organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-[(thio­phene-2,5-di­yl)bis­­(methanylyl­­idene)]di-p-toluidine

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@mail.ccsu.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 11 April 2015; accepted 29 April 2015; online 13 May 2015)

The title compound, C20H18N2S, was synthesized by the condensation reaction between p-tolu­idine and thio­phene-2,5-dicarboxaldehye in refluxing toluene with p-toluene­sulfonic acid added as catalyst. The mol­ecule lies on a twofold rotation axis and adopts an E orientation with respect to the azomethine bonds. The dihedral angle between the unqiue benzene ring and the least-squares plane [maximum deviation = 0.0145 (14) Å] containing the azomethine and thio­phene groups is 32.31 (6)°.

1. Related literature

For the synthesis of the title compound, see: Vaysse & Pastour (1964[Vaysse, M. & Pastour, P. (1964). Compt. Rend. 256, 2657-2659.]). For the syntheses and crystal structures of mol­ecules related to the title compound, see: Bernès et al. (2013[Bernès, S., Hernández-Téllez, G., Sharma, M., Portillo-Moreno, O. & Gutiérrez, R. (2013). Acta Cryst. E69, o1428.]); Mendoza et al. (2014[Mendoza, A., Bernès, S., Hernández-Téllez, G., Portillo-Moreno, O. & Gutiérrez, R. (2014). Acta Cryst. E70, o345.]). For applications of symmetrical diazo­methines, see: Suganya et al. (2014[Suganya, S., Velmathi, S. & MubarakAli, D. (2014). Dyes Pigments, 104, 116-122.]); Skene & Dufresne (2006[Skene, W. G. & Dufresne, S. (2006). Acta Cryst. E62, o1116-o1117.]). For related structures, see: Bolduc et al. (2013[Bolduc, A., Dufresne, S. & Skene, W. G. (2013). Acta Cryst. C69, 1196-1199.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H18N2S

  • Mr = 318.42

  • Monoclinic, C 2/c

  • a = 37.166 (2) Å

  • b = 6.0292 (2) Å

  • c = 7.5814 (4) Å

  • β = 93.452 (7)°

  • V = 1695.78 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.32 × 0.24 × 0.07 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abington, Oxfordshire, England.]) Tmin = 0.713, Tmax = 1.000

  • 9577 measured reflections

  • 2861 independent reflections

  • 2153 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.145

  • S = 1.03

  • 2861 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abington, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abington, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Comment top

Schiff base condensation reactions between between aldehydes and amines are commonplace in the chemical literature due to the ease of synthesis, isolation, and purification. The title compound was first synthesized by Vaysse & Pastour in 1964. Recent structural studies of symmetrical diazomethines have appeared in this journal and others due to interests in solvent-free reactions (Bernès, et al. 2013; Mendoza, et al. 2014), in cation sensors (Suganya, et al. 2014) and in photo-active materials (Skene & Dufresne, 2006).

The molecular structure of the title compound is shown in Fig. 1. The molecule lies on a twofold rotation axis thereby having exact C2 molecular symmetry. The molecule adopts an E orientation with respect to the azomethine bonds. The dihedral angle between the benzene ring (C4–C9) and the least-squares plane (with maximum deviaton 0.0145 (14)Å for C3) containing the azomethine and thiophene groups (S1/C1/C2/C1iC2i/N1/C3; symmetry code: (i) -x+2, y, -z+3/2) is 32.31 (6)°. The crystal structures of some related symmetrical azomethine compounds appear in the literature (Bolduc et al., 2013).

Related literature top

For the synthesis of the title compound, see: Vaysse & Pastour (1964). For the syntheses and crystal structures of molecules related to the title compound, see: Bernès et al. (2013); Mendoza et al. (2014). For applications of symmetrical diazomethines, see: Suganya et al. (2014); Skene & Dufresne (2006). For related structures, see: Bolduc et al. (2013).

Experimental top

To a 100 ml round-bottomed flask equipped with a Dean–Stark trap and a reflux condenser were added p-toluidine (1.77 g, 16.5 mmol), 2,5-thiophenecarboxaldehye (0.7602 g, 5.4 mmol), p-toluenesulfonic acid (0.0010 g, 0.54 mmol) and toluene (50 ml) in a method similar to Suganya, et al., 2014). The resulting mixture was refluxed for 24 h and the yellow solution was concentrated open to the air, producing a yellow solid. The synthesis of the title compound was also accomplished using solvent-free direct grinding method (Bernès, et al. 2013; Mendoza, et al. 2014). The solid was purified by recrystallization in an equal volume mix of toluene and methanol. Crystals were grown from a p-xylene solution.

Refinement top

Hydrogen atoms on sp2 atoms were included in calculated positions with a C—H distance of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Hydrogen atoms on sp3 atoms were included in calculated positions with a C—H distance of 0.98 Å and were included in the refinement in riding motion approximation with Uiso = 1.5Ueq of the carrier atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. A view of the title compound (Farrugia, 2012). Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x + 2, y, -z + 3/2].
N,N'-[(Thiophene-2,5-diyl)bis(methanylylidene)]di-p-toluidine top
Crystal data top
C20H18N2SDx = 1.247 Mg m3
Mr = 318.42Melting point: 508 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 37.166 (2) ÅCell parameters from 5038 reflections
b = 6.0292 (2) Åθ = 4.3–32.6°
c = 7.5814 (4) ŵ = 0.19 mm1
β = 93.452 (7)°T = 298 K
V = 1695.78 (15) Å3Plate, yellow
Z = 40.32 × 0.24 × 0.07 mm
F(000) = 672
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2861 independent reflections
Radiation source: Enhance (Mo) X-ray Source2153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.1790 pixels mm-1θmax = 32.6°, θmin = 4.3°
ω scansh = 5544
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 89
Tmin = 0.713, Tmax = 1.000l = 1010
9577 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.2248P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2861 reflectionsΔρmax = 0.27 e Å3
106 parametersΔρmin = 0.15 e Å3
Crystal data top
C20H18N2SV = 1695.78 (15) Å3
Mr = 318.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 37.166 (2) ŵ = 0.19 mm1
b = 6.0292 (2) ÅT = 298 K
c = 7.5814 (4) Å0.32 × 0.24 × 0.07 mm
β = 93.452 (7)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2861 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2153 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 1.000Rint = 0.044
9577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
2861 reflectionsΔρmin = 0.15 e Å3
106 parameters
Special details top

Experimental. mp 508 K; UV/Vis λmax(ε)=243 nm (12215 M-1cm-1), 384 nm (26116 M-1cm-1); IR (neat): 551.84 (m), 586.34 (m), 641.18 (m), 705.16 (m), 716.43 (m), 740.14 (m), 790.77 (m-s), 817.7, (versus), 838.08 (s), 863.88 (s), 937.29 (m), 955.06 (m), 966.85 (m), 1014.07 (m), 1060.05 (m), 1107.65 (m), 1166.55 (m), 1193.28 (m), 1211.1 (m), 1238.58 (m), 1274.86 (m), 1295.31(m), 1345.37 (w), 1375.47 (m), 1409.84 (m-s), 1456.61 (m), 1497.28 (s), 1508.13 (m), 1526.25 (m), 1586.19 (s-versus), 1612.45 (m), 1636.29 (w), 1807.98 (w), 1904.79 (w), 2725.8 (w), 2858.33 (w), 2914.98,(w), 3018.47 (w); 1H NMR (300 MHz, CDCl3): δ 8.60 (s, 2H), 7.49 (s, 2H), 7.12 (m, 8H), 2.40 (s, 6H); 13C NMR (300 MHz, CDCl3): δ 151.4258, 148.3818, 146.3021,136.5105, 131.4301, 129.9226, 129.8156, 121.0701, 21.0769

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.00000.43225 (6)0.75000.04723 (16)
C10.98232 (4)0.8419 (2)0.7119 (2)0.0554 (3)
H10.96940.97020.68320.066*
C20.96895 (4)0.63105 (19)0.68436 (18)0.0476 (3)
N10.92443 (3)0.36610 (17)0.59260 (16)0.0488 (3)
C30.93398 (4)0.56950 (19)0.60827 (19)0.0490 (3)
H30.91790.68000.56960.059*
C40.88949 (4)0.31548 (19)0.52032 (16)0.0449 (3)
C50.85902 (4)0.4422 (2)0.5468 (2)0.0529 (3)
H50.86120.57220.61260.063*
C60.82570 (4)0.3767 (3)0.4762 (2)0.0582 (4)
H60.80570.46450.49430.070*
C70.82125 (4)0.1822 (2)0.37840 (19)0.0553 (3)
C80.85167 (4)0.0561 (2)0.35382 (19)0.0540 (3)
H80.84940.07450.28890.065*
C90.88525 (4)0.1194 (2)0.42325 (19)0.0498 (3)
H90.90520.03100.40530.060*
C100.78489 (6)0.1105 (4)0.3019 (3)0.0832 (6)
H10A0.78410.12390.17560.125*
H10B0.76660.20300.34780.125*
H10C0.78070.04110.33360.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0603 (3)0.0289 (2)0.0533 (3)0.0000.0108 (2)0.000
C10.0585 (8)0.0306 (5)0.0780 (9)0.0020 (5)0.0118 (7)0.0022 (5)
C20.0570 (8)0.0343 (5)0.0527 (7)0.0002 (5)0.0140 (5)0.0022 (5)
N10.0557 (6)0.0379 (5)0.0534 (6)0.0001 (4)0.0082 (5)0.0000 (4)
C30.0573 (8)0.0368 (6)0.0538 (7)0.0016 (5)0.0115 (6)0.0043 (5)
C40.0546 (7)0.0352 (5)0.0457 (6)0.0002 (5)0.0105 (5)0.0030 (4)
C50.0613 (8)0.0406 (6)0.0579 (8)0.0020 (5)0.0134 (6)0.0066 (5)
C60.0553 (8)0.0543 (7)0.0663 (9)0.0067 (6)0.0146 (6)0.0026 (6)
C70.0586 (8)0.0555 (8)0.0521 (7)0.0049 (6)0.0075 (6)0.0013 (6)
C80.0690 (9)0.0418 (6)0.0519 (7)0.0047 (6)0.0084 (6)0.0050 (5)
C90.0601 (8)0.0341 (5)0.0560 (7)0.0033 (5)0.0108 (6)0.0000 (5)
C100.0664 (11)0.0948 (14)0.0874 (13)0.0101 (10)0.0035 (10)0.0136 (10)
Geometric parameters (Å, º) top
S1—C2i1.7167 (13)C5—H50.9300
S1—C21.7168 (13)C6—C71.392 (2)
C1—C21.3762 (17)C6—H60.9300
C1—C1i1.403 (3)C7—C81.384 (2)
C1—H10.9300C7—C101.501 (2)
C2—C31.439 (2)C8—C91.379 (2)
N1—C31.2802 (16)C8—H80.9300
N1—C41.4122 (18)C9—H90.9300
C3—H30.9300C10—H10A0.9600
C4—C51.3907 (19)C10—H10B0.9600
C4—C91.3963 (17)C10—H10C0.9600
C5—C61.377 (2)
C2i—S1—C291.43 (9)C5—C6—H6119.2
C2—C1—C1i112.53 (9)C7—C6—H6119.2
C2—C1—H1123.7C8—C7—C6117.54 (14)
C1i—C1—H1123.7C8—C7—C10120.90 (15)
C1—C2—C3127.48 (12)C6—C7—C10121.56 (15)
C1—C2—S1111.75 (11)C9—C8—C7121.63 (12)
C3—C2—S1120.76 (9)C9—C8—H8119.2
C3—N1—C4119.09 (12)C7—C8—H8119.2
N1—C3—C2121.53 (12)C8—C9—C4120.43 (13)
N1—C3—H3119.2C8—C9—H9119.8
C2—C3—H3119.2C4—C9—H9119.8
C5—C4—C9118.30 (13)C7—C10—H10A109.5
C5—C4—N1124.28 (11)C7—C10—H10B109.5
C9—C4—N1117.35 (12)H10A—C10—H10B109.5
C6—C5—C4120.49 (12)C7—C10—H10C109.5
C6—C5—H5119.8H10A—C10—H10C109.5
C4—C5—H5119.8H10B—C10—H10C109.5
C5—C6—C7121.62 (14)
C1i—C1—C2—C3179.60 (16)N1—C4—C5—C6177.78 (13)
C1i—C1—C2—S10.6 (2)C4—C5—C6—C70.7 (2)
C2i—S1—C2—C10.23 (8)C5—C6—C7—C80.2 (2)
C2i—S1—C2—C3179.28 (15)C5—C6—C7—C10179.82 (17)
C4—N1—C3—C2178.67 (12)C6—C7—C8—C90.1 (2)
C1—C2—C3—N1178.68 (14)C10—C7—C8—C9179.95 (16)
S1—C2—C3—N12.4 (2)C7—C8—C9—C40.4 (2)
C3—N1—C4—C535.2 (2)C5—C4—C9—C80.9 (2)
C3—N1—C4—C9148.02 (13)N1—C4—C9—C8177.88 (12)
C9—C4—C5—C61.0 (2)
Symmetry code: (i) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H18N2S
Mr318.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)37.166 (2), 6.0292 (2), 7.5814 (4)
β (°) 93.452 (7)
V3)1695.78 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.32 × 0.24 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.713, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9577, 2861, 2153
Rint0.044
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.145, 1.03
No. of reflections2861
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

This research was funded by a CCSU–AAUP research grant.

References

First citationBernès, S., Hernández-Téllez, G., Sharma, M., Portillo-Moreno, O. & Gutiérrez, R. (2013). Acta Cryst. E69, o1428.  CSD CrossRef IUCr Journals Google Scholar
First citationBolduc, A., Dufresne, S. & Skene, W. G. (2013). Acta Cryst. C69, 1196–1199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMendoza, A., Bernès, S., Hernández-Téllez, G., Portillo-Moreno, O. & Gutiérrez, R. (2014). Acta Cryst. E70, o345.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abington, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkene, W. G. & Dufresne, S. (2006). Acta Cryst. E62, o1116–o1117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSuganya, S., Velmathi, S. & MubarakAli, D. (2014). Dyes Pigments, 104, 116–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationVaysse, M. & Pastour, P. (1964). Compt. Rend. 256, 2657–2659.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds