research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An infinite two-dimensional hybrid water–chloride network in a 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine nickel(II) matrix

CROSSMARK_Color_square_no_text.svg

aKey Laboratory of Functional Organometallic Materials of General Colleges and Universities in Hunan Province, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China
*Correspondence e-mail: w.w.fu@hotmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 26 April 2017; accepted 13 May 2017; online 23 May 2017)

A new complex, namely bis­[4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine]­nickel(II) dichloride deca­hydrate, [Ni(C19H13N3O)2]Cl2·10H2O, has been crystallized by solvent evaporation and characterized by single-crystal X-ray diffraction. The coordination environment of the NiII cation is distorted octa­hedral with slight deviations from an idealized geometry. The most intriguing structural feature is an infinite two-dimensional hybrid water–chloride network parallel to (011) constructed by O—H⋯O and O—H⋯Cl hydrogen bonds involving two independent chloride ions and ten independent solvent water mol­ecules with an L-shaped pattern. One of the furyl rings is disordered with a refined occupancy ratio of 0.786 (13):0.214 (13)

1. Chemical context

Water has received much scientific inter­est as it is a major chemical constituent on the earth's surface and it is also the source of life. Many discrete water clusters and polymeric water aggregates, with different types of hydrogen bonds and in diverse sizes and shapes, captured in the crystal lattice of an organic or metal coordination complex during crystallization have been found and investigated experimentally and theoretically (Dutta et al., 2015[Dutta, R., Akhuli, B. & Ghosh, P. (2015). Dalton Trans. 44, 15075-15078.]; Ganguly & Mondal, 2015[Ganguly, S. & Mondal, R. (2015). Cryst. Growth Des. 15, 2211-2222.]; Han et al., 2014[Han, L.-L., Hu, T.-P., Chen, J.-S., Li, Z.-H., Wang, X.-P., Zhao, Y.-Q., Li, X.-Y. & Sun, D. (2014). Dalton Trans. 43, 8774-8780.]; Hundal et al., 2014[Hundal, G., Hundal, M. S., Hwang, Y. K. & Chang, J. S. (2014). Cryst. Growth Des. 14, 172-176.]; Pati et al., 2014[Pati, A., Athilakshmi, J., Ramkumar, V. & Chand, D. K. (2014). CrystEngComm, 16, 6827-6830.]).

[Scheme 1]

Hybrid water–chloride associates incorporated in various crystal matrixes are one of the most inter­esting combinations in water clusters research due to their fundamental importance for understanding water–halide inter­actions in the atmosphere, the ocean and in biological systems (Inumaru et al., 2008[Inumaru, K., Kikudome, T., Fukuoka, H. & Yamanaka, S. (2008). J. Am. Chem. Soc. 130, 10038-10039.]; Kumar et al., 2011[Kumar, R., Pandey, A. K., Sharma, M. K., Panicker, L. V., Sodaye, S., Suresh, G., Ramagiri, S. V., Bellare, J. R. & Goswami, A. (2011). J. Phys. Chem. B, 115, 5856-5867.]; Lakshminarayanan et al., 2006[Lakshminarayanan, P. S., Suresh, E. & Ghosh, P. (2006). Angew. Chem. Int. Ed. 45, 3807-3811.]; Li et al., 2008[Li, Y., Jiang, L., Feng, X.-L. & Lu, T.-B. (2008). Cryst. Growth Des. 8, 3689-3694.]). According to a search of the Cambridge Structural Database (CSD Version 5.37, May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are about nine examples with water–chloride hydrogen bonds forming one-dimensional tapes (Boyer et al., 2011[Boyer, J. L., Polyansky, D. E., Szalda, D. J., Zong, R., Thummel, R. P. & Fujita, E. (2011). Angew. Chem. Int. Ed. 50, 12600-12604.]; van Holst et al., 2008[Holst, M. van, Le Pevelen, D. & Aldrich-Wright, J. (2008). Eur. J. Inorg. Chem. pp. 4608-4615.]; Kepert et al., 1999[Kepert, C. J., Semenova, L. I., Wei-Min, L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 481-496.]; Jitsukawa et al., 1994[Jitsukawa, K., Hata, T., Yamamoto, T., Kano, K., Masuda, H. & Einaga, H. (1994). Chem. Lett. 23, 1169-1172.]), two-dimensional (Kepert et al., 1994[Kepert, C., Lu, W., Skelton, B. & White, A. (1994). Aust. J. Chem. 47, 365-384.]; Chowdhury et al., 2011[Chowdhury, A. D., Das, A. K. I., Mobin, S. M. & Lahiri, G. K. (2011). Inorg. Chem. 50, 1775-1785.]; Duan et al., 2016[Duan, L., Manbeck, G. F., Kowalczyk, M., Szalda, D. J., Muckerman, J. T., Himeda, Y. & Fujita, E. (2016). Inorg. Chem. 55, 4582-4594.]) and three-dimensional (Figgis et al., 1983[Figgis, B., Kucharski, E. & White, A. (1983). Aust. J. Chem. 36, 1563-1571.]; Pruchnik et al., 1996[Pruchnik, F. P., Robert, F., Jeannin, Y. & Jeannin, S. (1996). Inorg. Chem. 35, 4261-4263.]) networks from 2,2′:6′,2′′-terpyridine ligands. When 4′-substituted terpyridines with phenyl, pyridyl, imidazolyl rings were considered, two-dimensional and three-dimensional water–chloride networks with two chloride ions and at least six water mol­ecules were found (Constable et al., 1990[Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.]; Kou et al., 2008[Kou, Y.-Y., Gu, W., Liu, H., Ma, X.-F., Li, D.-D. & Yan, S.-P. (2008). Acta Sci. Nat. Univ. Nankaiensis, 41, 19-25.]; Chen et al., 2013[Chen, G.-J., Wang, Z.-G., Kou, Y.-Y., Tian, J.-L. & Yan, S.-P. (2013). J. Inorg. Biochem. 122, 49-56.]; Fernandes et al., 2008[Fernandes, R. R., Kirillov, A. M., da Silva, M. F. C. G., Ma, Z., da Silva, J. A. L., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2008). Cryst. Growth Des. 8, 782-785.]; McMurtrie & Dance, 2010[McMurtrie, J. & Dance, I. (2010). CrystEngComm, 12, 3207-3217.]; Padhi et al., 2010[Padhi, S. K., Sahu, R. & Manivannan, V. (2010). Polyhedron, 29, 709-714.]; Indumathy et al., 2008[Indumathy, R., Kanthimathi, M., Weyhermuller, T. & Nair, B. U. (2008). Polyhedron, 27, 3443-3450.]; Mahendiran et al., 2016[Mahendiran, D., Kumar, R. S., Viswanathan, V., Velmurugan, D. & Rahiman, A. K. (2016). Dalton Trans. 45, 7794-7814.]). The hydro­phobic and hydro­philic layers are further linked by two kinds of C—H⋯O hydrogen bonds into three-dimensional networks. In this context, a ftpy–NiII complex [ftpy = 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine] (Fig. 1[link]) with two chlorides as counter-ions and ten solvent water mol­ecules (1) is described herein.

[Figure 1]
Figure 1
The mol­ecular structure of [Ni(ftpy)2]2+ in 1, with displacement ellipsoids drawn at the 30% probability level.

2. Structural commentary

The asymmetric unit of 1 is composed of a cationic [Ni(ftpy)2]2+ part, two chloride anions, and ten water mol­ecules of crystallization. The distances between Ni1 and the N atoms of the central pyridyl rings [1.974 (3) and 1.977 (3) Å] are slightly shorter than those between Ni1 and the N atoms of outer pyridyl rings [2.093 (3) −2.099 (3) Å; Table 1[link]]. The angles involving Ni1 can be divided into two sets, viz. three transoid angles [178.36 (10), 155.38 (11) and 155.89 (11)°] and 12 cisoid angles, which range from 77.74 (11) to 103.80 (10)°. The differences in the bond lengths and angles indicate a distorted octa­hedral geometry (Constable et al., 1990[Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.]; Logacheva et al., 2009[Logacheva, N. M., Baulin, V. E., Tsivadze, A. Y., Pyatova, E. N., Ivanova, I. S., Velikodny, Y. A. & Chernyshev, V. V. (2009). Dalton Trans. pp. 2482-2489.]; Padhi et al., 2010[Padhi, S. K., Sahu, R. & Manivannan, V. (2010). Polyhedron, 29, 709-714.]; Fu et al., 2013[Fu, W.-W., Kuang, D.-Z., Zhang, F.-X., Liu, Y., Li, W. & Kuang, Y.-F. (2013). Chin. J. Inorg. Chem. 29, 654-658.]). The terpyridyl ring systems [maximum deviations of ±0.058 (4) Å for C27/C31 and 0.192 (4) Å for C17] are almost perpendicular to each other, subtending a dihedral angle of 87.35 (6)°. The furyl rings are almost coplanar with the terpyridyl ring systems, making dihedral angles of 8.1 (2) and 3.2 (3)° for the O1- and O2-containing rings, respectively.

Table 1
Selected geometric parameters (Å, °)

Ni1—N5 1.974 (3) Ni1—N3 2.096 (3)
Ni1—N2 1.977 (3) Ni1—N1 2.098 (3)
Ni1—N6 2.093 (3) Ni1—N4 2.099 (3)
       
N5—Ni1—N2 178.36 (10) N2—Ni1—N1 77.77 (11)
N5—Ni1—N6 77.81 (11) N6—Ni1—N1 93.13 (11)
N2—Ni1—N6 102.65 (11) N3—Ni1—N1 155.38 (11)
N5—Ni1—N3 100.71 (11) N5—Ni1—N4 78.10 (11)
N2—Ni1—N3 77.74 (11) N2—Ni1—N4 101.46 (12)
N6—Ni1—N3 89.84 (11) N6—Ni1—N4 155.89 (11)
N5—Ni1—N1 103.80 (10) N3—Ni1—N4 95.46 (11)

3. Supra­molecular features

In the crystal, there are hydro­phobic layers composed of [Ni(ftpy)2]2+ dications and hydro­philic layers composed of water mol­ecules and chloride anions (Fig. 2[link]). In the hydro­phobic layers, shown in Fig. 3[link], [Ni(ftpy)2]2+ dications are linked by two kinds of face-to-face ππ inter­actions with centroid–centroid distances of 3.530 (4) and 3.760 (4) Å between the furyl and outer pyridyl rings, forming one-dimensional (1D) chains. These 1D chains are linked by further ππ inter­actions with centroid distances of 4.367 (4) Å between furyl rings and 4.405 (4) Å between furyl and central pyridyl rings, forming two-dimensional networks. The water mol­ecules and chloride anions form a two-dimensional network parallel to (011) via O—H⋯O and O—H⋯Cl hydrogen bonds (Table 2[link]), as shown in Fig. 4[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Cl1 0.87 2.25 3.113 (4) 169
O1W—H1WB⋯O9Wi 0.87 2.06 2.923 (6) 175
O2W—H2WB⋯O5Wii 0.83 1.99 2.813 (7) 172
O2W—H2WA⋯Cl1 0.84 2.39 3.215 (4) 168
O3W—H3WC⋯O4W 0.86 2.05 2.760 (9) 140
O3W—H3WA⋯O6Wiii 0.88 2.35 3.134 (7) 148
O4W—H4WB⋯Cl2 0.88 2.58 3.107 (5) 119
O4W—H4WA⋯Cl2 0.87 2.56 3.107 (5) 122
O5W—H5WA⋯Cl2 0.87 2.37 3.079 (4) 138
O5W—H5WB⋯O9W 0.89 2.16 2.991 (6) 156
O6W—H6WC⋯O2Wii 0.83 2.11 2.929 (6) 167
O6W—H6WA⋯O7W 0.83 2.18 2.838 (6) 136
O7W—H7WA⋯Cl2 0.87 2.34 3.190 (4) 167
O7W—H7WB⋯O4Wii 0.87 1.93 2.798 (5) 172
O8W—H8WC⋯O3Wii 0.85 2.06 2.856 (8) 155
O8W—H8WD⋯Cl2iv 0.85 2.40 3.204 (6) 157
O9W—H9WA⋯O10Wv 0.86 1.93 2.756 (6) 159
O9W—H9WB⋯O1Wvi 0.86 2.11 2.878 (5) 147
O10W—H10A⋯Cl1vii 0.88 2.27 3.141 (4) 171
O10W—H10B⋯Cl1viii 0.87 2.38 3.225 (4) 165
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) -x+1, -y+1, -z; (vi) x, y+1, z-1; (vii) x, y, z-1; (viii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
View of the hydro­phobic (represented by wireframes) and hydro­philic (represented by spheres) layers in 1.
[Figure 3]
Figure 3
A view of the two-dimensional undulating sheet of hydro­phobic layers, with ππ inter­actions highlighted by dashed lines [purple for 3.533 (5) and 3.761 (4) Å, and green for 4.338 (14) and 4.405 (4) Å].
[Figure 4]
Figure 4
A view of the hybrid water–chloride hydrogen-bonded assemblies in 1, with water mol­ecules and chloride anions shown as coloured balls and hydrogen bonds as dashed lines.

The multicyclic {[(H2O)10Cl2]2−}n fragments in the hydro­philic layers are constructed by means of 11 non-equivalent O—H⋯O hydrogen bonds with O⋯O distances ranging from 2.756 (6) to 3.134 (7) Å and nine O—H⋯Cl hydrogen bonds with O⋯Cl distances ranging from 3.079 (4) to 3.225 (4) Å (Table 2[link], Fig. 4[link]). Both the O⋯O and O⋯Cl distances are comparable with those found in various types of water clusters and water–chloride associates (Safin et al., 2015[Safin, D. A., Szell, P. M. J., Keller, A., Korobkov, I., Bryce, D. L. & Murugesu, M. (2015). New J. Chem. 39, 7147-7152.]; Bhat & Revankar, 2016[Bhat, S. S. & Revankar, V. K. (2016). J. Chem. Crystallogr. 46, 9-14.]; Ris et al., 2016[Ris, D. P., Schneider, G. E., Ertl, C. D., Kohler, E., Müntener, T., Neuburger, M., Constable, E. C. & Housecroft, C. E. (2016). J. Organomet. Chem. 812, 272-279.]). The resulting two-dimensional network can be considered as a set of alternating cyclic fragments with three tetra­nuclear, three penta­nuclear, one hexa­nuclear and two octa­nuclear fragments, as shown in Fig. 5[link]a. Two of these fragments are composed only of water mol­ecules, whereas the other seven rings are water–chloride hybrids with one or two Cl anions. Most of the rings are non-planar, contributing to the formation of an intricate relief geometry of the water–chloride layer. Using the method described by Infantes and co-workers (Infantes & Motherwell, 2002[Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454-461.]; Infantes et al., 2003[Infantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480-486.]), this two-dimensional water–chloride network can be described as having an L4(6)4(6)4(6)5(5)5(6)5(6)6(8)8(8)8(10) pattern.

[Figure 5]
Figure 5
Multicyclic {[(H2O)10Cl2]2−}n fragments with repeating units of two-dimensional water–chloride networks in (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5.

4. Comparison with other terpyridine complexes possessing 10 solvent water mol­ecules

It is inter­esting to make a comparison of the two-dimensional water–chloride networks in 1 and those found in other terpyridine complexes possessing 10 solvent water mol­ecules, viz. [Fe(phtpy)2]Cl2·10H2O (2; refcode: VOBKON; Fernandes et al., 2008[Fernandes, R. R., Kirillov, A. M., da Silva, M. F. C. G., Ma, Z., da Silva, J. A. L., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2008). Cryst. Growth Des. 8, 782-785.]), [Ni(phtpy)2]Cl2·10H2O, (3; refcode: SIXLIU01; Chen et al., 2013[Chen, G.-J., Wang, Z.-G., Kou, Y.-Y., Tian, J.-L. & Yan, S.-P. (2013). J. Inorg. Biochem. 122, 49-56.]), [Ru(phtpy)2]Cl2·10H2O (4; refcode: FAFFID; McMurtrie & Dance, 2010[McMurtrie, J. & Dance, I. (2010). CrystEngComm, 12, 3207-3217.]) and [Ru(pytpy)2]Cl2·10H2O (5; refcode: TUXGUP; Padhi et al., 2010[Padhi, S. K., Sahu, R. & Manivannan, V. (2010). Polyhedron, 29, 709-714.]) [phtpy = 4′-phenyl-2,2′:6′,2′′-terpyridine and pytpy = 4′-(2-pyrid­yl)-2,2′:6′,2′′-terpyridine]. In spite of the differences in the metal ions and terpyridine ligands, the crystal parameters are almost the same for compounds 25. Where a five-membered furyl ring is involved instead of a six-membered phenyl or pyridyl ring, the size of the crystal cell decreases with reduction in the cell volume of about 4.5% from 2200 to 2100 Å3. Considering the O⋯O and O⋯Cl distances within the two-dimensional water–chloride networks, a different number of trinuclear, tetra­nuclear, penta­nuclear, hexa­nuclear and octa­nuclear rings have been determined, giving an L4(6)4(6)4(6)4(6)4(6)5(6)5(6)5(6)6(8)8(12) pattern for 2, an L4(6)4(6)4(6)5(7)5(7)5(8)5(8)6(7)6(9)6(9)8(12) pattern for 3, an L4(6)4(6)4(6)4(6)4(6)4(6)5(6)5(6)5(7)6(7)8(12) pattern for 4 and an L3(6)4(6)5(5)5(6)5(6)6(8)6(8)8(8)8(10) pattern for 5 (Fig. 5[link]be). These results illustrate how a water–chloride assembly could be fine-tuned by adopting diverse ligands and different metal ions. It is potentially useful for future studies of water–water or water–chloride inter­actions for chemists as well as theoreticians.

5. Synthesis and crystallization

4′-Furyl-2,2′:6′,2′′-terpyridine was prepared by a literature method (Wang & Hanan, 2005[Wang, J. & Hanan, G. S. (2005). Synlett, pp. 1251-1254.]). Other reagents and solvents used in reactions were purchased from Aladdin Chemical and used without purification, unless otherwise indicated.

NiCl2·6H2O (0.1 mmol, 0.024g) and ftpy (0.2 mmol, 0.060 g) were dissolved in 10 ml distilled water and 10 ml methanol. The solution was left alone for slow evaporation without disturbance for about one month and reddish brown crystals of (1) suitable for X-ray analysis were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms except those of water mol­ecules were generated geometrically and refined isotropically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms of solvent water mol­ecules were located in difference-Fourier maps, refined with DFIX restraints of O—H distances and finally fixed at those positions using AFIX 3 in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Atoms C36, C37, C38 and O2 were found to be disordered over two sets of sites with a refined occupancy ratio of 0.786 (13):0.214 (13) for C36/C36A, C37/C37A, C38/C38A, and O2/O2A. In order to model the disorder of this furyl ring, various restraints (DFIX, FLAT, ISOR, DELU, EADP) were applied in the refinement.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C19H13N3O)2]Cl2·10H2O
Mr 908.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.351 (7), 11.894 (8), 19.070 (13)
α, β, γ (°) 76.33 (1), 88.582 (12), 67.077 (11)
V3) 2095 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.66
Crystal size (mm) 0.23 × 0.18 × 0.15
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.864, 0.908
No. of measured, independent and observed [I > 2σ(I)] reflections 10779, 7382, 5322
Rint 0.029
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.07
No. of reflections 7382
No. of parameters 546
No. of restraints 75
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.53
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2(Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg & Putz, 2008[Brandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and OLEX2(Dolomanov et al., 2009); molecular graphics: DIAMOND (Brandenburg & Putz, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[4'-(furan-2-yl)-2,2':6',2''-terpyridine]nickel(II) dichloride decahydrate top
Crystal data top
[Ni(C19H13N3O)2]Cl2·10H2OZ = 2
Mr = 908.42F(000) = 948
Triclinic, P1Dx = 1.440 Mg m3
a = 10.351 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.894 (8) ÅCell parameters from 3615 reflections
c = 19.070 (13) Åθ = 2.2–24.0°
α = 76.33 (1)°µ = 0.66 mm1
β = 88.582 (12)°T = 296 K
γ = 67.077 (11)°Block, brown
V = 2095 (2) Å30.23 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5322 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
phi and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 128
Tmin = 0.864, Tmax = 0.908k = 1413
10779 measured reflectionsl = 2219
7382 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.144H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
7382 reflections(Δ/σ)max < 0.001
546 parametersΔρmax = 0.42 e Å3
75 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.97894 (4)0.78241 (4)0.74747 (2)0.03697 (15)
Cl10.30308 (10)0.17463 (10)0.94851 (6)0.0626 (3)
Cl20.28593 (15)0.70315 (14)0.37352 (7)0.0975 (4)
N10.9435 (3)0.6158 (2)0.77056 (14)0.0395 (6)
N21.0808 (3)0.6936 (2)0.84370 (14)0.0371 (6)
N31.0524 (3)0.9124 (2)0.76977 (14)0.0402 (6)
N41.1361 (3)0.7137 (2)0.67860 (15)0.0404 (6)
N50.8802 (3)0.8743 (2)0.65098 (14)0.0363 (6)
N60.7778 (3)0.8893 (3)0.77339 (14)0.0399 (6)
O1W0.0399 (3)0.1312 (3)1.0094 (2)0.1017 (12)
H1WA0.10690.14790.98650.153*
H1WB0.01840.12830.97850.153*
O11.3786 (3)0.5497 (3)1.07455 (16)0.0771 (8)
O2W0.3405 (4)0.3554 (3)0.8020 (2)0.1191 (14)
H2WB0.42560.33900.79970.179*
H2WA0.32800.31790.84310.179*
O20.7323 (4)1.0325 (5)0.38766 (18)0.0652 (12)0.786 (13)
O2A0.5318 (13)1.1546 (17)0.4459 (8)0.0652 (12)0.214 (13)
O3W0.0344 (6)0.4187 (5)0.4364 (3)0.161 (2)
H3WC0.12420.38490.43770.241*
H3WA0.00040.47920.39670.241*
O4W0.2936 (5)0.4343 (4)0.4358 (2)0.1321 (15)
H4WB0.23660.50980.44010.198*
H4WA0.35340.46580.41680.198*
O5W0.3714 (4)0.7092 (4)0.21731 (19)0.1075 (12)
H5WA0.32290.74840.24840.161*
H5WB0.30790.77510.18660.161*
O6W0.8002 (4)0.6442 (4)0.3295 (2)0.1187 (14)
H6WC0.75940.65590.28980.178*
H6WA0.73390.69820.34420.178*
O7W0.5809 (3)0.6957 (3)0.42459 (18)0.0892 (10)
H7WA0.50690.68420.41370.134*
H7WB0.61690.65000.46800.134*
O8W0.9848 (5)0.7051 (5)0.4183 (3)0.165 (2)
H8WC0.97410.69100.46340.247*
H8WD1.05410.72660.40860.247*
O9W0.1697 (4)0.8720 (3)0.08918 (18)0.0972 (11)
H9WA0.23280.85960.05830.146*
H9WB0.13810.95270.08240.146*
O10W0.6127 (3)0.1247 (3)0.00361 (17)0.0790 (9)
H10A0.52440.14740.01820.119*
H10B0.61770.04790.01110.119*
C11.4491 (5)0.4603 (6)1.1365 (3)0.0893 (16)
H1A1.49700.47321.17240.107*
C21.4381 (5)0.3551 (6)1.1366 (2)0.0892 (16)
H2A1.47850.28001.17190.107*
C31.3555 (4)0.3735 (4)1.0750 (2)0.0629 (10)
H3A1.32840.31491.06180.075*
C41.3234 (4)0.4928 (4)1.03888 (19)0.0502 (8)
C51.2401 (3)0.5626 (3)0.97208 (18)0.0439 (8)
C61.2338 (3)0.6820 (3)0.93761 (18)0.0450 (8)
H61.28420.71840.95750.054*
C71.1634 (3)0.5118 (3)0.93943 (18)0.0435 (8)
H71.16570.43220.96100.052*
C81.0858 (3)0.5796 (3)0.87613 (17)0.0400 (7)
C91.1521 (3)0.7449 (3)0.87409 (17)0.0386 (7)
C101.1305 (3)0.8734 (3)0.83215 (18)0.0405 (8)
C111.1802 (4)0.9497 (4)0.8570 (2)0.0519 (9)
H111.23590.92010.90030.062*
C121.1457 (4)1.0711 (4)0.8163 (2)0.0591 (10)
H121.17721.12500.83190.071*
C131.0652 (4)1.1115 (4)0.7531 (2)0.0574 (10)
H131.04101.19320.72510.069*
C141.0200 (4)1.0298 (3)0.7311 (2)0.0506 (9)
H140.96491.05770.68770.061*
C150.9995 (3)0.5383 (3)0.83507 (18)0.0384 (7)
C160.9774 (4)0.4297 (3)0.8607 (2)0.0485 (9)
H161.01660.37740.90600.058*
C170.8971 (4)0.3996 (4)0.8187 (2)0.0568 (10)
H170.87940.32740.83560.068*
C180.8430 (4)0.4757 (4)0.7518 (2)0.0557 (10)
H180.79000.45500.72230.067*
C190.8678 (4)0.5830 (3)0.7287 (2)0.0491 (9)
H190.83150.63470.68280.059*
C201.2646 (4)0.6268 (3)0.6978 (2)0.0507 (9)
H201.29240.59210.74680.061*
C211.3586 (4)0.5861 (4)0.6483 (2)0.0624 (11)
H211.44830.52460.66350.075*
C221.3193 (4)0.6362 (4)0.5779 (2)0.0605 (10)
H221.38210.61040.54350.073*
C231.1853 (4)0.7262 (4)0.5561 (2)0.0515 (9)
H231.15650.76150.50730.062*
C241.0956 (3)0.7623 (3)0.60840 (18)0.0389 (7)
C250.9482 (3)0.8536 (3)0.59157 (17)0.0383 (7)
C260.8800 (4)0.9120 (3)0.52461 (18)0.0438 (8)
H260.92710.89580.48360.053*
C270.7407 (4)0.9953 (3)0.51755 (18)0.0421 (8)
C280.6734 (4)1.0179 (3)0.57974 (18)0.0423 (8)
H280.58031.07460.57670.051*
C290.7472 (3)0.9549 (3)0.64582 (17)0.0367 (7)
C300.6892 (3)0.9652 (3)0.71648 (17)0.0378 (7)
C310.5555 (4)1.0467 (3)0.7236 (2)0.0488 (8)
H310.49601.09970.68310.059*
C320.5115 (4)1.0483 (4)0.7922 (2)0.0551 (10)
H320.42111.10210.79870.066*
C330.6021 (4)0.9698 (4)0.8509 (2)0.0549 (10)
H330.57430.96940.89770.066*
C340.7340 (4)0.8921 (3)0.83933 (19)0.0499 (9)
H340.79560.83910.87910.060*
C350.6651 (4)1.0581 (3)0.44799 (17)0.0473 (8)
C360.5368 (6)1.1455 (5)0.4263 (4)0.0530 (14)0.786 (13)
H360.46931.18070.45660.064*0.786 (13)
C36A0.695 (2)1.046 (2)0.3801 (7)0.0530 (14)0.214 (13)
H36A0.77790.98940.36720.064*0.214 (13)
C370.5193 (7)1.1758 (6)0.3518 (4)0.0582 (16)0.786 (13)
H370.43901.23380.32310.070*0.786 (13)
C37A0.585 (3)1.130 (2)0.3344 (7)0.0582 (16)0.214 (13)
H37A0.57931.13930.28460.070*0.214 (13)
C380.6383 (8)1.1068 (6)0.3293 (2)0.0593 (15)0.786 (13)
H380.65611.10810.28110.071*0.786 (13)
C38A0.4838 (19)1.198 (2)0.3714 (10)0.0593 (15)0.214 (13)
H38A0.39801.26200.35160.071*0.214 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0399 (3)0.0386 (3)0.0332 (2)0.01552 (19)0.00434 (16)0.01032 (18)
Cl10.0538 (6)0.0650 (6)0.0640 (6)0.0216 (5)0.0007 (4)0.0095 (5)
Cl20.1043 (10)0.1146 (11)0.0714 (9)0.0447 (9)0.0106 (7)0.0168 (8)
N10.0398 (15)0.0438 (16)0.0373 (16)0.0172 (13)0.0044 (12)0.0131 (13)
N20.0400 (15)0.0369 (15)0.0358 (15)0.0158 (12)0.0047 (11)0.0110 (12)
N30.0430 (16)0.0411 (16)0.0405 (16)0.0189 (13)0.0082 (12)0.0138 (13)
N40.0399 (16)0.0407 (15)0.0411 (17)0.0147 (13)0.0069 (12)0.0136 (13)
N50.0383 (15)0.0357 (14)0.0361 (15)0.0151 (12)0.0085 (11)0.0106 (12)
N60.0434 (15)0.0457 (16)0.0337 (15)0.0192 (13)0.0088 (12)0.0132 (13)
O1W0.075 (2)0.106 (3)0.121 (3)0.032 (2)0.034 (2)0.033 (2)
O10.080 (2)0.091 (2)0.0604 (19)0.0284 (18)0.0039 (15)0.0255 (17)
O2W0.153 (4)0.072 (2)0.096 (3)0.015 (2)0.047 (3)0.008 (2)
O20.054 (2)0.083 (3)0.0378 (19)0.010 (2)0.0021 (15)0.0050 (18)
O2A0.054 (2)0.083 (3)0.0378 (19)0.010 (2)0.0021 (15)0.0050 (18)
O3W0.202 (5)0.220 (6)0.127 (4)0.143 (5)0.047 (4)0.068 (4)
O4W0.120 (3)0.150 (4)0.113 (4)0.051 (3)0.009 (3)0.011 (3)
O5W0.149 (4)0.128 (3)0.073 (2)0.083 (3)0.012 (2)0.025 (2)
O6W0.114 (3)0.157 (4)0.141 (4)0.090 (3)0.056 (3)0.079 (3)
O7W0.085 (2)0.081 (2)0.084 (2)0.0156 (18)0.0003 (17)0.0184 (18)
O8W0.163 (5)0.214 (6)0.121 (4)0.081 (4)0.011 (3)0.034 (4)
O9W0.097 (2)0.104 (3)0.092 (3)0.049 (2)0.031 (2)0.015 (2)
O10W0.0620 (18)0.094 (2)0.085 (2)0.0325 (17)0.0038 (15)0.0244 (18)
C10.064 (3)0.129 (5)0.055 (3)0.010 (3)0.018 (2)0.034 (3)
C20.089 (4)0.093 (4)0.042 (2)0.003 (3)0.0113 (18)0.003 (2)
C30.075 (3)0.0587 (19)0.050 (2)0.022 (2)0.0019 (17)0.0116 (17)
C40.047 (2)0.0585 (18)0.0374 (19)0.0128 (18)0.0000 (14)0.0124 (14)
C50.0400 (19)0.048 (2)0.0362 (19)0.0093 (16)0.0054 (14)0.0112 (16)
C60.0435 (19)0.051 (2)0.044 (2)0.0188 (17)0.0034 (15)0.0183 (17)
C70.050 (2)0.0385 (19)0.0375 (19)0.0151 (16)0.0043 (15)0.0055 (15)
C80.0401 (18)0.0429 (19)0.0377 (19)0.0152 (16)0.0080 (14)0.0135 (16)
C90.0388 (18)0.0428 (19)0.0337 (18)0.0132 (15)0.0066 (13)0.0141 (15)
C100.0414 (18)0.0447 (19)0.042 (2)0.0201 (16)0.0089 (14)0.0181 (16)
C110.055 (2)0.058 (2)0.052 (2)0.0278 (19)0.0027 (17)0.0200 (19)
C120.064 (3)0.056 (2)0.073 (3)0.034 (2)0.014 (2)0.028 (2)
C130.071 (3)0.043 (2)0.063 (3)0.027 (2)0.007 (2)0.0150 (19)
C140.055 (2)0.045 (2)0.048 (2)0.0179 (18)0.0037 (16)0.0072 (17)
C150.0359 (17)0.0386 (18)0.0415 (19)0.0134 (15)0.0070 (14)0.0139 (15)
C160.048 (2)0.041 (2)0.054 (2)0.0163 (17)0.0054 (16)0.0071 (17)
C170.059 (2)0.046 (2)0.073 (3)0.0288 (19)0.007 (2)0.016 (2)
C180.054 (2)0.055 (2)0.068 (3)0.029 (2)0.0026 (19)0.022 (2)
C190.051 (2)0.053 (2)0.047 (2)0.0222 (18)0.0010 (16)0.0158 (18)
C200.044 (2)0.049 (2)0.056 (2)0.0134 (18)0.0049 (17)0.0156 (18)
C210.038 (2)0.064 (3)0.077 (3)0.0086 (19)0.0091 (19)0.023 (2)
C220.050 (2)0.067 (3)0.066 (3)0.018 (2)0.024 (2)0.030 (2)
C230.050 (2)0.059 (2)0.047 (2)0.0196 (19)0.0147 (16)0.0205 (18)
C240.0402 (18)0.0378 (18)0.043 (2)0.0171 (15)0.0103 (14)0.0145 (15)
C250.0433 (19)0.0414 (18)0.0358 (18)0.0197 (16)0.0114 (14)0.0154 (15)
C260.051 (2)0.049 (2)0.0360 (19)0.0231 (18)0.0153 (15)0.0148 (16)
C270.050 (2)0.0430 (19)0.0353 (19)0.0212 (17)0.0044 (14)0.0087 (15)
C280.0429 (19)0.0409 (19)0.040 (2)0.0133 (16)0.0039 (14)0.0102 (15)
C290.0415 (19)0.0349 (17)0.0358 (18)0.0157 (15)0.0086 (14)0.0121 (14)
C300.0422 (19)0.0366 (18)0.0377 (19)0.0169 (15)0.0076 (14)0.0128 (15)
C310.047 (2)0.047 (2)0.048 (2)0.0144 (17)0.0088 (16)0.0121 (17)
C320.051 (2)0.059 (2)0.060 (3)0.0197 (19)0.0225 (19)0.027 (2)
C330.063 (2)0.063 (2)0.044 (2)0.025 (2)0.0233 (18)0.023 (2)
C340.061 (2)0.056 (2)0.0343 (19)0.0238 (19)0.0103 (16)0.0136 (17)
C350.058 (2)0.057 (2)0.0349 (19)0.029 (2)0.0046 (16)0.0142 (17)
C360.057 (3)0.050 (3)0.049 (3)0.016 (2)0.016 (3)0.019 (3)
C36A0.057 (3)0.050 (3)0.049 (3)0.016 (2)0.016 (3)0.019 (3)
C370.045 (3)0.057 (3)0.060 (3)0.010 (3)0.003 (3)0.010 (3)
C37A0.045 (3)0.057 (3)0.060 (3)0.010 (3)0.003 (3)0.010 (3)
C380.056 (3)0.074 (4)0.033 (2)0.014 (3)0.004 (2)0.005 (2)
C38A0.056 (3)0.074 (4)0.033 (2)0.014 (3)0.004 (2)0.005 (2)
Geometric parameters (Å, º) top
Ni1—N51.974 (3)C7—H70.9300
Ni1—N21.977 (3)C8—C151.487 (4)
Ni1—N62.093 (3)C9—C101.480 (4)
Ni1—N32.096 (3)C10—C111.376 (5)
Ni1—N12.098 (3)C11—C121.378 (5)
Ni1—N42.099 (3)C11—H110.9300
N1—C151.335 (4)C12—C131.356 (6)
N1—C191.350 (4)C12—H120.9300
N2—C81.331 (4)C13—C141.377 (5)
N2—C91.339 (4)C13—H130.9300
N3—C141.329 (4)C14—H140.9300
N3—C101.333 (4)C15—C161.373 (5)
N4—C201.322 (4)C16—C171.364 (5)
N4—C241.332 (4)C16—H160.9300
N5—C291.326 (4)C17—C181.361 (5)
N5—C251.340 (4)C17—H170.9300
N6—C341.329 (4)C18—C191.368 (5)
N6—C301.332 (4)C18—H180.9300
O1W—H1WA0.8732C19—H190.9300
O1W—H1WB0.8701C20—C211.370 (5)
O1—C41.336 (4)C20—H200.9300
O1—C11.379 (6)C21—C221.336 (6)
O2W—H2WB0.8275C21—H210.9300
O2W—H2WA0.8393C22—C231.379 (5)
O2—C351.364 (4)C22—H220.9300
O2—C381.373 (5)C23—C241.373 (4)
O2A—C351.404 (9)C23—H230.9300
O2A—C38A1.421 (9)C24—C251.476 (5)
O3W—H3WC0.8556C25—C261.362 (5)
O3W—H3WA0.8797C26—C271.383 (5)
O4W—H4WB0.8839C26—H260.9300
O4W—H4WA0.8729C27—C281.389 (4)
O5W—H5WA0.8692C27—C351.435 (5)
O5W—H5WB0.8890C28—C291.374 (5)
O6W—H6WC0.8315C28—H280.9300
O6W—H6WA0.8339C29—C301.474 (4)
O7W—H7WA0.8667C30—C311.372 (5)
O7W—H7WB0.8744C31—C321.375 (5)
O8W—H8WC0.8502C31—H310.9300
O8W—H8WD0.8528C32—C331.372 (5)
O9W—H9WA0.8616C32—H320.9300
O9W—H9WB0.8629C33—C341.365 (5)
O10W—H10A0.8785C33—H330.9300
O10W—H10B0.8705C34—H340.9300
C1—C21.299 (7)C35—C361.328 (6)
C1—H1A0.9300C35—C36A1.352 (9)
C2—C31.394 (6)C36—C371.378 (6)
C2—H2A0.9300C36—H360.9300
C3—C41.334 (5)C36A—C37A1.344 (10)
C3—H3A0.9300C36A—H36A0.9300
C4—C51.432 (5)C37—C381.315 (6)
C5—C61.394 (5)C37—H370.9300
C5—C71.400 (5)C37A—C38A1.351 (9)
C6—C91.368 (5)C37A—H37A0.9300
C6—H60.9300C38—H380.9300
C7—C81.355 (5)C38A—H38A0.9300
N5—Ni1—N2178.36 (10)N3—C14—H14118.9
N5—Ni1—N677.81 (11)C13—C14—H14118.9
N2—Ni1—N6102.65 (11)N1—C15—C16121.9 (3)
N5—Ni1—N3100.71 (11)N1—C15—C8114.7 (3)
N2—Ni1—N377.74 (11)C16—C15—C8123.5 (3)
N6—Ni1—N389.84 (11)C17—C16—C15119.0 (4)
N5—Ni1—N1103.80 (10)C17—C16—H16120.5
N2—Ni1—N177.77 (11)C15—C16—H16120.5
N6—Ni1—N193.13 (11)C18—C17—C16119.8 (3)
N3—Ni1—N1155.38 (11)C18—C17—H17120.1
N5—Ni1—N478.10 (11)C16—C17—H17120.1
N2—Ni1—N4101.46 (12)C17—C18—C19119.1 (3)
N6—Ni1—N4155.89 (11)C17—C18—H18120.5
N3—Ni1—N495.46 (11)C19—C18—H18120.5
N1—Ni1—N491.74 (10)N1—C19—C18121.7 (4)
C15—N1—C19118.5 (3)N1—C19—H19119.1
C15—N1—Ni1114.5 (2)C18—C19—H19119.1
C19—N1—Ni1126.9 (2)N4—C20—C21122.5 (4)
C8—N2—C9120.0 (3)N4—C20—H20118.8
C8—N2—Ni1120.1 (2)C21—C20—H20118.8
C9—N2—Ni1119.7 (2)C22—C21—C20118.9 (4)
C14—N3—C10118.6 (3)C22—C21—H21120.6
C14—N3—Ni1126.4 (2)C20—C21—H21120.6
C10—N3—Ni1114.8 (2)C21—C22—C23119.9 (4)
C20—N4—C24118.8 (3)C21—C22—H22120.0
C20—N4—Ni1127.0 (3)C23—C22—H22120.0
C24—N4—Ni1114.1 (2)C24—C23—C22118.4 (4)
C29—N5—C25120.9 (3)C24—C23—H23120.8
C29—N5—Ni1119.5 (2)C22—C23—H23120.8
C25—N5—Ni1119.6 (2)N4—C24—C23121.5 (3)
C34—N6—C30118.6 (3)N4—C24—C25115.4 (3)
C34—N6—Ni1126.8 (2)C23—C24—C25123.1 (3)
C30—N6—Ni1114.5 (2)N5—C25—C26120.4 (3)
H1WA—O1W—H1WB109.3N5—C25—C24112.8 (3)
C4—O1—C1105.9 (4)C26—C25—C24126.8 (3)
H2WB—O2W—H2WA108.4C25—C26—C27120.0 (3)
C35—O2—C38106.7 (4)C25—C26—H26120.0
C35—O2A—C38A104.3 (8)C27—C26—H26120.0
H3WC—O3W—H3WA110.8C26—C27—C28118.7 (3)
H4WB—O4W—H4WA89.3C26—C27—C35121.7 (3)
H5WA—O5W—H5WB81.1C28—C27—C35119.7 (3)
H6WC—O6W—H6WA96.0C29—C28—C27118.6 (3)
H7WA—O7W—H7WB110.0C29—C28—H28120.7
H8WC—O8W—H8WD111.3C27—C28—H28120.7
H9WA—O9W—H9WB101.0N5—C29—C28121.4 (3)
H10A—O10W—H10B87.7N5—C29—C30113.5 (3)
C2—C1—O1109.2 (4)C28—C29—C30125.1 (3)
C2—C1—H1A125.4N6—C30—C31122.3 (3)
O1—C1—H1A125.4N6—C30—C29114.5 (3)
C1—C2—C3108.6 (5)C31—C30—C29123.1 (3)
C1—C2—H2A125.7C30—C31—C32118.4 (3)
C3—C2—H2A125.7C30—C31—H31120.8
C4—C3—C2105.5 (4)C32—C31—H31120.8
C4—C3—H3A127.3C33—C32—C31119.4 (3)
C2—C3—H3A127.3C33—C32—H32120.3
C3—C4—O1110.8 (3)C31—C32—H32120.3
C3—C4—C5129.7 (4)C34—C33—C32118.7 (3)
O1—C4—C5119.5 (3)C34—C33—H33120.7
C6—C5—C7118.2 (3)C32—C33—H33120.7
C6—C5—C4121.2 (3)N6—C34—C33122.6 (3)
C7—C5—C4120.6 (3)N6—C34—H34118.7
C9—C6—C5118.8 (3)C33—C34—H34118.7
C9—C6—H6120.6C36—C35—O2107.6 (4)
C5—C6—H6120.6C36A—C35—O2A109.5 (8)
C8—C7—C5119.4 (3)C36—C35—C27133.6 (4)
C8—C7—H7120.3C36A—C35—C27133.4 (8)
C5—C7—H7120.3O2—C35—C27118.8 (3)
N2—C8—C7121.8 (3)O2A—C35—C27117.1 (7)
N2—C8—C15112.6 (3)C35—C36—C37109.4 (4)
C7—C8—C15125.6 (3)C35—C36—H36125.3
N2—C9—C6121.7 (3)C37—C36—H36125.3
N2—C9—C10112.7 (3)C37A—C36A—C35108.2 (9)
C6—C9—C10125.5 (3)C37A—C36A—H36A125.9
N3—C10—C11122.2 (3)C35—C36A—H36A125.9
N3—C10—C9114.7 (3)C38—C37—C36106.7 (4)
C11—C10—C9122.9 (3)C38—C37—H37126.7
C10—C11—C12118.4 (4)C36—C37—H37126.7
C10—C11—H11120.8C36A—C37A—C38A110.1 (10)
C12—C11—H11120.8C36A—C37A—H37A124.9
C13—C12—C11119.5 (3)C38A—C37A—H37A124.9
C13—C12—H12120.3C37—C38—O2109.6 (4)
C11—C12—H12120.3C37—C38—H38125.2
C12—C13—C14119.1 (4)O2—C38—H38125.2
C12—C13—H13120.4C37A—C38A—O2A107.8 (9)
C14—C13—H13120.4C37A—C38A—H38A126.1
N3—C14—C13122.1 (4)O2A—C38A—H38A126.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl10.872.253.113 (4)169
O1W—H1WB···O9Wi0.872.062.923 (6)175
O2W—H2WB···O5Wii0.831.992.813 (7)172
O2W—H2WA···Cl10.842.393.215 (4)168
O3W—H3WC···O4W0.862.052.760 (9)140
O3W—H3WA···O6Wiii0.882.353.134 (7)148
O4W—H4WB···Cl20.882.583.107 (5)119
O4W—H4WA···Cl20.872.563.107 (5)122
O5W—H5WA···Cl20.872.373.079 (4)138
O5W—H5WB···O9W0.892.162.991 (6)156
O6W—H6WC···O2Wii0.832.112.929 (6)167
O6W—H6WA···O7W0.832.182.838 (6)136
O7W—H7WA···Cl20.872.343.190 (4)167
O7W—H7WB···O4Wii0.871.932.798 (5)172
O8W—H8WC···O3Wii0.852.062.856 (8)155
O8W—H8WD···Cl2iv0.852.403.204 (6)157
O9W—H9WA···O10Wv0.861.932.756 (6)159
O9W—H9WB···O1Wvi0.862.112.878 (5)147
O10W—H10A···Cl1vii0.882.273.141 (4)171
O10W—H10B···Cl1viii0.872.383.225 (4)165
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z1; (vii) x, y, z1; (viii) x+1, y, z+1.
 

Acknowledgements

Financial support by the Key Discipline Project of Hunan Province, the Open Fund of the Key Laboratory of Functional Organometallic Materials of Hunan Province College (GN14K02), the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and the Scientific Research Fund of Hunan Provincial Education Department (16B037) and Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education (CHCL16002) are gratefully acknowledged.

References

First citationBhat, S. S. & Revankar, V. K. (2016). J. Chem. Crystallogr. 46, 9–14.  CSD CrossRef CAS Google Scholar
First citationBoyer, J. L., Polyansky, D. E., Szalda, D. J., Zong, R., Thummel, R. P. & Fujita, E. (2011). Angew. Chem. Int. Ed. 50, 12600–12604.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, G.-J., Wang, Z.-G., Kou, Y.-Y., Tian, J.-L. & Yan, S.-P. (2013). J. Inorg. Biochem. 122, 49–56.  CSD CrossRef CAS PubMed Google Scholar
First citationChowdhury, A. D., Das, A. K. I., Mobin, S. M. & Lahiri, G. K. (2011). Inorg. Chem. 50, 1775–1785.  CSD CrossRef PubMed Google Scholar
First citationConstable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuan, L., Manbeck, G. F., Kowalczyk, M., Szalda, D. J., Muckerman, J. T., Himeda, Y. & Fujita, E. (2016). Inorg. Chem. 55, 4582–4594.  CSD CrossRef CAS PubMed Google Scholar
First citationDutta, R., Akhuli, B. & Ghosh, P. (2015). Dalton Trans. 44, 15075–15078.  CSD CrossRef CAS PubMed Google Scholar
First citationFernandes, R. R., Kirillov, A. M., da Silva, M. F. C. G., Ma, Z., da Silva, J. A. L., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2008). Cryst. Growth Des. 8, 782–785.  CSD CrossRef CAS Google Scholar
First citationFiggis, B., Kucharski, E. & White, A. (1983). Aust. J. Chem. 36, 1563–1571.  CSD CrossRef CAS Google Scholar
First citationFu, W.-W., Kuang, D.-Z., Zhang, F.-X., Liu, Y., Li, W. & Kuang, Y.-F. (2013). Chin. J. Inorg. Chem. 29, 654–658.  CAS Google Scholar
First citationGanguly, S. & Mondal, R. (2015). Cryst. Growth Des. 15, 2211–2222.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, L.-L., Hu, T.-P., Chen, J.-S., Li, Z.-H., Wang, X.-P., Zhao, Y.-Q., Li, X.-Y. & Sun, D. (2014). Dalton Trans. 43, 8774–8780.  CSD CrossRef CAS PubMed Google Scholar
First citationHolst, M. van, Le Pevelen, D. & Aldrich-Wright, J. (2008). Eur. J. Inorg. Chem. pp. 4608–4615.  Google Scholar
First citationHundal, G., Hundal, M. S., Hwang, Y. K. & Chang, J. S. (2014). Cryst. Growth Des. 14, 172–176.  CSD CrossRef CAS Google Scholar
First citationIndumathy, R., Kanthimathi, M., Weyhermuller, T. & Nair, B. U. (2008). Polyhedron, 27, 3443–3450.  CSD CrossRef CAS Google Scholar
First citationInfantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480–486.  Web of Science CSD CrossRef CAS Google Scholar
First citationInfantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461.  Web of Science CSD CrossRef CAS Google Scholar
First citationInumaru, K., Kikudome, T., Fukuoka, H. & Yamanaka, S. (2008). J. Am. Chem. Soc. 130, 10038–10039.  CSD CrossRef PubMed CAS Google Scholar
First citationJitsukawa, K., Hata, T., Yamamoto, T., Kano, K., Masuda, H. & Einaga, H. (1994). Chem. Lett. 23, 1169–1172.  CSD CrossRef Google Scholar
First citationKepert, C., Lu, W., Skelton, B. & White, A. (1994). Aust. J. Chem. 47, 365–384.  CSD CrossRef CAS Google Scholar
First citationKepert, C. J., Semenova, L. I., Wei-Min, L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 481–496.  CSD CrossRef CAS Google Scholar
First citationKou, Y.-Y., Gu, W., Liu, H., Ma, X.-F., Li, D.-D. & Yan, S.-P. (2008). Acta Sci. Nat. Univ. Nankaiensis, 41, 19–25.  CAS Google Scholar
First citationKumar, R., Pandey, A. K., Sharma, M. K., Panicker, L. V., Sodaye, S., Suresh, G., Ramagiri, S. V., Bellare, J. R. & Goswami, A. (2011). J. Phys. Chem. B, 115, 5856–5867.  CrossRef CAS PubMed Google Scholar
First citationLakshminarayanan, P. S., Suresh, E. & Ghosh, P. (2006). Angew. Chem. Int. Ed. 45, 3807–3811.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Jiang, L., Feng, X.-L. & Lu, T.-B. (2008). Cryst. Growth Des. 8, 3689–3694.  CSD CrossRef CAS Google Scholar
First citationLogacheva, N. M., Baulin, V. E., Tsivadze, A. Y., Pyatova, E. N., Ivanova, I. S., Velikodny, Y. A. & Chernyshev, V. V. (2009). Dalton Trans. pp. 2482–2489.  Web of Science CSD CrossRef Google Scholar
First citationMahendiran, D., Kumar, R. S., Viswanathan, V., Velmurugan, D. & Rahiman, A. K. (2016). Dalton Trans. 45, 7794–7814.  CSD CrossRef CAS PubMed Google Scholar
First citationMcMurtrie, J. & Dance, I. (2010). CrystEngComm, 12, 3207–3217.  CSD CrossRef CAS Google Scholar
First citationPadhi, S. K., Sahu, R. & Manivannan, V. (2010). Polyhedron, 29, 709–714.  CSD CrossRef CAS Google Scholar
First citationPati, A., Athilakshmi, J., Ramkumar, V. & Chand, D. K. (2014). CrystEngComm, 16, 6827–6830.  CSD CrossRef CAS Google Scholar
First citationPruchnik, F. P., Robert, F., Jeannin, Y. & Jeannin, S. (1996). Inorg. Chem. 35, 4261–4263.  CSD CrossRef PubMed CAS Google Scholar
First citationRis, D. P., Schneider, G. E., Ertl, C. D., Kohler, E., Müntener, T., Neuburger, M., Constable, E. C. & Housecroft, C. E. (2016). J. Organomet. Chem. 812, 272–279.  CSD CrossRef CAS Google Scholar
First citationSafin, D. A., Szell, P. M. J., Keller, A., Korobkov, I., Bryce, D. L. & Murugesu, M. (2015). New J. Chem. 39, 7147–7152.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J. & Hanan, G. S. (2005). Synlett, pp. 1251–1254.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds