research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and optical spectroscopic analyses of (E)-3-(1H-indol-2-yl)-1-(4-nitro­phen­yl)prop-2-en-1-one hemihydrate

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Fundamental Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by A. J. Lough, University of Toronto, Canada (Received 17 September 2018; accepted 11 October 2018; online 16 October 2018)

The asymmetric unit of the title compound, 2C17H12N2O3·H2O comprises two mol­ecules of (E)-3-(1H-indol-2-yl)-1-(4-nitro­phen­yl)prop-2-en-1-one and a water mol­ecule. The main mol­ecule adopts an s-cis configuration with respect to the C=O and C=C bonds. The dihedral angle between the indole ring system and the nitro-substituted benzene ring is 37.64 (16)°. In the crystal, mol­ecules are linked by O—-H⋯O and N—H⋯O hydrogen bonds, forming chains along [010]. In addition, weak C—H⋯O, C—H⋯π and ππ inter­actions further link the structure into a three-dimensional network. The optimized structure was generated theoretically via a density functional theory (DFT) approach at the B3LYP/6–311 G++(d,p) basis level and the HOMO–LUMO behaviour was elucidated to determine the energy gap. The obtained values of 2.70 eV (experimental) and 2.80 eV (DFT) are desirable for optoelectronic applications. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis.

1. Chemical context

Chalcone compounds consist of open-chain flavanoids in which two aromatic rings are joined by a three carbon α,β-unsaturated carbonyl system (Thanigaimani et al., 2015[Thanigaimani, K., Arshad, S., Khalib, N. C., Razak, I. A., Arunagiri, C., Subashini, A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2015). Spectrochim. Acta A, 149, 90-102.]). The design of the chalcone system such as donor–π–acceptor (DπA) plays a significant role in intra­molecular charge–transfer transitions (ICT) in which optical excitation leads to the movement of charge from the donor group to the acceptor group. In addition, the chalcone bridge consists of two different double bonds, C=C and C=O, which contribute to the conjugation of charge transfer, leading to their excellent structural and spectroscopic properties (de Toledo et al., 2018[Toledo, T. A. de, da Costa, R. C., Bento, R. R. F., Al-Maqtari, H. M., Jamalis, J. & Pizani, P. S. (2018). J. Mol. Struct. 1155, 634-645.]). Furthermore, the non-linear optical (NLO) properties of chalcone mol­ecules originate mainly from a strong donor–acceptor intra­molecular inter­action and delocalization of the π-electrons (Prabhu et al., 2015[Prabhu, S. R., Jayarama, A., Upadhyaya, V., Bhat, K. S. & Ng, S. W. (2015). Mol. Cryst. Liq. Cryst. 607, 200-214.]). Many researchers are currently investigating the nitro (NO2) group as an acceptor group because the decrease of the resonance effect leads to substantial changes in π-electron delocalization in the ring (Dobrowolski et al., 2009[Dobrowolski, M. A., Krygowski, T. M. & Cyranski, M. K. (2009). Croat. Chem. Acta, 82, 139-147.]). In this work, the title chalcone compound was successfully synthesized and its crystal structure is reported herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]a. The structure was optimized with the Gaussian09W software package using the DFT method at the B3LYP/6-311G++(d,p) level, providing information about the geometry of the mol­ecule. The optimized structure is shown in Fig. 1[link]b. The geometrical parameters are mostly within normal ranges, the slight deviations from the experimental values are due to the fact that the optimization is performed in isolated conditions, whereas the crystal environment and hydrogen-bonding inter­actions affect the results of the X-ray structure (Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520-533.]).

[Figure 1]
Figure 1
(a) The mol­ecular structure of the title compound showing 50% probability ellipsoids, (b) the optimized mol­ecular structure and (c) a representation of the mol­ecule showing the dihedral angle between the two chosen planes.

In the title compound, the enone group (O1/C9–C11) adopts an s-cis configuration with respect to the C11=O1 [1.209 (4) Å] and C9=C10 [1.310 (5) Å] bonds. The compound is twisted about the C10—C11 bond with C9—C10—C11—O1 torsion angle of −21.9 (6)°. The corres­ponding torsion angle obtained from the DFT study is 0.08°. In addition, the mol­ecule is twisted about the C11—C12 bond with an O1—C11—C12—C13 torsion angle of 167.7 (4)° (calculated value 179.4°). The differences between the experimental and calculated values show that the inter­molecular hydrogen bond involving the water mol­ecule does not affect the planarity of the compound. A previous study (Zheng et al., 2016[Zheng, Y.-Z., Zhou, Y., Liang, Q., Chen, D.-F., Guo, R. & Lai, R. C. (2016). Sci. Rep. 6, 34647.]) reported that the inter­molecular hydrogen bond present in the optimized structure stabilizes both the main mol­ecule and the water mol­ecule, which is why we claim that the hydrogen bond does affect the planar conformation in our optimized structure. In the experimental structure, a weak inter­molecular hydrogen bond involving an O atom of the nitro group (Table 1[link]) may be responsible for the distortion from planarity of the mol­ecule. Furthermore, the twisted nature of this part of the mol­ecule might also be expected because of the steric effects between the carbonyl group and the nitro-substituted benzene ring (Kozlowski et al., 2007[Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R. & Duroux, J.-L. (2007). J. Phys. Chem. A, 111, 1138-1145.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1/C6–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1OW⋯O1i 0.88 (4) 1.86 (4) 2.723 (4) 171 (4)
N1—H1A⋯O1W 0.87 (3) 2.06 (3) 2.923 (4) 170 (3)
C4—H4A⋯O2ii 0.93 2.60 3.405 (6) 146
C9—H9ACg1iii 0.93 2.87 3.518 (4) 127
Symmetry codes: (i) [-x+2, y-1, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

The overall conformation of the mol­ecule can be described by the dihedral angle formed by the indole ring system (N1/C1–C8) and the nitro-substituted benzene (C12–C17) ring with a value of 37.64 (16)° (Fig. 1[link]c). The enone group (O1/C9–C11) with maximum deviation of 0.082 (3) Å at C11 forms dihedral angles of 21.5 (2) and 16.3 (2)° with the indole ring system and the nitro-substituted benzene ring, respectively.

3. Supra­molecular features

In the crystal, four symmetry-related mol­ecules are connected to each other via O—H⋯O and N—H⋯O hydrogen bonds involving the solvent water mol­ecule. The water mol­ecule is connected to the carbonyl group and indole ring system by inter­molecular O1W—H1OW⋯O1i and N1—H1A⋯O1W hydrogen bonds (Table 1[link]), forming chains extending along the b-axis direction (Fig. 2[link]). In addition, weak C4—H4A⋯O2ii inter­actions (Table 1[link]) link these chains into sheets parallel to the bc plane (Fig. 3[link]a). Furthermore, C9—H9ACg1 inter­actions (Cg1 is the centroid of the N1/C1/C6–C8 ring; Table 1[link], Fig. 3[link]b) are observed along the a-axis direction, completing the three-dimensional structure. Two of the anti-parallel mol­ecules are linked by ππ stacking inter­actions (Fig. 3[link]a) involving the centroids (Cg2 and Cg3) of the C1–C6 and C12–C17 rings with a centroid–centroid distance Cg2⋯Cg3 (2-x, y, 1/2 - z) of 3.534 (3) Å. These ππ inter­actions further stabilize the crystal structure.

[Figure 2]
Figure 2
The crystal packing of the title compound along the b axis showing the O—H⋯O and N—H⋯O hydrogen bonds as dotted lines.
[Figure 3]
Figure 3
(a) A view of the crystal packing showing two of the chains linked by C—H⋯O inter­actions extending along c-axis direction. The ππ stacking inter­actions shown by grey lines further stabilize the crystal structure. (b) C—H⋯π inter­actions in the title compound. H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.

4. Hirshfeld surface analysis

Analysis of the Hirshfeld surfaces provides a three-dimensional representation of inter­molecular inter­actions. The Hirshfeld surfaces and related two-dimensional fingerprint (FP) plots were generated with CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth.]). In the FP plots, di and de are the distances from the Hirshfeld surface to the nearest atoms outside and inside the surface. The blue colour represents a low frequency of occurrence of a (di, de) pair and the full fingerprint is outlined in grey (Ternavisk et al., 2014[Ternavisk, R. R., Camargo, A. J., Machado, F. B. C., Rocco, J. A. F. F., Aquino, G. L. B., Silva, V. H. C. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526-2536.]). The water mol­ecule and H⋯O inter­actions are visualized as bright-red spots on the Hirshfeld surface mapped over dnorm with neighbouring mol­ecules connected by O1W—H1OW⋯O1 and N1—H1A⋯O1 hydrogen bonds (Fig. 4[link]). The fingerprint plots indicate the percentage contributions of the various inter­molecular contacts (Fig. 5[link]). The H⋯H contacts clearly make the most significant contribution (36.6%), whereas O⋯H/H⋯O and C⋯H/H⋯C contacts make contributions of 29.9 and 12.5%, respectively, to the Hirshfeld surface. The presence of O⋯H/H⋯O inter­actions is indicated by two symmetrical narrow spikes with di + de ∼1.7 Å arise specifically due to hydrogen-bonding inter­actions between the water H atom and the carbonyl oxygen. Furthermore, the existence of C⋯H/H⋯C inter­actions is shown by the pair of characteristics wings with the edge at di + de ∼2.9 Å, which is due to the contribution of C—H⋯π inter­action. The 11.5% contribution of the C⋯C inter­actions arises from the ππ inter­action, where the sum of di and de obtained is quite similar at 3.5 Å. Inter­estingly, the N⋯H contacts showed a 2.6% contribution elucidated by a butterfly fingerprint plot resulting from the N1—H1A⋯O1 inter­action.

[Figure 4]
Figure 4
Hirshfeld surface of the title compound mapped over dnorm.
[Figure 5]
Figure 5
Fingerprint plots of the inter­molecular inter­actions showing the percentage contributions to the total Hirshfeld surface.

The presence of the C—H⋯π inter­actions can be seen in the pale-orange spot inside the circle of black arrows on the Hirshfeld surface mapped over de in (Fig. 6[link]a). With the shape-indexed mapping, the C—H⋯π inter­actions can be observed as a bright-red spot identified with black arrows in Fig. 6[link]b. The blue spots near the ring represent the reciprocal C—H⋯π inter­actions.

[Figure 6]
Figure 6
Graphical view of the Hirshfeld surfaces for the title compound (a) mapped over de with a pale-orange spot and (b) mapped over shape-index with a bright-red spot, both inside the black arrows, signifying the involvement of the C—H⋯π inter­actions.

5. Frontier mol­ecular orbital and UV–vis studies

Frontier mol­ecular orbital analysis is a vital tool in the development of mol­ecular electronic properties. The energy gap (Eg) between the highest occupied mol­ecular orbital (HOMO) and lowest unoccupied mol­ecular orbital (LUMO) is a crucial factor in elucidating the mol­ecular electrical transport properties. In the present study, the HOMO and LUMO were computed at the DFT/B3LYP/6-311G++(d,p) theoretical level and the respective plots of the frontier mol­ecular orbital are illustrated in Fig. 7[link]. At a specific separation between donor and acceptor, charge transfer may occur in the ground state if the HOMO of the donor lies energetically above the LUMO of the acceptor (Caruso et al., 2014[Caruso, F., Atalla, V., Ren, X., Rubio, A., Scheffler, M. & Rinke, P. (2014). Phys. Rev. B, 90, 085141.]). As can be seen from Fig. 7[link], the charge at the HOMO state is more localized at the indole group and enone moiety while charge is accumulated entirely at the nitro-substituted phenyl ring and the enone moiety in the LUMO state. The results reveal that the intra­molecular charge transfer (ICT) occurred from the electron-donor groups to the electron-acceptor groups through the enone moiety. The carbon–carbon double bond connecting the donor and acceptor groups is responsible for the charge movement through π-conjugation, triggering electronic delocalization within the mol­ecule (Prabhu et al., 2015[Prabhu, S. R., Jayarama, A., Upadhyaya, V., Bhat, K. S. & Ng, S. W. (2015). Mol. Cryst. Liq. Cryst. 607, 200-214.]). The energy gap of 2.80 eV obtained from the DFT calculations indicates strong chemical reactivity and weaker kinetic stab­ility, which increase the polarizability and NLO properties (Maidur et al., 2018[Maidur, S. R., Jahagirdar, J. R., Patil, P. S., Chia, T. S. & Quah, C. K. (2018). Opt. Mater. 75, 580-594.]).

[Figure 7]
Figure 7
Mol­ecular orbitals showing electronic transition between HOMO–LUMO of the title compound.

The absorption spectrum of the title compound was carried out in aceto­nitrile with a concentration of 10−4M. The absorption spectrum comprises of four major bands (Fig. 8[link]). The strongest band occurs in the region of 396 nm, which was assigned to ππ* transition. This sharp peak is suspected to arise from the indole ring and carbonyl group (C=O). The second strong UV–vis band is observed at 269 nm and is mainly attributed to the electron-withdrawing substituent of the nitro group (Pavia et al., 2001[Pavia, D. L., Lampman, G. M. & Kriz, G. S. (2001). Introduction to Spectroscopy, 3rd ed, pp. 378-379. Australia: Brooks/Cole-Thomson Learning.]). The energy gap of the title compound was calculated from the UV–vis absorption edge at 461 nm (Fig. 8[link]), giving an energy band gap value of 2.70 eV, comparable with the HOMO–LUMO energy gap obtained from the DFT study. This band gap is similar to those in reported studies (D'silva et al., 2011[D'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5362-5369.]) and within the energy-gap range for semiconducting materials (Emmanuel et al., 2002[Emmanuel, R. & Borge, V. (2002). In Optoelectronics. New York: Cambridge University, Press.]).

[Figure 8]
Figure 8
The UV–vis absorption spectrum of the title compound.

6. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed closely related compounds that differ in the donor substit­uents: 1-(4-nitro­phen­yl)-3-(pyren-1-yl)prop-2-en-1-one (Yu et al., 2017[Yu, F., Wang, M., Sun, H., Shan, Y., Du, M., Khan, A., Usman, R., Zhang, W., Shan, H. & Xu, C. (2017). RSC Adv. 7, 8491-8503.]), 3-(2-fur­yl)-1-(4-nitro­phen­yl)prop-2-en-1-one) (Patil et al., 2006[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2397-o2398.]) and 1-(4-nitro­phen­yl)-3-(2-thien­yl)prop-2-en-1-one (Teh et al., 2006[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3957-o3958.]) with pyrene, furan and thio­phene donor substituent rings. Other related compounds include (2E)-3-(2-methyl­phen­yl)-1-(4-nitro­phen­yl)prop-2-en-1-one (Prabhu et al., 2015[Prabhu, S. R., Jayarama, A., Upadhyaya, V., Bhat, K. S. & Ng, S. W. (2015). Mol. Cryst. Liq. Cryst. 607, 200-214.]) and 3-(4-meth­oxy­phen­yl)-1-(4-nitro­phen­yl)prop-2-en-1-one (Patil et al., 2006[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2397-o2398.]).

7. Synthesis and crystallization

The title compound was synthesized via a Claisen–Schmidt condensation reaction. A mixture of 1-(4-nitro­phen­yl)ethan­one (0.5 mmol) and indole-2-carboxaldehyde (0.5 mmol) was dissolved in methanol (20 mL). Sodium hydroxide (NaOH) solution was then added dropwise under vigorous stirring. The reaction mixture was stirred for 5–6 h at room temperature. The final precipitate was filtered, washed with distilled water and recrystallized by slow evaporation from acetone solution to obtain orange plate-shaped crystals.

8. Refinement

Crystal data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The water O atom was refined with half-occupancy. The O- and N-bound H atoms were located from difference-Fourier maps and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula 2C17H12N2O3·H2O
Mr 602.59
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 14.835 (7), 6.453 (2), 28.000 (11)
β (°) 93.505 (10)
V3) 2675.4 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.83 × 0.31 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.638, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 36005, 2369, 1263
Rint 0.129
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.190, 1.07
No. of reflections 2369
No. of parameters 213
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2009[Brandenburg, K. B. M. (2009). DIAMOND. University of Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

(E)-3-(1H-indol-2-yl)-1-(4-nitrophenyl)prop-2-en-1-one hemihydrate top
Crystal data top
2C17H12N2O3·H2OF(000) = 1256
Mr = 602.59Dx = 1.496 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.835 (7) ÅCell parameters from 1566 reflections
b = 6.453 (2) Åθ = 2.9–19.5°
c = 28.000 (11) ŵ = 0.11 mm1
β = 93.505 (10)°T = 296 K
V = 2675.4 (18) Å3Plate, orange
Z = 40.83 × 0.31 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
1263 reflections with I > 2σ(I)
φ and ω scansRint = 0.129
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 25.0°, θmin = 2.8°
Tmin = 0.638, Tmax = 0.955h = 1717
36005 measured reflectionsk = 77
2369 independent reflectionsl = 3333
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0548P)2 + 3.4801P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.190(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.22 e Å3
2369 reflectionsΔρmin = 0.19 e Å3
213 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0010 (4)
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71150 6.604 8.276 28.665 93.349 89.966 113.537

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8500 (2)0.5670 (5)0.21045 (11)0.0608 (8)
H1A0.892 (2)0.494 (6)0.2257 (13)0.071 (12)*
N21.1251 (3)0.4606 (7)0.48886 (12)0.0826 (11)
O10.98111 (17)1.0824 (4)0.33010 (9)0.0713 (8)
O21.1071 (3)0.2810 (6)0.49214 (12)0.1143 (13)
O31.1754 (2)0.5484 (6)0.51669 (11)0.1137 (12)
C10.8028 (2)0.5110 (6)0.16995 (12)0.0579 (9)
C20.8031 (3)0.3301 (6)0.14546 (14)0.0712 (11)
H2A0.83960.22000.15590.085*
C30.7485 (3)0.3159 (7)0.10529 (15)0.0802 (12)
H3A0.74700.19350.08770.096*
C40.6954 (3)0.4782 (8)0.09007 (15)0.0802 (12)
H4A0.65840.46370.06220.096*
C50.6950 (3)0.6569 (7)0.11385 (14)0.0750 (12)
H5A0.65900.76660.10250.090*
C60.7487 (2)0.6766 (6)0.15553 (13)0.0620 (10)
C70.7659 (2)0.8323 (6)0.18888 (13)0.0613 (10)
H7A0.73880.96230.18840.074*
C80.8281 (2)0.7644 (6)0.22200 (12)0.0569 (9)
C90.8692 (2)0.8667 (6)0.26162 (12)0.0586 (10)
H9A0.85451.00550.26560.070*
C100.9266 (2)0.7848 (6)0.29370 (12)0.0603 (10)
H10A0.93860.64390.29130.072*
C110.9717 (2)0.8965 (6)0.33203 (12)0.0574 (9)
C121.0089 (2)0.7823 (5)0.37368 (12)0.0560 (9)
C130.9864 (3)0.5825 (6)0.38163 (13)0.0678 (11)
H13A0.94500.51620.36050.081*
C141.0231 (3)0.4790 (6)0.41952 (13)0.0694 (11)
H14A1.00720.34210.42490.083*
C151.0831 (2)0.5757 (6)0.44943 (12)0.0634 (10)
C161.1064 (3)0.7740 (7)0.44334 (14)0.0729 (11)
H16A1.14750.83910.46480.088*
C171.0683 (3)0.8770 (6)0.40510 (13)0.0668 (11)
H17A1.08321.01520.40040.080*
O1W1.00000.3138 (6)0.25000.0710 (11)
H1OW1.012 (3)0.237 (6)0.2254 (14)0.094 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.061 (2)0.063 (2)0.0561 (19)0.0041 (17)0.0096 (16)0.0024 (16)
N20.090 (3)0.093 (3)0.063 (2)0.004 (2)0.010 (2)0.008 (2)
O10.0864 (19)0.0584 (17)0.0674 (17)0.0039 (14)0.0090 (14)0.0005 (13)
O20.153 (3)0.089 (2)0.096 (2)0.002 (2)0.032 (2)0.025 (2)
O30.128 (3)0.128 (3)0.079 (2)0.006 (2)0.043 (2)0.007 (2)
C10.056 (2)0.064 (2)0.053 (2)0.0047 (18)0.0023 (17)0.0009 (19)
C20.079 (3)0.064 (3)0.069 (3)0.002 (2)0.001 (2)0.008 (2)
C30.081 (3)0.084 (3)0.076 (3)0.014 (3)0.006 (2)0.018 (2)
C40.065 (3)0.106 (3)0.068 (3)0.011 (3)0.008 (2)0.015 (3)
C50.067 (3)0.087 (3)0.069 (3)0.004 (2)0.014 (2)0.003 (2)
C60.057 (2)0.067 (2)0.060 (2)0.004 (2)0.0039 (18)0.002 (2)
C70.061 (2)0.056 (2)0.066 (2)0.0046 (18)0.0078 (19)0.005 (2)
C80.057 (2)0.056 (2)0.057 (2)0.0013 (18)0.0010 (18)0.0047 (18)
C90.057 (2)0.060 (2)0.058 (2)0.0015 (17)0.0025 (18)0.0025 (18)
C100.065 (2)0.056 (2)0.059 (2)0.0033 (18)0.0023 (19)0.0037 (19)
C110.055 (2)0.058 (2)0.058 (2)0.0012 (18)0.0013 (18)0.0020 (19)
C120.056 (2)0.055 (2)0.056 (2)0.0008 (18)0.0019 (18)0.0055 (18)
C130.072 (3)0.065 (2)0.064 (2)0.008 (2)0.015 (2)0.002 (2)
C140.077 (3)0.065 (3)0.064 (2)0.006 (2)0.006 (2)0.002 (2)
C150.068 (2)0.070 (3)0.051 (2)0.004 (2)0.0066 (19)0.000 (2)
C160.079 (3)0.076 (3)0.062 (2)0.010 (2)0.012 (2)0.007 (2)
C170.072 (2)0.064 (2)0.063 (2)0.008 (2)0.010 (2)0.005 (2)
O1W0.091 (3)0.055 (2)0.065 (3)0.0000.012 (2)0.000
Geometric parameters (Å, º) top
N1—C11.345 (4)C7—H7A0.9300
N1—C81.359 (4)C8—C91.399 (5)
N1—H1A0.87 (4)C9—C101.310 (5)
N2—O31.189 (4)C9—H9A0.9300
N2—O21.194 (4)C10—C111.426 (5)
N2—C151.440 (5)C10—H10A0.9300
O1—C111.209 (4)C11—C121.459 (5)
C1—C21.354 (5)C12—C171.353 (5)
C1—C61.382 (5)C12—C131.353 (5)
C2—C31.348 (5)C13—C141.341 (5)
C2—H2A0.9300C13—H13A0.9300
C3—C41.363 (6)C14—C151.338 (5)
C3—H3A0.9300C14—H14A0.9300
C4—C51.332 (5)C15—C161.339 (5)
C4—H4A0.9300C16—C171.354 (5)
C5—C61.378 (5)C16—H16A0.9300
C5—H5A0.9300C17—H17A0.9300
C6—C71.385 (5)O1W—H1OW0.88 (4)
C7—C81.341 (4)
C1—N1—C8109.4 (3)N1—C8—C9122.2 (3)
C1—N1—H1A126 (2)C10—C9—C8126.0 (4)
C8—N1—H1A124 (2)C10—C9—H9A117.0
O3—N2—O2123.1 (4)C8—C9—H9A117.0
O3—N2—C15118.8 (4)C9—C10—C11124.6 (3)
O2—N2—C15118.1 (4)C9—C10—H10A117.7
N1—C1—C2129.9 (4)C11—C10—H10A117.7
N1—C1—C6107.6 (3)O1—C11—C10121.2 (3)
C2—C1—C6122.6 (3)O1—C11—C12119.9 (3)
C3—C2—C1117.4 (4)C10—C11—C12118.9 (3)
C3—C2—H2A121.3C17—C12—C13118.7 (4)
C1—C2—H2A121.3C17—C12—C11119.4 (3)
C2—C3—C4121.0 (4)C13—C12—C11121.9 (3)
C2—C3—H3A119.5C14—C13—C12120.8 (4)
C4—C3—H3A119.5C14—C13—H13A119.6
C5—C4—C3122.0 (4)C12—C13—H13A119.6
C5—C4—H4A119.0C15—C14—C13119.0 (4)
C3—C4—H4A119.0C15—C14—H14A120.5
C4—C5—C6118.9 (4)C13—C14—H14A120.5
C4—C5—H5A120.6C14—C15—C16122.2 (4)
C6—C5—H5A120.6C14—C15—N2118.6 (4)
C5—C6—C1118.1 (4)C16—C15—N2119.2 (4)
C5—C6—C7135.3 (4)C15—C16—C17118.2 (4)
C1—C6—C7106.5 (3)C15—C16—H16A120.9
C8—C7—C6108.6 (3)C17—C16—H16A120.9
C8—C7—H7A125.7C12—C17—C16121.0 (4)
C6—C7—H7A125.7C12—C17—H17A119.5
C7—C8—N1107.8 (3)C16—C17—H17A119.5
C7—C8—C9130.0 (4)
C8—N1—C1—C2179.9 (4)C8—C9—C10—C11175.8 (3)
C8—N1—C1—C60.6 (4)C9—C10—C11—O121.9 (6)
N1—C1—C2—C3179.9 (4)C9—C10—C11—C12159.5 (4)
C6—C1—C2—C30.6 (6)O1—C11—C12—C1713.1 (5)
C1—C2—C3—C40.2 (6)C10—C11—C12—C17165.5 (3)
C2—C3—C4—C50.0 (7)O1—C11—C12—C13167.7 (4)
C3—C4—C5—C61.2 (6)C10—C11—C12—C1313.7 (5)
C4—C5—C6—C11.9 (6)C17—C12—C13—C140.9 (6)
C4—C5—C6—C7179.8 (4)C11—C12—C13—C14178.3 (4)
N1—C1—C6—C5178.7 (3)C12—C13—C14—C150.4 (6)
C2—C1—C6—C51.7 (6)C13—C14—C15—C161.3 (6)
N1—C1—C6—C70.2 (4)C13—C14—C15—N2177.3 (4)
C2—C1—C6—C7179.8 (3)O3—N2—C15—C14176.8 (4)
C5—C6—C7—C8177.8 (4)O2—N2—C15—C142.8 (6)
C1—C6—C7—C80.3 (4)O3—N2—C15—C164.5 (6)
C6—C7—C8—N10.6 (4)O2—N2—C15—C16176.0 (4)
C6—C7—C8—C9177.6 (4)C14—C15—C16—C170.9 (6)
C1—N1—C8—C70.7 (4)N2—C15—C16—C17177.8 (4)
C1—N1—C8—C9177.7 (3)C13—C12—C17—C161.4 (6)
C7—C8—C9—C10176.4 (4)C11—C12—C17—C16177.9 (4)
N1—C8—C9—C105.5 (6)C15—C16—C17—C120.5 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/C6–C8 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1OW···O1i0.88 (4)1.86 (4)2.723 (4)171 (4)
N1—H1A···O1W0.87 (3)2.06 (3)2.923 (4)170 (3)
C4—H4A···O2ii0.932.603.405 (6)146
C9—H9A···Cg1iii0.932.873.518 (4)127
Symmetry codes: (i) x+2, y1, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Funding information

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for providing facilities and funding to conduct this research under the Fundamental Research Grant Scheme (FRGS) No. 203.PFIZIK.6711572 and Short-Term No. 203.PFIZIK.6711606.

References

First citationBrandenburg, K. B. M. (2009). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaruso, F., Atalla, V., Ren, X., Rubio, A., Scheffler, M. & Rinke, P. (2014). Phys. Rev. B, 90, 085141.  Web of Science CrossRef Google Scholar
First citationDobrowolski, M. A., Krygowski, T. M. & Cyranski, M. K. (2009). Croat. Chem. Acta, 82, 139–147.  Google Scholar
First citationD'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5362–5369.  CAS Google Scholar
First citationEmmanuel, R. & Borge, V. (2002). In Optoelectronics. New York: Cambridge University, Press.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R. & Duroux, J.-L. (2007). J. Phys. Chem. A, 111, 1138–1145.  Web of Science CrossRef PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaidur, S. R., Jahagirdar, J. R., Patil, P. S., Chia, T. S. & Quah, C. K. (2018). Opt. Mater. 75, 580–594.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2397–o2398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPavia, D. L., Lampman, G. M. & Kriz, G. S. (2001). Introduction to Spectroscopy, 3rd ed, pp. 378–379. Australia: Brooks/Cole-Thomson Learning.  Google Scholar
First citationPrabhu, S. R., Jayarama, A., Upadhyaya, V., Bhat, K. S. & Ng, S. W. (2015). Mol. Cryst. Liq. Cryst. 607, 200–214.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3957–o3958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTernavisk, R. R., Camargo, A. J., Machado, F. B. C., Rocco, J. A. F. F., Aquino, G. L. B., Silva, V. H. C. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526–2536.  Web of Science CrossRef PubMed Google Scholar
First citationThanigaimani, K., Arshad, S., Khalib, N. C., Razak, I. A., Arunagiri, C., Subashini, A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2015). Spectrochim. Acta A, 149, 90–102.  Web of Science CrossRef Google Scholar
First citationToledo, T. A. de, da Costa, R. C., Bento, R. R. F., Al-Maqtari, H. M., Jamalis, J. & Pizani, P. S. (2018). J. Mol. Struct. 1155, 634–645.  Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth.  Google Scholar
First citationYu, F., Wang, M., Sun, H., Shan, Y., Du, M., Khan, A., Usman, R., Zhang, W., Shan, H. & Xu, C. (2017). RSC Adv. 7, 8491–8503.  Web of Science CrossRef Google Scholar
First citationZainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y.-Z., Zhou, Y., Liang, Q., Chen, D.-F., Guo, R. & Lai, R. C. (2016). Sci. Rep. 6, 34647.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds