research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 5-methyl-1,2,4-triazolo[1,5-a]pyrimidine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: sanaelahmidi2018@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 7 November 2018; accepted 15 November 2018; online 22 November 2018)

The nine-membered ring system of the title compound, C6H6N4, is essentially planar. In the crystal, mol­ecules are linked via C—HTrz⋯NTrz and C—HPyrm⋯NTrz (Trz = triazole and Pyrm = pyrimidine) hydrogen bonds together with weaker C—HPyrm⋯NPyrm hydrogen bonds to form layers parallel to ([\overline{1}]02). The layers are further connected by ππ-stacking inter­actions between the nine-membered ring system [centroid–centroid = 3.7910 (8) Å], forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯N/N⋯H (40.1%), H⋯H (35.3%), H⋯C/C⋯H (9.5%), N⋯C/C⋯N (9.0%), N⋯N (3.1%) and C⋯C (3.0%) inter­actions and that hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. No significant C—H⋯π inter­actions are observed.

1. Chemical context

In recent years, much attention has been paid to the development of new methods for the synthesis and investigation of biological and pharmacological properties of [1,2,4]triazolo[1,5-a]pyrimidine derivatives (Chebanov et al., 2010[Chebanov, V. A., Gura, K. A. & Desenko, S. M. (2010). Top. Heterocycl. Chem. 23, 41-84.]; Lahmidi et al., 2016a[Lahmidi, S., Sebbar, N. K., Boulhaoua, M., Essassi, E. M., Mague, J. T. & Zouihri, H. (2016a). IUCrData, 1, x160870.],b[Lahmidi, S., Sebbar, N. K., Harmaoui, A., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016b). IUCrData, 1, x161946.], 2018[Lahmidi, S., El Hafi, M., Moussaif, A., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181280.]; Sedash et al., 2012[Sedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719-6728.]). Thus, these compounds have also received successful applications for the preparation of new poly-condensed heterocycles (Beck et al., 2011[Beck, H. P., DeGraffenreid, M., Fox, B., Allen, J. G., Rew, Y., Schneider, S., Saiki, A. Y., Yu, D., Oliner, J. D., Salyers, K., Ye, Q. & Olson, S. (2011). Bioorg. Med. Chem. Lett. 21, 2752-2755.]). Among the various classes of nitro­gen-containing heterocyclic compounds such as triazolo­pyrimidine derivatives display a broad spectrum of biological activities, including anti-inflammatory (Ashour et al., 2013[Ashour, H., Shaaban, O., Rizk, O. & El-Ashmawy, I. M. (2013). Eur. J. Med. Chem. 62, 341-351.]), anti­cancer (Hoffmann et al., 2017[Hoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34-45.]) and anti­bacterial (Mabkhot et al., 2016[Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. (2016). Molecules, 21, 1036-1045.]) activities. In a continuation of our research on the elaboration of new methods for the synthesis of various heterocyclic systems, we investigated the reaction of bis­(2-chloro­eth­yl)amine hydro­chloride with ethyl 2-(5-methyl-1-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)acetate under phase-transfer catalysis conditions using tetra-n-butyl ammonium­bromide (TBAB) as catalyst and potassium carbonate as base to afford the title compound, 5-methyl-1,2,4-triazolo[1,5-a]pyrimidine, (I)[link]. We report herein its mol­ecular and crystal structures along with the results of a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the nine-membered ring is planar to within 0.004 (1) Å (for atom C5), and the r.m.s. deviation of the fitted atoms is 0.009 Å. Methyl atom C6 is displaced by 0.032 (1) Å from the ring system.

[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, C—HTrz⋯NTrz and C—HPyrm⋯NTrz (Trz = triazole and Pyrm = pyrimidine) hydrogen bonds (Table 1[link]), together with weaker C—HPyrm⋯NPyrm hydrogen bonds, link the mol­ecules, forming layers parallel to ([\overline{1}]02) (Fig. 2[link]). The layers are further connected by ππ-stacking inter­actions between the nine-membered rings [centroid–centroid distance = 3.7910 (8) Å], forming oblique stacks along the a-axis direction (Fig. 3[link]). No significant C—H ⋯ π inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 1.016 (17) 2.550 (19) 3.4052 (18) 141.5 (13)
C3—H3⋯N2vi 0.979 (18) 2.525 (18) 3.4822 (18) 165.8 (13)
C4—H4⋯N4viii 0.946 (19) 2.642 (19) 3.5677 (17) 165.9 (14)
Symmetry codes: (i) -x+2, -y+1, -z+2; (vi) -x, -y+1, -z+1; (viii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing viewed along the a-axis direction giving a plan view of the layers. C—H⋯N hydrogen bonds are shown as black dashed lines and the orange dots mark the ππ stacking inter­actions.
[Figure 3]
Figure 3
Packing seen along the b-axis direction giving a side view of the layers. Hydrogen bonds are depicted as in Fig. 2[link] and the π-stacking inter­actions are shown as orange dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact), respectively, than the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near N2 and hydrogen atoms H2, H3 and H4 indicate their roles as the respective donors and/or acceptors in the dominant C—H⋯N hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 5[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggest that there are ππ inter­actions present in the crystal structure of (I)[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1566 to 1.0057 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7[link](a), and those delineated into H⋯N/N⋯H, H⋯H, H⋯C/C⋯H, N⋯C/C⋯N, N⋯N and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are illustrated in Fig. 7[link](b)–(g), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯N/N⋯H, contributing 40.1% to the overall crystal packing, which is reflected in Fig. 7[link](b) as a pair of characteristic wings with the tips at de + di = 2.40 Å arising from the C—H⋯N hydrogen bonds (Table 1[link]) as well as from the H⋯N/N⋯H contacts (Table 3[link]). The split thin and thick pair of wings with the tips at de + di ∼2.23 Å in Fig. 7[link](c), arise from the short inter­atomic H⋯H contacts, which make a 35.3% contribution to the HS and are seen as widely scattered points of high density arising from the large hydrogen content of the mol­ecule. In the absence of C—H⋯π inter­actions, the pair of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (9.5% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 7[link](d), with the tips at de + di ∼2.77 Å. The N⋯C/C⋯N [Fig. 7[link](e)] and N⋯N [Fig. 7[link](f)] contacts make contributions of 9.0 and 3.1%, respectively, to the HS and have widely scattered distributions of points. Finally, the C⋯C [Fig. 7[link](g)] contacts (3.0% contribution to the HS) have a symmetrical distribution of points, with the tip at de = di = 1.69 Å.

Table 3
Experimental details

Crystal data
Chemical formula C6H6N4
Mr 134.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 3.7910 (2), 18.0092 (10), 9.0069 (5)
β (°) 101.704 (2)
V3) 602.14 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.82
Crystal size (mm) 0.29 × 0.18 × 0.13
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.67, 0.90
No. of measured, independent and observed [I > 2σ(I)] reflections 4567, 1205, 1102
Rint 0.074
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.10
No. of reflections 1205
No. of parameters 116
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯N/N⋯H, (c) H⋯H, (d) H⋯C/C⋯H, (e) N⋯C/C⋯N, (f) N⋯N and (g) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯N/N⋯H, H⋯H, H⋯C/C⋯H, N ⋯ C/C⋯N, N⋯N and C⋯C inter­actions in Fig. 8[link](a)–(f), respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯N/N⋯H, (b) H⋯H, (c) H⋯C/C⋯H, (d) N⋯C/C⋯N, (e) N⋯N and (f) C⋯C inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯N/N⋯H, H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Database survey

Two structures have previously been reported in which the title compound, (I)[link], is present as a ligand (L), namely [Fe(L)2(SCN)2(H2O)2] (Bigini Cingi et al., 1986[Biagini Cingi, M., Manotti Lanfredi, A. M., Tiripicchio, A., Cornelissen, J. P., Haasnoot, J. G. & Reedijk, J. (1986). Acta Cryst. C42, 1296-1298.]) and [Cu(μ-L)2(SCN)]n (Cornelissen et al., 1989[Cornelissen, J. P., De Graaff, R. A. G., Haasnoot, J. G., Prins, R., Reedijk, J., Biagini-Cingi, M., Manotti-Lanfredi, A. M. & Tiripicchio, A. (1989). Polyhedron, 8, 2313-2320.]), but to the best of our knowledge, the mol­ecule itself has not previously been structurally characterized.

6. Synthesis and crystallization

To a solution of ethyl-2-{5-methyl-1-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}acetate (1.00 g, 4.5 mmol) in DMF (25 ml) was added 2eq of bis­(2-chloro­eth­yl)amine hydro­chloride (1.61g, 9 mmol), potassium carbonate (1.37 g, 9.9 mmol) and a catalytic amount of tetra-n-but­ylammonium bromide. The mixture was stirred at 353.15 K for 24 h. The solution was filtered and the solvent was removed under reduced pressure. The residue obtained was dissolved in di­chloro­methane and purified by column chromatography (EtOAc/Hexane, 1:9 v:v). The title compound was obtained as colourless crystals in 40% yield.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were located in a difference Fourier map and were freely refined.

Table 2
Selected interatomic distances (Å)

N1⋯C2i 3.4051 (19) C1⋯C4iii 3.5667 (19)
N2⋯C2ii 3.385 (2) C2⋯C6vii 3.5715 (18)
N3⋯C3iii 3.4163 (19) C2⋯C2i 3.595 (2)
N4⋯C5iii 3.4314 (17) C4⋯C5ii 3.4986 (19)
N4⋯C4iii 3.4177 (19) C1⋯H6Biv 2.94 (3)
N1⋯H6Biv 2.85 (2) C6⋯H6Ciii 2.98 (3)
N1⋯H2i 2.553 (18) H2⋯C6vii 2.773 (16)
N1⋯H6Cv 2.86 (3) H2⋯H6Bvii 2.58 (3)
N2⋯H3vi 2.525 (18) H2⋯H6Cvii 2.48 (3)
N4⋯H4v 2.641 (18) H6A⋯H4v 2.59 (3)
N4⋯H6Biv 2.84 (3) H6B⋯H6Ciii 2.47 (4)
C1⋯C3iii 3.4166 (19)    
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x-1, y, z; (iii) x+1, y, z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x, -y+1, -z+1; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-Methyl-1,2,4-triazolo[1,5-a]pyrimidine top
Crystal data top
C6H6N4F(000) = 280
Mr = 134.15Dx = 1.480 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 3.7910 (2) ÅCell parameters from 3969 reflections
b = 18.0092 (10) Åθ = 4.9–74.7°
c = 9.0069 (5) ŵ = 0.82 mm1
β = 101.704 (2)°T = 150 K
V = 602.14 (6) Å3Column, colourless
Z = 40.29 × 0.18 × 0.13 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1205 independent reflections
Radiation source: INCOATEC IµS micro-focus source1102 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.074
Detector resolution: 10.4167 pixels mm-1θmax = 74.7°, θmin = 4.9°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2221
Tmin = 0.67, Tmax = 0.90l = 1110
4567 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.1643P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1205 reflectionsΔρmax = 0.20 e Å3
116 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7561 (3)0.42236 (6)0.88570 (13)0.0322 (3)
N20.4407 (3)0.49411 (6)0.69436 (15)0.0341 (3)
N30.3764 (3)0.42019 (6)0.66430 (13)0.0281 (3)
N40.5532 (3)0.30294 (6)0.77958 (13)0.0277 (3)
C10.5676 (3)0.37780 (7)0.78059 (15)0.0269 (3)
C20.6678 (4)0.49082 (7)0.82759 (17)0.0340 (4)
H20.776 (5)0.5371 (9)0.883 (2)0.037 (4)*
C30.1587 (4)0.38918 (7)0.54119 (15)0.0313 (3)
H30.025 (5)0.4230 (9)0.465 (2)0.037 (4)*
C40.1409 (4)0.31397 (7)0.53851 (16)0.0302 (3)
H40.006 (5)0.2889 (10)0.456 (2)0.039 (4)*
C50.3442 (3)0.27179 (7)0.66009 (15)0.0279 (3)
C60.3279 (4)0.18893 (7)0.65408 (19)0.0344 (4)
H6A0.462 (6)0.1656 (13)0.749 (3)0.066 (6)*
H6B0.431 (6)0.1705 (12)0.576 (3)0.071 (7)*
H6C0.095 (7)0.1716 (12)0.629 (3)0.073 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0381 (6)0.0233 (5)0.0321 (6)0.0020 (4)0.0000 (5)0.0010 (4)
N20.0434 (7)0.0197 (5)0.0367 (6)0.0011 (4)0.0026 (5)0.0000 (4)
N30.0324 (6)0.0222 (5)0.0281 (6)0.0001 (4)0.0024 (5)0.0005 (4)
N40.0311 (6)0.0221 (5)0.0289 (6)0.0004 (4)0.0040 (5)0.0003 (4)
C10.0297 (6)0.0224 (6)0.0280 (7)0.0001 (4)0.0041 (5)0.0011 (4)
C20.0414 (8)0.0221 (6)0.0360 (8)0.0023 (5)0.0020 (6)0.0019 (5)
C30.0337 (7)0.0304 (7)0.0281 (7)0.0005 (5)0.0020 (5)0.0005 (5)
C40.0319 (7)0.0289 (7)0.0284 (7)0.0030 (5)0.0026 (5)0.0029 (5)
C50.0284 (6)0.0250 (6)0.0308 (7)0.0016 (5)0.0074 (5)0.0022 (5)
C60.0386 (8)0.0244 (7)0.0393 (8)0.0022 (5)0.0058 (7)0.0043 (5)
Geometric parameters (Å, º) top
N1—C11.3329 (17)C3—C41.3560 (18)
N1—C21.3545 (17)C3—H30.979 (18)
N2—C21.329 (2)C4—C51.4241 (19)
N2—N31.3703 (15)C4—H40.946 (19)
N3—C31.3607 (17)C5—C61.4940 (18)
N3—C11.3775 (17)C6—H6A1.00 (2)
N4—C51.3245 (17)C6—H6B0.94 (3)
N4—C11.3492 (17)C6—H6C0.92 (3)
C2—H21.016 (17)
N1···C2i3.4051 (19)C1···C4iii3.5667 (19)
N2···C2ii3.385 (2)C2···C6vii3.5715 (18)
N3···C3iii3.4163 (19)C2···C2i3.595 (2)
N4···C5iii3.4314 (17)C4···C5ii3.4986 (19)
N4···C4iii3.4177 (19)C1···H6Biv2.94 (3)
N1···H6Biv2.85 (2)C6···H6Ciii2.98 (3)
N1···H2i2.553 (18)H2···C6vii2.773 (16)
N1···H6Cv2.86 (3)H2···H6Bvii2.58 (3)
N2···H3vi2.525 (18)H2···H6Cvii2.48 (3)
N4···H4v2.641 (18)H6A···H4v2.59 (3)
N4···H6Biv2.84 (3)H6B···H6Ciii2.47 (4)
C1···C3iii3.4166 (19)
C1—N1—C2102.64 (11)N3—C3—H3117.3 (10)
C2—N2—N3101.05 (10)C3—C4—C5120.13 (12)
C3—N3—N2127.88 (11)C3—C4—H4120.6 (11)
C3—N3—C1122.05 (11)C5—C4—H4119.3 (11)
N2—N3—C1110.07 (11)N4—C5—C4122.68 (12)
C5—N4—C1116.45 (11)N4—C5—C6117.78 (12)
N1—C1—N4128.43 (12)C4—C5—C6119.54 (12)
N1—C1—N3109.26 (11)C5—C6—H6A112.4 (14)
N4—C1—N3122.30 (12)C5—C6—H6B111.1 (13)
N2—C2—N1116.97 (12)H6A—C6—H6B106.4 (19)
N2—C2—H2122.2 (10)C5—C6—H6C112.2 (14)
N1—C2—H2120.8 (10)H6A—C6—H6C111.5 (19)
C4—C3—N3116.38 (12)H6B—C6—H6C103 (2)
C4—C3—H3126.3 (10)
C2—N2—N3—C3179.68 (13)N3—N2—C2—N10.14 (17)
C2—N2—N3—C10.03 (14)C1—N1—C2—N20.24 (17)
C2—N1—C1—N4179.97 (13)N2—N3—C3—C4179.91 (12)
C2—N1—C1—N30.24 (14)C1—N3—C3—C40.30 (18)
C5—N4—C1—N1179.67 (12)N3—C3—C4—C50.18 (19)
C5—N4—C1—N30.04 (17)C1—N4—C5—C40.53 (17)
C3—N3—C1—N1179.85 (12)C1—N4—C5—C6178.84 (11)
N2—N3—C1—N10.18 (14)C3—C4—C5—N40.6 (2)
C3—N3—C1—N40.39 (18)C3—C4—C5—C6178.74 (13)
N2—N3—C1—N4179.93 (11)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+1, z+1; (vii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i1.016 (17)2.550 (19)3.4052 (18)141.5 (13)
C3—H3···N2vi0.979 (18)2.525 (18)3.4822 (18)165.8 (13)
C4—H4···N4viii0.946 (19)2.642 (19)3.5677 (17)165.9 (14)
Symmetry codes: (i) x+2, y+1, z+2; (vi) x, y+1, z+1; (viii) x1, y+1/2, z1/2.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAshour, H., Shaaban, O., Rizk, O. & El-Ashmawy, I. M. (2013). Eur. J. Med. Chem. 62, 341–351.  CrossRef Google Scholar
First citationBeck, H. P., DeGraffenreid, M., Fox, B., Allen, J. G., Rew, Y., Schneider, S., Saiki, A. Y., Yu, D., Oliner, J. D., Salyers, K., Ye, Q. & Olson, S. (2011). Bioorg. Med. Chem. Lett. 21, 2752–2755.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBiagini Cingi, M., Manotti Lanfredi, A. M., Tiripicchio, A., Cornelissen, J. P., Haasnoot, J. G. & Reedijk, J. (1986). Acta Cryst. C42, 1296–1298.  CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChebanov, V. A., Gura, K. A. & Desenko, S. M. (2010). Top. Heterocycl. Chem. 23, 41–84.  CrossRef CAS Google Scholar
First citationCornelissen, J. P., De Graaff, R. A. G., Haasnoot, J. G., Prins, R., Reedijk, J., Biagini-Cingi, M., Manotti-Lanfredi, A. M. & Tiripicchio, A. (1989). Polyhedron, 8, 2313–2320.  CrossRef Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34–45.  CrossRef Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLahmidi, S., El Hafi, M., Moussaif, A., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181280.  Google Scholar
First citationLahmidi, S., Sebbar, N. K., Boulhaoua, M., Essassi, E. M., Mague, J. T. & Zouihri, H. (2016a). IUCrData, 1, x160870.  Google Scholar
First citationLahmidi, S., Sebbar, N. K., Harmaoui, A., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016b). IUCrData, 1, x161946.  Google Scholar
First citationMabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. (2016). Molecules, 21, 1036–1045.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationSedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719–6728.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds