research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three hydrogen-bonded 1:2 compounds of chloranilic acid with 2-pyridone, 3-hy­dr­oxy­pyridine and 4-hyroxypyridine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 17 September 2017; accepted 21 September 2017; online 29 September 2017)

The crystal structures of the 1:2 compounds of chloranilic acid (systematic name: 2,5-di­chloro-3,6-dihy­droxy-1,4-benzo­quinone) with 2-pyridone, 3-hy­droxy­pyridine and 4-hyroxypyridine, namely, bis­(2-pyridone) chloranilic acid, 2C5H5NO·C6H2Cl2O4, (I), bis­(3-hy­droxy­pyridinium) chloranilate, 2C5H6NO+·C6Cl2O42−, (II), and bis­(4-hy­droxy­pyridinium) chloranilate, 2C5H6NO+·C6Cl2O42−, (III), have been determined at 120 K. In the crystal of (I), the base mol­ecule is in the lactam form and no acid–base inter­action involving H-atom transfer is observed. The acid mol­ecule lies on an inversion centre and the asymmetric unit consists of one half-mol­ecule of chloranilic acid and one 2-pyridone mol­ecule, which are linked via a short O—H⋯O hydrogen bond. 2-Pyridone mol­ecules form a head-to-head dimer via a pair of N—H⋯O hydrogen bonds, resulting in a tape structure along [201]. In the crystals of (II) and (III), acid–base inter­actions involving H-atom transfer are observed and the divalent cations lie on an inversion centre. The asymmetric unit of (II) consists of one half of a chloranilate anion and one 3-hy­droxy­pyridinium cation, while that of (III) comprises two independent halves of anions and two 4-hy­droxy­pyridinium cations. The primary inter­molecular inter­action in (II) is a bifurcated O—H⋯(O,O) hydrogen bond between the cation and the anion. The hydrogen-bonded units are further linked via N—H⋯O hydrogen bonds, forming a layer parallel to the bc plane. In (III), one anion is surrounded by four cations via O—H⋯O and C—H⋯O hydrogen bonds, while the other is surrounded by four cations via N—H⋯O and C—H⋯Cl hydrogen bonds. These inter­actions link the cations and the anions into a layer parallel to (301).

1. Chemical context

Chloranilic acid, a dibasic acid with hydrogen-bond donor and acceptor groups, appears particularly attractive as a template for generating tightly bound self-assemblies with various pyridine derivatives, as well as a model compound for investigating hydrogen transfer motions in O—H⋯N and N—H⋯O hydrogen-bond systems (Zaman et al., 2004[Zaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585-589.]; Seliger et al., 2009[Seliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281-2286.]; Asaji et al. 2010[Asaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531-536.]). In the present study, we have prepared three 1:2 compounds of chloranilic acid with 2-pyridone, 3-hy­droxy­pyridine and 4-hy­droxy­pyridine in order to extend our study of D—H⋯A hydrogen bonding (D = N, O or C; A = N, O or Cl) in chloranilic acid–substituted-pyridine systems (Gotoh et al., 2009a[Gotoh, K., Nagoshi, H. & Ishida, H. (2009a). Acta Cryst. C65, o273-o277.],b[Gotoh, K., Nagoshi, H. & Ishida, H. (2009b). Acta Cryst. E65, o614.], 2010[Gotoh, K., Asaji, T. & Ishida, H. (2010). Acta Cryst. C66, o114-o118.]). The crystal structure of the 1:1 compound of chloranilic acid with 3-hy­droxy­pyridine, namely, 3-hy­droxy­pyridinium hydrogen chloranilate monohydrate, has been reported (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o3060.]).

[Scheme 1]

2. Structural commentary

In compound (I)[link], the base mol­ecule is in the lactam form and no acid-base inter­action involving H-atom transfer is observed (Fig. 1[link]). The acid mol­ecule lies on an inversion centre and the asymmetric unit consists of one-half acid mol­ecule and one base mol­ecule, which are linked via a short O—H⋯O hydrogen bond (O2—H2⋯O3; Table 1[link]). The dihedral angle between the acid ring and the base ring is 37.82 (5)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.901 (15) 1.627 (16) 2.4989 (11) 161.9 (19)
N1—H1⋯O3i 0.893 (16) 1.996 (17) 2.8743 (12) 167.6 (16)
C7—H7⋯Cl1ii 0.95 2.79 3.5122 (13) 134
Symmetry codes: (i) [-x+2, y, -z+{\script{3\over 2}}]; (ii) -x+2, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. O—H⋯O hydrogen bonds are shown as dashed lines. [Symmetry code: (iii) −x + 1, −y + 1, −z + 1.]

In compound (II)[link], an acid–base inter­action involving H-atom transfer is observed. The chloranilate anion is located on an inversion centre and the asymmetric unit contains one-half anion mol­ecule and one cation mol­ecule. The primary inter­molecular inter­action between the cation and the anion is a bifurcated O—H⋯(O,O) hydrogen bond (O3—H3⋯O2 and O3—H3⋯O1i; symmetry code as in Table 2[link]) to afford a centrosymmetric 1:2 aggregate of the anion and the cation (Fig. 2[link]). The dihedral angle between the acid ring and the base ring is 72.69 (5)°.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.852 (17) 1.803 (17) 2.6277 (12) 162.5 (16)
O3—H3⋯O1i 0.852 (17) 2.438 (17) 2.9738 (12) 121.6 (14)
N1—H1⋯O2ii 0.889 (17) 1.807 (17) 2.6684 (12) 162.6 (16)
C8—H8⋯O1iii 0.95 2.45 3.1481 (13) 130
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z-1.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. O—H⋯O hydrogen bonds are shown as dashed lines. [Symmetry code: (i) −x + 2, −y + 1, −z + 1.]

The compound (III)[link] crystallizes with two independent halves of chloranilate anions and two 4-hy­droxy­pyridinium cations in the asymmetric unit (Fig. 3[link]). Although both anions lie on an inversion centre, the hydrogen-bonding schemes around the anions are quite different (Fig. 4[link]); one anion is surrounded by four cations via O—H⋯O and C—H⋯O hydrogen bonds (O5—H5⋯O1i, O6—H6⋯O2 and C13—H13⋯O2; symmetry code as in Table 3[link]), while the other is surrounded by four cation via N—H⋯O and C—H⋯Cl hydrogen bonds (N1—H1⋯O4, N2—H2⋯O4ii, N2—H2⋯O3iii and C7—H7⋯Cl2; Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1i 0.905 (17) 1.640 (17) 2.5208 (13) 163.2 (17)
O6—H6⋯O2 0.852 (17) 1.800 (17) 2.6510 (13) 177.3 (18)
N1—H1⋯O4 0.919 (17) 1.810 (17) 2.7000 (13) 162.3 (16)
N2—H2⋯O4ii 0.876 (18) 2.156 (17) 2.9603 (14) 152.3 (15)
N2—H2⋯O3iii 0.876 (18) 2.176 (17) 2.8384 (14) 132.1 (14)
C7—H7⋯Cl2 0.95 2.81 3.4540 (12) 126
C12—H12⋯O3iv 0.95 2.32 3.1541 (14) 146
C13—H13⋯O2 0.95 2.49 3.1685 (14) 128
C16—H16⋯Cl1v 0.95 2.77 3.4427 (12) 128
Symmetry codes: (i) -x, -y, -z; (ii) x, y+1, z; (iii) -x+3, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y+1, -z.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. O—H⋯O, N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) −x, −y, −z; (vi) −x + 3, −y, −z + 1.]
[Figure 4]
Figure 4
A partial packing diagram for compound (III)[link] around two independent chloranilate anions. O—H⋯O, N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) −x, −y, −z; (iii) −x + 3, −y + 1, −z + 1; (vi) −x + 3, −y, −z + 1; (vii) x, y − 1, z.]

3. Supra­molecular features

In the crystal of compound (I)[link], two adjacent 2-pyridone mol­ecules, which are related by a twofold rotation axis, form a head-to-head dimer via a pair of N—H⋯O hydrogen bonds (N1—H1⋯O3i; symmetry code as in Table 1[link]), as observed in various cocrystals of 2-pyridone (Odani & Matsumoto, 2002[Odani, T. & Matsumoto, A. (2002). CrystEngComm, 4, 467-471.]). The acid and base mol­ecules form an undulating tape structure running along [201] through the above-mentioned O—H⋯O and N—H⋯O hydrogen bonds (Fig. 5[link]). The tapes are stacked along the b axis into a layer structure through a ππ inter­action between the pyridine rings [centroid-to-centroid distance = 3.7005 (6) Å and inter­planar spacing = 3.4239 (4) Å] and a short C⋯C contact [C2⋯C3iv = 3.3056 (13) Å; symmetry code: (iv) x, y + 1, z]. A weak C—H⋯Cl inter­action formed between the acid and base mol­ecules (C7—H7⋯Cl1ii; Table 1[link]) links the layers. The O—H⋯O hydrogen bond between the acid and base mol­ecules is short [O2⋯O3 = 2.4989 (11) Å], suggesting possible disorder of the H atom in the hydrogen bond, but no distinct evidence of the disorder was observed in the difference Fourier map, nor from the mol­ecular geometry.

[Figure 5]
Figure 5
A packing diagram for compound (I)[link], showing the tape structure formed by O—H⋯O and N—H⋯O hydrogen bonds (dashed lines). H atoms not involved in the inter­actions have been omitted. [Symmetry codes: (i) −x + 2, y, −z + [{3\over 2}]; (iii) −x + 1, −y + 1, −z + 1.]

In the crystal of (II)[link], the cation–anion units are further connected by N—H⋯O (N1—H1⋯O2ii; symmetry code as in Table 2[link] and Fig. 6[link]), forming a layer expanding parallel to the bc plane (Fig. 7[link]). Adjacent layers are connected to each other with a C—H⋯O hydrogen bond (C8—H8⋯O1iii; Table 2[link]) and a short O⋯N contact [O3⋯N1vi = 3.0430 (12) Å; symmetry code: (vi) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]].

[Figure 6]
Figure 6
A partial packing diagram for compound (II)[link] around the chloranilate anion. O—H⋯O and N—H⋯O hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (iv) x, −y + [{3\over 2}], z + [{1\over 2}]; (v) −x + 2, y − [{1\over 2}], −z + [{1\over 2}].]
[Figure 7]
Figure 7
A packing diagram for compound (II)[link], viewed along the b axis, showing the layer structure formed by O—H⋯O and N—H⋯O hydrogen bonds (dashed lines). H atoms not involved in the inter­actions have been omitted.

In the crystal of (III)[link], the above-mentioned O—H⋯O, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds link the cations and anions into a layer parallel to (301) (Fig. 8[link]). Adjacent layers are further linked via weak C—H⋯O and C—H⋯Cl inter­actions (C12—H12⋯O3iv and C16—H16⋯Cl1v; symmetry codes as given in Table 3[link]).

[Figure 8]
Figure 8
A packing diagram for compound (III)[link], showing the hydrogen-bonded network in the layer. O—H⋯O, N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic crystals of chloranilic acid with substituted pyridines (except for di-, tri- and tetra­pyridine derivatives) gave 32 hits. Of these, crystal structures of 16 compounds of chloranilic acid with methyl-substituted pyridines (Adam et al., 2010[Adam, M. S., Parkin, A., Thomas, L. H. & Wilson, C. C. (2010). CrystEngComm, 12, 917-924.]; Łuczyńska et al., 2016[Łuczyńska, K., Drużbicki, K., Lyczko, K. & Dobrowolski, J. Cz. (2016). Cryst. Growth Des. 16, 6069-6083.]; Molčanov & Kojić-Prodić, 2010[Molčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925-939.], and references therein), three compounds of carbamoyl-substituted pyridines (Gotoh et al., 2009a[Gotoh, K., Nagoshi, H. & Ishida, H. (2009a). Acta Cryst. C65, o273-o277.]), three compounds of carb­oxy-substituted pyridines (Gotoh et al., 2009b[Gotoh, K., Nagoshi, H. & Ishida, H. (2009b). Acta Cryst. E65, o614.], and references therein) and three compounds of cyano-substituted pyridines (Gotoh & Ishida, 2012[Gotoh, K. & Ishida, H. (2012). Acta Cryst. E68, o2830.], and references therein) were reported.

5. Synthesis and crystallization

Single crystals of compound (I)[link] were obtained by slow evaporation from an ethanol solution (120 ml) of chloranilic acid (350 mg) with 2-hy­droxy­pyridine (340 mg) at room temperature. Crystals of compound (II)[link] were obtained by slow evaporation from a methanol solution (400 ml) of chloranilic acid (170 mg) with 3-hy­droxy­pyridine (160 mg) at room temperature. Crystals of compound (III)[link] were obtained by slow diffusion of a methanol solution (20 ml) of 4-hy­droxy­pyridine (160 mg) into an aceto­nitrile solution (200 ml) of chloranilic acid (170 mg) at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms in compounds (I)–(III) were found in difference Fourier maps. The positions of O- and N-bound H atoms were refined freely, with Uiso(H) = 1.5Ueq(O or N). C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and were treated as riding with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula 2C5H5NO·C6H2Cl2O4 2C5H6NO+·C6Cl2O42− 2C5H6NO+·C6Cl2O42−
Mr 399.19 399.19 399.19
Crystal system, space group Monoclinic, P2/c Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 120 120 120
a, b, c (Å) 11.9402 (7), 3.7005 (2), 21.7919 (13) 8.3659 (6), 8.5492 (6), 11.7087 (8) 5.49136 (13), 8.2195 (4), 18.1382 (9)
α, β, γ (°) 90, 121.278 (2), 90 90, 106.968 (3), 90 102.177 (3), 93.952 (3), 95.316 (4)
V3) 822.92 (9) 800.98 (9) 793.52 (6)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.43 0.45 0.45
Crystal size (mm) 0.39 × 0.36 × 0.21 0.21 × 0.20 × 0.12 0.35 × 0.25 × 0.12
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABCSOR. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.804, 0.913 0.903, 0.948 0.890, 0.948
No. of measured, independent and observed [I > 2σ(I)] reflections 22767, 2401, 2316 15315, 2329, 2166 12373, 4597, 4124
Rint 0.013 0.017 0.036
(sin θ/λ)max−1) 0.703 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.06 0.028, 0.075, 1.07 0.030, 0.080, 1.07
No. of reflections 2401 2329 4597
No. of parameters 124 124 247
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.24 0.52, −0.20 0.75, −0.34
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all structures, data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012). Software used to prepare material for publication: CrystalStructure (Rigaku, 2010), PLATON (Spek, 2009) for (I); CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009) for (II), (III).

Bis[pyridin-2(1H)-one] 2,5-dichloro-3,6-dihydroxy-1,4-bebzoquinone (I) top
Crystal data top
2C5H5NO·C6H2Cl2O4F(000) = 408.00
Mr = 399.19Dx = 1.611 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71075 Å
a = 11.9402 (7) ÅCell parameters from 20111 reflections
b = 3.7005 (2) Åθ = 3.3–30.1°
c = 21.7919 (13) ŵ = 0.43 mm1
β = 121.278 (2)°T = 120 K
V = 822.92 (9) Å3Block, brown
Z = 20.39 × 0.36 × 0.21 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
2316 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.013
ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.804, Tmax = 0.913k = 45
22767 measured reflectionsl = 3030
2401 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.3557P]
where P = (Fo2 + 2Fc2)/3
2401 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60869 (2)0.78653 (6)0.40403 (2)0.01704 (8)
O10.33921 (7)0.8229 (2)0.37552 (4)0.02149 (16)
O20.75999 (6)0.4050 (2)0.54453 (4)0.01794 (15)
H20.8039 (15)0.289 (4)0.5870 (8)0.027*
O30.92219 (7)0.1199 (2)0.66164 (4)0.02094 (16)
N11.13199 (8)0.0736 (2)0.72858 (4)0.01604 (16)
H11.1281 (13)0.016 (4)0.7672 (8)0.024*
C10.41591 (9)0.6765 (2)0.43248 (5)0.01361 (17)
C20.55361 (8)0.6274 (3)0.45806 (5)0.01311 (16)
C30.63639 (8)0.4587 (2)0.52136 (5)0.01342 (17)
C41.02174 (9)0.0153 (3)0.66317 (5)0.01563 (17)
C51.02800 (9)0.1116 (3)0.60168 (5)0.01779 (18)
H50.9533630.0802210.5549480.021*
C61.14171 (10)0.2497 (3)0.60990 (5)0.01837 (19)
H61.1453760.3123740.5687050.022*
C71.25330 (10)0.2995 (3)0.67902 (5)0.01870 (19)
H71.3323370.3927600.6847780.022*
C81.24515 (9)0.2109 (3)0.73732 (5)0.01775 (18)
H81.3188460.2450480.7842770.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02123 (12)0.01778 (12)0.01883 (12)0.00121 (8)0.01512 (10)0.00259 (7)
O10.0172 (3)0.0304 (4)0.0166 (3)0.0046 (3)0.0086 (3)0.0080 (3)
O20.0124 (3)0.0244 (4)0.0172 (3)0.0022 (3)0.0079 (2)0.0040 (3)
O30.0149 (3)0.0307 (4)0.0184 (3)0.0048 (3)0.0095 (3)0.0034 (3)
N10.0158 (3)0.0189 (4)0.0145 (3)0.0021 (3)0.0086 (3)0.0000 (3)
C10.0150 (4)0.0138 (4)0.0134 (4)0.0000 (3)0.0083 (3)0.0005 (3)
C20.0150 (4)0.0139 (4)0.0139 (4)0.0000 (3)0.0098 (3)0.0002 (3)
C30.0139 (4)0.0137 (4)0.0143 (4)0.0005 (3)0.0084 (3)0.0010 (3)
C40.0142 (4)0.0170 (4)0.0162 (4)0.0005 (3)0.0083 (3)0.0012 (3)
C50.0178 (4)0.0207 (4)0.0146 (4)0.0011 (3)0.0082 (3)0.0004 (3)
C60.0221 (4)0.0189 (4)0.0179 (4)0.0015 (3)0.0131 (4)0.0018 (3)
C70.0184 (4)0.0190 (4)0.0211 (4)0.0023 (3)0.0119 (4)0.0009 (3)
C80.0157 (4)0.0191 (4)0.0174 (4)0.0033 (3)0.0078 (3)0.0002 (3)
Geometric parameters (Å, º) top
Cl1—C21.7233 (9)C2—C31.3614 (12)
O1—C11.2217 (11)C4—C51.4256 (13)
O2—C31.3033 (10)C5—C61.3726 (14)
O2—H20.901 (16)C5—H50.9500
O3—C41.2739 (11)C6—C71.4120 (14)
N1—C81.3611 (12)C6—H60.9500
N1—C41.3648 (11)C7—C81.3636 (14)
N1—H10.892 (15)C7—H70.9500
C1—C21.4475 (12)C8—H80.9500
C1—C3i1.5182 (12)
C3—O2—H2114.1 (10)O3—C4—C5125.24 (8)
C8—N1—C4123.66 (8)N1—C4—C5116.69 (8)
C8—N1—H1119.5 (9)C6—C5—C4120.10 (9)
C4—N1—H1116.9 (9)C6—C5—H5120.0
O1—C1—C2123.32 (8)C4—C5—H5120.0
O1—C1—C3i118.05 (8)C5—C6—C7120.62 (9)
C2—C1—C3i118.63 (7)C5—C6—H6119.7
C3—C2—C1121.99 (8)C7—C6—H6119.7
C3—C2—Cl1121.00 (7)C8—C7—C6118.57 (9)
C1—C2—Cl1117.01 (7)C8—C7—H7120.7
O2—C3—C2122.88 (8)C6—C7—H7120.7
O2—C3—C1i117.75 (8)N1—C8—C7120.35 (9)
C2—C3—C1i119.37 (8)N1—C8—H8119.8
O3—C4—N1118.06 (8)C7—C8—H8119.8
O1—C1—C2—C3179.08 (9)C8—N1—C4—O3178.90 (9)
C3i—C1—C2—C31.18 (15)C8—N1—C4—C51.04 (15)
O1—C1—C2—Cl10.05 (13)O3—C4—C5—C6178.84 (10)
C3i—C1—C2—Cl1179.79 (6)N1—C4—C5—C61.09 (15)
C1—C2—C3—O2178.46 (9)C4—C5—C6—C70.28 (16)
Cl1—C2—C3—O20.53 (14)C5—C6—C7—C80.64 (16)
C1—C2—C3—C1i1.19 (15)C4—N1—C8—C70.13 (16)
Cl1—C2—C3—C1i179.82 (7)C6—C7—C8—N10.73 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.901 (15)1.627 (16)2.4989 (11)161.9 (19)
N1—H1···O3ii0.893 (16)1.996 (17)2.8743 (12)167.6 (16)
C7—H7···Cl1iii0.952.793.5122 (13)134
Symmetry codes: (ii) x+2, y, z+3/2; (iii) x+2, y, z+1.
Bis(3-hyroxypyridinium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate (II) top
Crystal data top
2C5H6NO+·C6Cl2O42F(000) = 408.00
Mr = 399.19Dx = 1.655 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 8.3659 (6) ÅCell parameters from 13386 reflections
b = 8.5492 (6) Åθ = 3.0–30.0°
c = 11.7087 (8) ŵ = 0.45 mm1
β = 106.968 (3)°T = 120 K
V = 800.98 (9) Å3Block, brown
Z = 20.21 × 0.20 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
2166 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.017
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1111
Tmin = 0.903, Tmax = 0.948k = 1212
15315 measured reflectionsl = 1516
2329 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.357P]
where P = (Fo2 + 2Fc2)/3
2329 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.93157 (3)0.73912 (3)0.68834 (2)0.01680 (8)
O11.24731 (9)0.58136 (9)0.69329 (7)0.01740 (16)
O20.68396 (9)0.61601 (9)0.46095 (7)0.01689 (16)
O30.41012 (10)0.51422 (9)0.30475 (7)0.01640 (16)
H30.509 (2)0.5340 (19)0.3482 (15)0.025*
N10.48820 (11)0.71217 (11)0.05541 (8)0.01529 (17)
H10.566 (2)0.7718 (19)0.0393 (15)0.023*
C11.13017 (12)0.54789 (11)0.60534 (9)0.01283 (18)
C20.96428 (12)0.60823 (12)0.58348 (9)0.01358 (18)
C30.83396 (12)0.56708 (12)0.48551 (9)0.01327 (18)
C40.51167 (12)0.66180 (12)0.16734 (9)0.01383 (18)
H40.6092290.6914480.2285450.017*
C50.39288 (12)0.56593 (11)0.19388 (9)0.01309 (18)
C60.25163 (13)0.52430 (13)0.10152 (10)0.0171 (2)
H60.1694000.4576670.1169090.021*
C70.23181 (14)0.58069 (13)0.01295 (10)0.0192 (2)
H70.1351780.5538570.0759710.023*
C80.35290 (14)0.67593 (13)0.03506 (9)0.0180 (2)
H80.3405340.7151210.1130940.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01596 (13)0.01889 (13)0.01530 (13)0.00248 (8)0.00420 (9)0.00478 (8)
O10.0143 (3)0.0210 (4)0.0144 (3)0.0017 (3)0.0004 (3)0.0030 (3)
O20.0118 (3)0.0224 (4)0.0151 (3)0.0047 (3)0.0018 (3)0.0023 (3)
O30.0141 (3)0.0203 (4)0.0142 (3)0.0010 (3)0.0032 (3)0.0034 (3)
N10.0148 (4)0.0160 (4)0.0155 (4)0.0020 (3)0.0050 (3)0.0005 (3)
C10.0129 (4)0.0133 (4)0.0121 (4)0.0010 (3)0.0034 (3)0.0006 (3)
C20.0134 (4)0.0151 (4)0.0122 (4)0.0021 (3)0.0036 (3)0.0021 (3)
C30.0132 (4)0.0144 (4)0.0120 (4)0.0016 (3)0.0034 (3)0.0006 (3)
C40.0122 (4)0.0142 (4)0.0142 (4)0.0007 (3)0.0025 (3)0.0001 (3)
C50.0121 (4)0.0127 (4)0.0144 (4)0.0010 (3)0.0037 (3)0.0001 (3)
C60.0129 (4)0.0180 (5)0.0194 (5)0.0033 (3)0.0031 (4)0.0000 (4)
C70.0167 (5)0.0209 (5)0.0169 (5)0.0031 (4)0.0001 (4)0.0019 (4)
C80.0198 (5)0.0199 (5)0.0132 (4)0.0014 (4)0.0031 (4)0.0005 (4)
Geometric parameters (Å, º) top
Cl1—C21.7409 (10)C2—C31.3778 (13)
O1—C11.2302 (12)C4—C51.3915 (13)
O2—C31.2735 (12)C4—H40.9500
O3—C51.3387 (12)C5—C61.3952 (14)
O3—H30.850 (18)C6—C71.3880 (15)
N1—C41.3384 (13)C6—H60.9500
N1—C81.3414 (14)C7—C81.3818 (15)
N1—H10.891 (17)C7—H70.9500
C1—C21.4319 (13)C8—H80.9500
C1—C3i1.5409 (14)
C5—O3—H3109.0 (11)N1—C4—H4120.1
C4—N1—C8123.22 (9)C5—C4—H4120.1
C4—N1—H1119.0 (11)O3—C5—C4121.95 (9)
C8—N1—H1117.8 (11)O3—C5—C6119.64 (9)
O1—C1—C2124.03 (9)C4—C5—C6118.41 (9)
O1—C1—C3i117.27 (8)C7—C6—C5119.69 (9)
C2—C1—C3i118.70 (8)C7—C6—H6120.2
C3—C2—C1123.17 (9)C5—C6—H6120.2
C3—C2—Cl1120.15 (7)C8—C7—C6119.88 (9)
C1—C2—Cl1116.69 (7)C8—C7—H7120.1
O2—C3—C2126.33 (9)C6—C7—H7120.1
O2—C3—C1i115.54 (8)N1—C8—C7118.94 (9)
C2—C3—C1i118.13 (8)N1—C8—H8120.5
N1—C4—C5119.86 (9)C7—C8—H8120.5
O1—C1—C2—C3178.76 (10)C8—N1—C4—C50.55 (16)
C3i—C1—C2—C30.78 (16)N1—C4—C5—O3179.23 (9)
O1—C1—C2—Cl11.08 (14)N1—C4—C5—C60.30 (15)
C3i—C1—C2—Cl1179.38 (7)O3—C5—C6—C7178.57 (10)
C1—C2—C3—O2179.87 (10)C4—C5—C6—C70.97 (15)
Cl1—C2—C3—O20.03 (15)C5—C6—C7—C80.83 (17)
C1—C2—C3—C1i0.78 (16)C4—N1—C8—C70.70 (16)
Cl1—C2—C3—C1i179.39 (7)C6—C7—C8—N10.01 (17)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.852 (17)1.803 (17)2.6277 (12)162.5 (16)
O3—H3···O1i0.852 (17)2.438 (17)2.9738 (12)121.6 (14)
N1—H1···O2ii0.889 (17)1.807 (17)2.6684 (12)162.6 (16)
C8—H8···O1iii0.952.453.1481 (13)130
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x1, y, z1.
Bis(4-hyroxypyridinium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate (III) top
Crystal data top
2C5H6NO+·C6Cl2O42Z = 2
Mr = 399.19F(000) = 408.00
Triclinic, P1Dx = 1.671 Mg m3
a = 5.49136 (13) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.2195 (4) ÅCell parameters from 11077 reflections
c = 18.1382 (9) Åθ = 3.0–30.1°
α = 102.177 (3)°µ = 0.45 mm1
β = 93.952 (3)°T = 120 K
γ = 95.316 (4)°Platelet, brown
V = 793.52 (6) Å30.35 × 0.25 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4124 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.036
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 77
Tmin = 0.890, Tmax = 0.948k = 1111
12373 measured reflectionsl = 2525
4597 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.3136P]
where P = (Fo2 + 2Fc2)/3
4597 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42856 (5)0.16233 (3)0.07860 (2)0.01668 (7)
Cl21.13911 (5)0.28348 (3)0.52483 (2)0.01730 (7)
O10.03685 (16)0.10701 (11)0.14946 (5)0.02014 (18)
O20.33010 (15)0.24516 (10)0.08473 (5)0.01729 (17)
O31.55337 (16)0.23416 (11)0.62981 (5)0.01865 (17)
O41.14201 (15)0.00027 (10)0.38854 (5)0.01586 (16)
O50.18017 (16)0.33437 (10)0.25526 (5)0.01818 (17)
H50.118 (3)0.263 (2)0.2115 (10)0.027*
O60.74923 (17)0.40347 (11)0.05992 (5)0.02044 (18)
H60.617 (3)0.350 (2)0.0681 (11)0.031*
N10.76255 (18)0.16991 (12)0.35832 (6)0.01695 (19)
H10.896 (3)0.128 (2)0.3779 (10)0.025*
N21.04584 (18)0.71260 (12)0.25721 (6)0.01696 (19)
H21.114 (3)0.777 (2)0.2998 (10)0.025*
C10.02618 (19)0.05358 (13)0.08002 (6)0.01355 (19)
C20.19204 (19)0.07509 (13)0.03554 (6)0.01332 (19)
C30.18242 (19)0.13365 (13)0.04220 (6)0.01289 (19)
C41.52060 (19)0.12916 (13)0.56903 (6)0.01293 (19)
C51.33437 (19)0.12624 (13)0.51055 (6)0.01346 (19)
C61.30221 (19)0.00728 (13)0.44252 (6)0.01271 (19)
C70.6571 (2)0.30150 (14)0.39505 (7)0.0178 (2)
H70.7191100.3551840.4453420.021*
C80.4617 (2)0.35945 (14)0.36116 (7)0.0169 (2)
H80.3901020.4532560.3873660.020*
C90.3693 (2)0.27801 (13)0.28719 (6)0.0141 (2)
C100.4863 (2)0.14337 (14)0.24949 (6)0.0169 (2)
H100.4304630.0880060.1988980.020*
C110.6819 (2)0.09297 (15)0.28659 (7)0.0180 (2)
H110.7616930.0022890.2612730.022*
C120.8247 (2)0.62477 (14)0.25631 (6)0.0169 (2)
H120.7433570.6358150.3013700.020*
C130.7170 (2)0.51997 (14)0.19096 (6)0.0152 (2)
H130.5609160.4591170.1904150.018*
C140.8392 (2)0.50334 (13)0.12492 (6)0.0145 (2)
C151.0695 (2)0.59750 (15)0.12741 (7)0.0178 (2)
H151.1552230.5900540.0832940.021*
C161.1663 (2)0.69955 (15)0.19462 (7)0.0181 (2)
H161.3219130.7624600.1970880.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01602 (12)0.01837 (13)0.01388 (12)0.00454 (9)0.00310 (9)0.00181 (9)
Cl20.01776 (13)0.01555 (12)0.01668 (13)0.00527 (9)0.00194 (9)0.00109 (9)
O10.0204 (4)0.0252 (4)0.0108 (4)0.0062 (3)0.0022 (3)0.0016 (3)
O20.0165 (4)0.0179 (4)0.0136 (4)0.0054 (3)0.0007 (3)0.0014 (3)
O30.0202 (4)0.0181 (4)0.0140 (4)0.0038 (3)0.0031 (3)0.0038 (3)
O40.0164 (4)0.0164 (4)0.0129 (4)0.0021 (3)0.0034 (3)0.0005 (3)
O50.0183 (4)0.0175 (4)0.0162 (4)0.0037 (3)0.0050 (3)0.0004 (3)
O60.0196 (4)0.0230 (4)0.0135 (4)0.0083 (3)0.0008 (3)0.0029 (3)
N10.0157 (4)0.0177 (4)0.0181 (5)0.0022 (3)0.0003 (4)0.0057 (4)
N20.0177 (4)0.0173 (4)0.0128 (4)0.0016 (3)0.0028 (4)0.0006 (3)
C10.0126 (4)0.0151 (5)0.0117 (5)0.0008 (4)0.0003 (4)0.0014 (4)
C20.0118 (4)0.0151 (4)0.0121 (5)0.0025 (4)0.0018 (4)0.0023 (4)
C30.0120 (4)0.0131 (4)0.0126 (5)0.0004 (3)0.0000 (4)0.0019 (4)
C40.0134 (4)0.0129 (4)0.0116 (5)0.0001 (4)0.0011 (4)0.0012 (4)
C50.0135 (4)0.0128 (4)0.0133 (5)0.0028 (4)0.0001 (4)0.0007 (4)
C60.0122 (4)0.0124 (4)0.0126 (5)0.0005 (3)0.0001 (4)0.0020 (4)
C70.0200 (5)0.0153 (5)0.0162 (5)0.0000 (4)0.0032 (4)0.0016 (4)
C80.0196 (5)0.0141 (5)0.0154 (5)0.0020 (4)0.0011 (4)0.0003 (4)
C90.0144 (4)0.0131 (4)0.0146 (5)0.0000 (4)0.0006 (4)0.0032 (4)
C100.0201 (5)0.0171 (5)0.0125 (5)0.0027 (4)0.0010 (4)0.0012 (4)
C110.0197 (5)0.0180 (5)0.0170 (5)0.0045 (4)0.0043 (4)0.0034 (4)
C120.0170 (5)0.0198 (5)0.0129 (5)0.0010 (4)0.0016 (4)0.0015 (4)
C130.0132 (4)0.0164 (5)0.0147 (5)0.0011 (4)0.0008 (4)0.0019 (4)
C140.0149 (5)0.0137 (4)0.0129 (5)0.0006 (4)0.0006 (4)0.0002 (4)
C150.0156 (5)0.0205 (5)0.0148 (5)0.0039 (4)0.0023 (4)0.0001 (4)
C160.0146 (5)0.0191 (5)0.0181 (5)0.0032 (4)0.0001 (4)0.0010 (4)
Geometric parameters (Å, º) top
Cl1—C21.7363 (11)C4—C51.4165 (14)
Cl2—C51.7438 (11)C4—C6ii1.5426 (15)
O1—C11.2508 (13)C5—C61.3924 (15)
O2—C31.2532 (12)C7—C81.3722 (16)
O3—C41.2390 (13)C7—H70.9500
O4—C61.2586 (13)C8—C91.4035 (15)
O5—C91.3223 (13)C8—H80.9500
O5—H50.907 (18)C9—C101.4065 (16)
O6—C141.3208 (13)C10—C111.3703 (16)
O6—H60.852 (19)C10—H100.9500
N1—C111.3456 (15)C11—H110.9500
N1—C71.3469 (15)C12—C131.3693 (15)
N1—H10.918 (18)C12—H120.9500
N2—C161.3430 (16)C13—C141.4009 (16)
N2—C121.3511 (15)C13—H130.9500
N2—H20.877 (18)C14—C151.4126 (15)
C1—C21.3997 (14)C15—C161.3671 (15)
C1—C3i1.5410 (15)C15—H150.9500
C2—C31.3970 (15)C16—H160.9500
C9—O5—H5111.3 (11)C8—C7—H7119.4
C14—O6—H6107.1 (13)C7—C8—C9118.99 (11)
C11—N1—C7120.85 (10)C7—C8—H8120.5
C11—N1—H1114.5 (11)C9—C8—H8120.5
C7—N1—H1124.6 (11)O5—C9—C8118.46 (10)
C16—N2—C12121.30 (10)O5—C9—C10122.89 (10)
C16—N2—H2119.3 (12)C8—C9—C10118.62 (10)
C12—N2—H2119.4 (12)C11—C10—C9119.23 (10)
O1—C1—C2123.43 (10)C11—C10—H10120.4
O1—C1—C3i117.79 (9)C9—C10—H10120.4
C2—C1—C3i118.79 (9)N1—C11—C10121.03 (11)
C3—C2—C1123.56 (10)N1—C11—H11119.5
C3—C2—Cl1118.10 (8)C10—C11—H11119.5
C1—C2—Cl1118.31 (8)N2—C12—C13120.52 (11)
O2—C3—C2125.93 (10)N2—C12—H12119.7
O2—C3—C1i116.43 (9)C13—C12—H12119.7
C2—C3—C1i117.64 (9)C12—C13—C14119.37 (10)
O3—C4—C5124.83 (10)C12—C13—H13120.3
O3—C4—C6ii116.58 (9)C14—C13—H13120.3
C5—C4—C6ii118.59 (9)O6—C14—C13123.08 (10)
C6—C5—C4123.72 (10)O6—C14—C15118.05 (10)
C6—C5—Cl2118.75 (8)C13—C14—C15118.87 (10)
C4—C5—Cl2117.52 (8)C16—C15—C14118.63 (11)
O4—C6—C5126.22 (10)C16—C15—H15120.7
O4—C6—C4ii116.09 (9)C14—C15—H15120.7
C5—C6—C4ii117.69 (9)N2—C16—C15121.29 (10)
N1—C7—C8121.23 (11)N2—C16—H16119.4
N1—C7—H7119.4C15—C16—H16119.4
O1—C1—C2—C3179.19 (11)C11—N1—C7—C81.17 (18)
C3i—C1—C2—C31.29 (18)N1—C7—C8—C90.81 (18)
O1—C1—C2—Cl11.30 (16)C7—C8—C9—O5179.64 (10)
C3i—C1—C2—Cl1179.17 (7)C7—C8—C9—C102.23 (17)
C1—C2—C3—O2178.00 (11)O5—C9—C10—C11179.80 (10)
Cl1—C2—C3—O20.11 (16)C8—C9—C10—C111.75 (17)
C1—C2—C3—C1i1.27 (17)C7—N1—C11—C101.68 (17)
Cl1—C2—C3—C1i179.16 (7)C9—C10—C11—N10.18 (17)
O3—C4—C5—C6179.64 (11)C16—N2—C12—C130.23 (17)
C6ii—C4—C5—C60.41 (17)N2—C12—C13—C140.54 (17)
O3—C4—C5—Cl20.75 (16)C12—C13—C14—O6179.17 (11)
C6ii—C4—C5—Cl2179.29 (7)C12—C13—C14—C150.92 (17)
C4—C5—C6—O4179.11 (10)O6—C14—C15—C16179.08 (11)
Cl2—C5—C6—O40.23 (16)C13—C14—C15—C161.01 (17)
C4—C5—C6—C4ii0.40 (17)C12—N2—C16—C150.33 (18)
Cl2—C5—C6—C4ii179.28 (7)C14—C15—C16—N20.72 (18)
Symmetry codes: (i) x, y, z; (ii) x+3, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.905 (17)1.640 (17)2.5208 (13)163.2 (17)
O6—H6···O20.852 (17)1.800 (17)2.6510 (13)177.3 (18)
N1—H1···O40.919 (17)1.810 (17)2.7000 (13)162.3 (16)
N2—H2···O4iii0.876 (18)2.156 (17)2.9603 (14)152.3 (15)
N2—H2···O3iv0.876 (18)2.176 (17)2.8384 (14)132.1 (14)
C7—H7···Cl20.952.813.4540 (12)126
C12—H12···O3v0.952.323.1541 (14)146
C13—H13···O20.952.493.1685 (14)128
C16—H16···Cl1vi0.952.773.4427 (12)128
Symmetry codes: (i) x, y, z; (iii) x, y+1, z; (iv) x+3, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+2, y+1, z.
 

References

First citationAdam, M. S., Parkin, A., Thomas, L. H. & Wilson, C. C. (2010). CrystEngComm, 12, 917–924.  Web of Science CSD CrossRef CAS
First citationAsaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531–536.  Web of Science CrossRef CAS PubMed
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGotoh, K., Asaji, T. & Ishida, H. (2010). Acta Cryst. C66, o114–o118.  Web of Science CSD CrossRef IUCr Journals
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o3060.  CrossRef IUCr Journals
First citationGotoh, K. & Ishida, H. (2012). Acta Cryst. E68, o2830.  CrossRef IUCr Journals
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2009a). Acta Cryst. C65, o273–o277.  Web of Science CSD CrossRef IUCr Journals
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2009b). Acta Cryst. E65, o614.  Web of Science CSD CrossRef IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHigashi, T. (1995). ABCSOR. Rigaku Corporation, Tokyo, Japan.
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
First citationŁuczyńska, K., Drużbicki, K., Lyczko, K. & Dobrowolski, J. Cz. (2016). Cryst. Growth Des. 16, 6069–6083.
First citationMolčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925–939.
First citationOdani, T. & Matsumoto, A. (2002). CrystEngComm, 4, 467–471.  CrossRef CAS
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
First citationSeliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281–2286.  Web of Science CSD CrossRef PubMed CAS
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationZaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds