9%) and C⋯C (10.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

1,4-Benzo­thia­zine derivatives represent one of the most important classes of organic mol­ecules and have been studied extensively for their biological activities (Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.]; Sebbar et al., 2016a[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data 1, x161012.]) and therapeutic applications such as analgesic (Wammack et al., 2002[Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596-601.]), anti-viral (Malagu et al., 1998[Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57-60.]; Rathore & Kumar, 2006[Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678-5682.]) and anti-oxidant activities (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). Slight changes in the substitution pattern in the benzo­thia­zine nucleus can cause a distinguishable difference in their biological properties (Niewiadomy et al., 2011[Niewiadomy, A., Matysiak, J. & Karpińska, M. M. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 224-230.]; Armenise et al., 2012[Armenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407-416.]). Recent research has been focused on existing mol­ecules and their modifications in order to reduce their side effects and to explore their other pharmacological and biological effects (Ellouz et al., 2017b[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.]; Sebbar et al., 2016b[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845-6862.]; Gautam et al., 2012[Gautam, N., Ajmera, N., Gupta, S. & Gautam, D. C. (2012). Eur. J. Chem. 3, 106-111.]). As a continuation of our research into the development of N-substituted 1,4-benzo­thia­zine derivatives and the evaluation of their potential pharmacological activities, we have studied the condensation reaction of propargyl bromide with (Z)-2-(4-fluoro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base, leading to the title compound namely (2Z)-2-(4-fluoro­benzyl­idene)-4-(prop-2-yn-1-yl)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one in good yield (Sebbar et al., 2017a[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017a). IUCrData, 2, x170889.], Ellouz et al., 2018[Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.]), and we report herein its synthesis, the mol­ecular and crystal structures, along with the Hirshfeld surface analysis and density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level.

[Scheme 1]

2. Structural commentary

The title compound, (I)[link], is built up from a 4-fluoro­phenyl­methyl­idene moiety and a di­hydro­benzo­thia­zine unit with a propynyl substituent (Fig. 1[link]). The benzene (A; C1–C6), ring is oriented at a dihedral angle of 43.02 (6)° with respect to the 4-fluorophenyl ring (C; C13–C18). The propynyl substituent is nearly perpendicular to the plane defined by C1, C6, C7 and C8, as shown by the C6—N1—C9—C10 torsion angle of 81.3 (2)°. A puckering analysis of the heterocyclic ring (B; S1/N1/C1/C6–C8) of the di­hydro­benzo­thia­zine unit shows that it adopts a shallow boat conformation with puckering parameters QT = 0.3759 (14) Å, q2 = 0.3639 (15) Å, q3 = −0.0938 (17) Å, φ = 173.6 (3)° and θ = 104.5 (3)°. In the heterocyclic ring B, the C1—S1—C8 [101.73 (8)°], S1—C8—C7 [119.93 (12)°], C8—C7—N1 [119.23 (14)°], C7—N1—C6 [125.59 (14)°] and C6—C1—S1 [122.07 (13)°] bond angles are enlarged, while the N1—C6—C1 [120.91 (15)°] bond angle is narrowed when compared with the corresponding values in the closely related compounds 4-methyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (II) (Ellouz et al., 2017b[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.]), 4-[(3-phenyl-4,5-di­hydro­isoxazol-5-yl) meth­yl]-2H-benzo[b][1,4]thia­zin-3(4H)-one, (III) (Sebbar et al., 2016a[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data 1, x161012.]) and (Z)-2-(2-chloro­benzyl­idene)-4-(prop-2-yn­yl)-2H-1,4-benzo­thia­zin-3(4H)-one, (IV), (Sebbar et al., 2017a[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017a). IUCrData, 2, x170889.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, C—HFlurphen⋯FFlurphen (Flurphen = fluoro­phen­yl) hydrogen bonds (Table 1[link]) link the mol­ecules into inversion dimers enclosing R22(8) ring motifs, with the dimers forming oblique stacks along the a-axis direction (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯F1ii 0.98 (2) 2.60 (2) 3.306 (2) 128.5 (17)
Symmetry code: (ii) -x-1, -y, -z.
[Figure 2]
Figure 2
A partial packing diagram viewed along the a-axis direction. The inter­molecular C—HFlurphen⋯FFlurphen (Flurphen = fluoro­phen­yl) hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
A partial packing diagram viewed along the b-axis direction. The inter­molecular C—HFlurphen⋯FFlurphen (Flurphen = fluoro­phen­yl) hydrogen bonds are shown as dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corres­ponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 5[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggest that there are no ππ inter­actions in (I)[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.0943 to 1.2826 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯F/F⋯H, C⋯C, H⋯O/O⋯H, H⋯S/S⋯H, C⋯N/N⋯C, C⋯S/S⋯C, C⋯F/F⋯C, S⋯S and H⋯N/N⋯H contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link] bl, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 33.9% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. In the absence of C—H⋯π inter­actions, the pair of scattered wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26.7% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 7[link]c, with the thick edges at de + di ∼2.70 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯F/F⋯H contacts (Fig. 7[link]d, the 10.9% contribution to the HS) arises from the C—H⋯F hydrogen bonds (Table 1[link]) as well as from the H⋯F/F⋯H contacts (Table 2[link]) and is shown as a pair of spikes with the tips at de + di = 2.52 Å. The C⋯C contacts (Fig. 7[link]e, 10.6% contribution to the HS) have an arrow-shaped distribution of points with the tip at de = di ∼1.68 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 7[link]f, 8.0% contribution to the HS) have a pair of spikes with the tips at de + di = 2.54 Å. Finally, the H⋯S/S⋯H contacts (Table 2[link]; Fig. 7[link]g, 3.7% contribution) are viewed as A pair of wide spikes with the tips at de + di = 3.02 Å. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯F/F⋯H, C⋯C, H⋯O/O⋯H and H⋯S/S⋯H inter­actions in Fig. 8[link]af, respectively.

Table 2
Selected interatomic distances (Å)

S1⋯N1 3.0702 (15) C10⋯C11vii 3.572 (3)
S1⋯C14 3.179 (2) C12⋯C18vii 3.343 (3)
S1⋯C2i 3.5158 (19) C13⋯C18vii 3.464 (2)
S1⋯H14 2.51 (3) C13⋯C17vii 3.439 (3)
S1⋯H2i 3.06 (2) C14⋯C17vii 3.404 (3)
F1⋯F1ii 3.051 (2) C14⋯C16vii 3.457 (3)
F1⋯C15ii 3.306 (3) C15⋯C16vii 3.495 (3)
F1⋯H4iii 2.59 (3) C4⋯H11viii 2.91 (3)
F1⋯H15ii 2.60 (2) C5⋯H9B 2.63 (2)
O1⋯C10 3.167 (3) C5⋯H11viii 2.80 (3)
O1⋯C18iv 3.388 (2) C6⋯H9Bvi 2.85 (2)
O1⋯C18v 3.261 (2) C7⋯H9Avi 2.81 (2)
O1⋯H12 2.33 (2) C8⋯H14 2.97 (2)
O1⋯H9Avi 2.83 (2) C9⋯H5 2.48 (3)
O1⋯H9A 2.26 (2) C10⋯H5 2.60 (2)
O1⋯H12v 2.70 (2) C10⋯H9Bvi 2.90 (2)
O1⋯H18iv 2.60 (2) C11⋯H5ix 2.81 (3)
O1⋯H18v 2.71 (2) C11⋯H9Bvi 2.99 (2)
N1⋯H9Bvi 2.85 (2) C11⋯H17iv 2.82 (3)
C5⋯C10 3.216 (2) H2⋯H2x 2.57 (4)
C7⋯C12vii 3.448 (3) H5⋯H9B 2.17 (3)
C7⋯C9vi 3.334 (3) H5⋯H11viii 2.52 (4)
C9⋯C10vii 3.504 (2) H9A⋯H18v 2.50 (3)
C9⋯C11vii 3.469 (3) H12⋯H18 2.32 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x-1, -y, -z; (iii) x-1, y-1, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1; (vi) x-1, y, z; (vii) x+1, y, z; (viii) -x+1, -y+2, -z+1; (ix) -x+2, -y+2, -z+1; (x) -x, -y+1, -z.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯F/F⋯H, (e) C⋯C, (f) H⋯O/O⋯H, (g) H⋯S/S⋯H, (h) C⋯N/N⋯C, (i) C⋯S/S⋯C, (j) C⋯F/F⋯C, (k) S⋯S and (l) H⋯N/N⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 8]
Figure 8
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯F/F⋯H, (d) C⋯C, (e) H⋯O/O⋯H and (f) H⋯S/S⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. DFT calculations

The optimized structure of the title compound, (I)[link], in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results were in good agreement. The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9[link]. The HOMO and LUMO are localized in the plane extending from the whole (Z)-2-(4-fluoro­benzyl­idene)-4-(prop-2-yn­yl)-2H-1,4-benzo­thia­zin-3(4H)-one ring. The energy band gap [ΔE = ELUMO - EHOMO] of the mol­ecule was about 3.92 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO were −5.85 and −1.93 eV, respectively.

[Figure 9]
Figure 9
The energy band gap of the title compound.

6. Database survey

Using the search fragment II (R1 = Ph, R2 = C) in the Cambridge Crystallographic Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to Nov. 2018), 14 hits were registered with R1 = Ph and R2 = CH2COOH (Sebbar et al., 2016c[Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.]), IIa (Sebbar et al., 2016b[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845-6862.]), n-octa­decyl (Sebbar et al., 2017b[Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. & Mague, J. T. (2017b). IUCrData, 2, x170695.]), IIb (Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]), n-Bu (Sebbar, El Fal et al., 2014[Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o686.]), IIc (Sebbar et al., 2016d[Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016d). IUCrData, 1, x161823.]), IId (Sebbar et al., 2015[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423-o424.]), CH2C≡CH IIe (Sebbar, Zerzouf et al., 2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.]). In addition there are examples with R1 = 4-ClC6H4 and R2 = CH2Ph2 (Ellouz et al., 2016[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCrData, 1, x160764.]) IIf and R1 = 2-ClC6H4, R2 = CH2C≡CH (Sebbar et al., 2017c[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017c). IUCrData, 2, x170889.]). In the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitro­gen and sulfur atoms and that defined by nitro­gen and sulfur and the other two carbon atoms separating them ranging from ca. 29 (IIe) to 36° (IId). The other three (IIa, IIc, IIf) have the benzo­thia­zine unit nearly planar with the corresponding dihedral angle of ca 3–4°. In the case of IIa, the displacement ellipsoid for the sulfur atom shows a considerable elongation perpendicular to the mean plane of the heterocyclic ring, suggesting disorder, and a greater degree of non-planarity but for the other two, there is no obvious source for the near planarity.

[Scheme 2]

7. Synthesis and crystallization

Propargyl bromide (4 mmol) was added to a mixture of (Z)-2-(4-fluoro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (1.6 mmol), potassium carbonate (4 mmol) and tetra-n-butyl ammonium bromide (0.15 mmol) in DMF (20 ml). Stirring was continued at room temperature for 24 h. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate–hexane (2/8) as eluent. The solid product obtained was recrystallized from ethanol to afford colourless crystals (yield: 89%).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were located in a difference-Fourier map and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C18H12FNOS
Mr 309.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 4.0602 (2), 13.8983 (5), 14.2620 (5)
α, β, γ (°) 117.809 (2), 93.155 (2), 94.416 (2)
V3) 705.96 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.15
Crystal size (mm) 0.45 × 0.21 × 0.01
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.69, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 5323, 2595, 2256
Rint 0.026
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.04
No. of reflections 2595
No. of parameters 247
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.31
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(2Z)-2-(4-Fluorobenzylidene)-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzothiazin-3-one top
Crystal data top
C18H12FNOSZ = 2
Mr = 309.35F(000) = 320
Triclinic, P1Dx = 1.455 Mg m3
a = 4.0602 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 13.8983 (5) ÅCell parameters from 4191 reflections
c = 14.2620 (5) Åθ = 3.6–72.3°
α = 117.809 (2)°µ = 2.15 mm1
β = 93.155 (2)°T = 150 K
γ = 94.416 (2)°Plate, light yellow
V = 705.96 (5) Å30.45 × 0.21 × 0.01 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2595 independent reflections
Radiation source: INCOATEC IµS micro-focus source2256 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 3.6°
ω scansh = 44
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1715
Tmin = 0.69, Tmax = 0.97l = 1517
5323 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.092All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.047P)2 + 0.2564P]
where P = (Fo2 + 2Fc2)/3
2595 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36900 (11)0.48920 (3)0.16432 (3)0.02650 (14)
F10.4439 (4)0.02242 (10)0.11539 (11)0.0500 (4)
O10.6330 (3)0.62345 (10)0.47251 (9)0.0274 (3)
N10.7395 (3)0.69008 (11)0.35897 (11)0.0196 (3)
C10.4638 (4)0.62082 (14)0.17880 (13)0.0216 (3)
C20.3701 (5)0.63770 (16)0.09280 (14)0.0280 (4)
H20.244 (6)0.5760 (19)0.0305 (18)0.040 (6)*
C30.4589 (5)0.73747 (16)0.09560 (15)0.0302 (4)
H30.400 (5)0.7482 (18)0.0363 (18)0.035 (6)*
C40.6386 (5)0.82155 (16)0.18618 (16)0.0309 (4)
H40.717 (5)0.8918 (19)0.1894 (17)0.037 (6)*
C50.7262 (4)0.80684 (15)0.27349 (14)0.0253 (4)
H50.838 (6)0.8665 (19)0.3380 (18)0.034 (6)*
C60.6440 (4)0.70567 (14)0.27073 (13)0.0200 (3)
C70.5847 (4)0.61287 (13)0.38287 (13)0.0201 (3)
C80.3693 (4)0.51633 (13)0.29720 (13)0.0200 (3)
C90.9780 (4)0.77412 (14)0.44531 (14)0.0226 (4)
H9A1.078 (5)0.7384 (17)0.4841 (16)0.027 (5)*
H9B1.157 (5)0.7991 (17)0.4139 (16)0.029 (5)*
C100.8244 (4)0.86876 (14)0.52130 (13)0.0232 (4)
C110.7008 (5)0.94494 (16)0.58223 (16)0.0323 (4)
H110.598 (7)1.005 (2)0.627 (2)0.058 (8)*
C120.2140 (4)0.44701 (14)0.32673 (13)0.0221 (4)
H120.239 (5)0.4694 (17)0.4023 (17)0.027 (5)*
C130.0273 (4)0.33862 (14)0.26424 (13)0.0224 (4)
C140.0509 (5)0.26864 (15)0.15586 (14)0.0273 (4)
H140.190 (5)0.2934 (18)0.1155 (17)0.033 (6)*
C150.1081 (5)0.16234 (16)0.10546 (16)0.0317 (4)
H150.091 (6)0.1127 (19)0.0299 (19)0.041 (6)*
C160.2926 (5)0.12750 (16)0.16410 (17)0.0337 (4)
C170.3307 (5)0.19315 (17)0.26970 (16)0.0334 (4)
H170.461 (6)0.166 (2)0.3075 (19)0.046 (7)*
C180.1680 (4)0.29876 (15)0.31937 (15)0.0258 (4)
H180.184 (5)0.3440 (17)0.3957 (18)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0385 (3)0.0213 (2)0.0162 (2)0.00484 (17)0.00200 (16)0.00729 (18)
F10.0686 (9)0.0280 (6)0.0495 (8)0.0221 (6)0.0186 (6)0.0217 (6)
O10.0346 (7)0.0275 (7)0.0186 (6)0.0014 (5)0.0013 (5)0.0108 (5)
N10.0214 (7)0.0177 (7)0.0176 (7)0.0015 (5)0.0016 (5)0.0067 (6)
C10.0221 (8)0.0235 (9)0.0208 (8)0.0027 (6)0.0047 (6)0.0114 (7)
C20.0297 (10)0.0330 (10)0.0214 (9)0.0033 (7)0.0040 (7)0.0129 (8)
C30.0378 (11)0.0351 (11)0.0255 (9)0.0094 (8)0.0076 (7)0.0197 (9)
C40.0426 (11)0.0257 (10)0.0311 (10)0.0083 (8)0.0130 (8)0.0173 (9)
C50.0291 (9)0.0214 (9)0.0247 (9)0.0035 (7)0.0070 (7)0.0097 (8)
C60.0190 (8)0.0212 (8)0.0195 (8)0.0044 (6)0.0055 (6)0.0087 (7)
C70.0214 (8)0.0202 (8)0.0182 (8)0.0054 (6)0.0032 (6)0.0080 (7)
C80.0220 (8)0.0178 (8)0.0188 (8)0.0030 (6)0.0025 (6)0.0073 (7)
C90.0198 (8)0.0208 (8)0.0229 (8)0.0001 (6)0.0004 (6)0.0075 (7)
C100.0225 (8)0.0215 (9)0.0227 (8)0.0046 (6)0.0010 (6)0.0095 (7)
C110.0336 (11)0.0231 (10)0.0321 (10)0.0004 (8)0.0083 (8)0.0064 (9)
C120.0259 (9)0.0224 (9)0.0182 (8)0.0044 (6)0.0044 (6)0.0092 (7)
C130.0229 (8)0.0214 (9)0.0248 (9)0.0011 (6)0.0006 (6)0.0131 (7)
C140.0338 (10)0.0230 (9)0.0248 (9)0.0007 (7)0.0035 (7)0.0115 (8)
C150.0413 (11)0.0219 (9)0.0271 (10)0.0005 (8)0.0038 (8)0.0088 (8)
C160.0401 (11)0.0216 (9)0.0393 (11)0.0087 (8)0.0132 (8)0.0178 (8)
C170.0338 (10)0.0346 (11)0.0381 (11)0.0079 (8)0.0064 (8)0.0253 (10)
C180.0273 (9)0.0293 (10)0.0252 (9)0.0007 (7)0.0013 (7)0.0173 (8)
Geometric parameters (Å, º) top
S1—C81.7511 (17)C8—C121.348 (2)
S1—C11.7515 (17)C9—C101.471 (2)
F1—C161.364 (2)C9—H9A0.99 (2)
O1—C71.219 (2)C9—H9B0.99 (2)
N1—C71.387 (2)C10—C111.183 (3)
N1—C61.412 (2)C11—H110.93 (3)
N1—C91.473 (2)C12—C131.461 (2)
C1—C21.391 (2)C12—H120.97 (2)
C1—C61.401 (2)C13—C181.400 (2)
C2—C31.387 (3)C13—C141.404 (2)
C2—H20.98 (2)C14—C151.388 (3)
C3—C41.387 (3)C14—H140.98 (2)
C3—H30.95 (2)C15—C161.373 (3)
C4—C51.385 (3)C15—H150.98 (2)
C4—H40.98 (2)C16—C171.375 (3)
C5—C61.402 (2)C17—C181.386 (3)
C5—H50.96 (2)C17—H170.95 (2)
C7—C81.493 (2)C18—H180.98 (2)
S1···N13.0702 (15)C10···C11vii3.572 (3)
S1···C143.179 (2)C12···C18vii3.343 (3)
S1···C2i3.5158 (19)C13···C18vii3.464 (2)
S1···H142.51 (3)C13···C17vii3.439 (3)
S1···H2i3.06 (2)C14···C17vii3.404 (3)
F1···F1ii3.051 (2)C14···C16vii3.457 (3)
F1···C15ii3.306 (3)C15···C16vii3.495 (3)
F1···H4iii2.59 (3)C4···H11viii2.91 (3)
F1···H15ii2.60 (2)C5···H9B2.63 (2)
O1···C103.167 (3)C5···H11viii2.80 (3)
O1···C18iv3.388 (2)C6···H9Bvi2.85 (2)
O1···C18v3.261 (2)C7···H9Avi2.81 (2)
O1···H122.33 (2)C8···H142.97 (2)
O1···H9Avi2.83 (2)C9···H52.48 (3)
O1···H9A2.26 (2)C10···H52.60 (2)
O1···H12v2.70 (2)C10···H9Bvi2.90 (2)
O1···H18iv2.60 (2)C11···H5ix2.81 (3)
O1···H18v2.71 (2)C11···H9Bvi2.99 (2)
N1···H9Bvi2.85 (2)C11···H17iv2.82 (3)
C5···C103.216 (2)H2···H2x2.57 (4)
C7···C12vii3.448 (3)H5···H9B2.17 (3)
C7···C9vi3.334 (3)H5···H11viii2.52 (4)
C9···C10vii3.504 (2)H9A···H18v2.50 (3)
C9···C11vii3.469 (3)H12···H182.32 (3)
C8—S1—C1101.73 (8)C10—C9—H9A108.6 (12)
C7—N1—C6125.59 (14)N1—C9—H9A106.8 (12)
C7—N1—C9114.59 (13)C10—C9—H9B109.9 (12)
C6—N1—C9118.68 (14)N1—C9—H9B109.3 (12)
C2—C1—C6120.19 (16)H9A—C9—H9B108.7 (17)
C2—C1—S1117.64 (14)C11—C10—C9179.8 (2)
C6—C1—S1122.07 (13)C10—C11—H11177.1 (17)
C3—C2—C1120.78 (17)C8—C12—C13131.55 (16)
C3—C2—H2122.1 (14)C8—C12—H12115.9 (12)
C1—C2—H2117.1 (14)C13—C12—H12112.4 (12)
C4—C3—C2119.25 (17)C18—C13—C14117.96 (16)
C4—C3—H3120.1 (14)C18—C13—C12116.92 (16)
C2—C3—H3120.7 (14)C14—C13—C12124.90 (16)
C5—C4—C3120.61 (17)C15—C14—C13121.06 (17)
C5—C4—H4117.9 (13)C15—C14—H14118.9 (13)
C3—C4—H4121.4 (13)C13—C14—H14119.9 (13)
C4—C5—C6120.64 (17)C16—C15—C14118.26 (18)
C4—C5—H5120.7 (14)C16—C15—H15120.2 (14)
C6—C5—H5118.6 (14)C14—C15—H15121.5 (14)
C1—C6—C5118.49 (16)F1—C16—C15118.42 (19)
C1—C6—N1120.91 (15)F1—C16—C17118.38 (18)
C5—C6—N1120.60 (15)C15—C16—C17123.20 (18)
O1—C7—N1119.59 (15)C16—C17—C18117.97 (18)
O1—C7—C8121.15 (15)C16—C17—H17120.7 (15)
N1—C7—C8119.23 (14)C18—C17—H17121.4 (15)
C12—C8—C7116.29 (15)C17—C18—C13121.53 (18)
C12—C8—S1123.30 (13)C17—C18—H18117.9 (12)
C7—C8—S1119.93 (12)C13—C18—H18120.5 (12)
C10—C9—N1113.47 (14)
C8—S1—C1—C2157.17 (14)N1—C7—C8—C12177.04 (15)
C8—S1—C1—C626.38 (15)O1—C7—C8—S1167.49 (13)
C6—C1—C2—C31.4 (3)N1—C7—C8—S110.7 (2)
S1—C1—C2—C3175.12 (14)C1—S1—C8—C12159.13 (15)
C1—C2—C3—C41.1 (3)C1—S1—C8—C729.17 (15)
C2—C3—C4—C50.6 (3)C7—N1—C9—C1087.21 (18)
C3—C4—C5—C62.0 (3)C6—N1—C9—C1081.32 (18)
C2—C1—C6—C50.0 (2)C7—C8—C12—C13169.96 (16)
S1—C1—C6—C5176.34 (13)S1—C8—C12—C132.0 (3)
C2—C1—C6—N1179.64 (15)C8—C12—C13—C18165.58 (18)
S1—C1—C6—N14.0 (2)C8—C12—C13—C1419.9 (3)
C4—C5—C6—C11.7 (3)C18—C13—C14—C151.5 (3)
C4—C5—C6—N1178.67 (16)C12—C13—C14—C15172.96 (17)
C7—N1—C6—C123.7 (2)C13—C14—C15—C160.7 (3)
C9—N1—C6—C1169.12 (14)C14—C15—C16—F1178.73 (17)
C7—N1—C6—C5155.92 (16)C14—C15—C16—C170.8 (3)
C9—N1—C6—C511.2 (2)F1—C16—C17—C18178.11 (17)
C6—N1—C7—O1162.11 (15)C15—C16—C17—C181.5 (3)
C9—N1—C7—O15.5 (2)C16—C17—C18—C130.6 (3)
C6—N1—C7—C819.7 (2)C14—C13—C18—C170.8 (3)
C9—N1—C7—C8172.72 (14)C12—C13—C18—C17174.05 (16)
O1—C7—C8—C124.8 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x1, y1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x+1, y, z; (viii) x+1, y+2, z+1; (ix) x+2, y+2, z+1; (x) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F1ii0.98 (2)2.60 (2)3.306 (2)128.5 (17)
Symmetry code: (ii) x1, y, z.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationArmenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407–416.  Web of Science CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCrData, 1, x160764.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.  CrossRef Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGautam, N., Ajmera, N., Gupta, S. & Gautam, D. C. (2012). Eur. J. Chem. 3, 106–111.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNiewiadomy, A., Matysiak, J. & Karpińska, M. M. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 224–230.  CrossRef CAS Google Scholar
First citationRathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o686.  CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016d). IUCrData, 1, x161823.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data 1, x161012.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. & Mague, J. T. (2017b). IUCrData, 2, x170695.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017a). IUCrData, 2, x170889.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017c). IUCrData, 2, x170889.  Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862.  CrossRef CAS Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CrossRef CAS Google Scholar
First citationWammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds