organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1098-o1099

Crystal structure of 5,5′-[(4-fluoro­phen­yl)methyl­ene]bis­­[6-amino-1,3-di­methyl­pyrimidine-2,4(1H,3H)-dione]

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bLaboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, West Bengal, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 20 August 2014; accepted 3 September 2014; online 10 September 2014)

In the title mol­ecule, C19H21FN6O4, the dihedral angles between the benzene ring and essentially planar pyrimidine rings [maximum deviations of 0.036 (2) and 0.056 (2) Å] are 73.32 (7) and 63.81 (8)°. The dihedral angle between the mean planes of the pyrimidine rings is 61.43 (6)°. In the crystal, N—H⋯O hydrogen bonds link mol­ecules, forming a two-dimensional network parallel to (001) and in combination with weak C—H⋯O hydrogen bonds, a three-dimensional network is formed. Weak C—H⋯π inter­actions and ππ inter­actions, with a centroid–centroid distance of 3.599 (2) Å are also observed.

1. Related literature

For the biological activity of uracil derivatives, see: Muller et al. (1993[Muller, C. E., Shi, D., Manning, M. & Daly, J. W. (1993). J. Med. Chem. 36, 3341-3349.]); Buckle et al. (1994[Buckle, D. R., Arch, J. R. S., Connolly, B. J., Fenwick, A. E., Foster, K. A., Murray, K. J., Readshaw, S. A., Smallridge, M. & Smith, D. G. (1994). J. Med. Chem. 37, 476-480.]). For drugs containing purine moieties, see: Zhi et al. (2003[Zhi, C., Long, Z.-Y., Gambino, J., Xu, W.-C., Brown, N. C., Barnes, M., Butler, M., LaMarr, W. & Wright, G. E. (2003). J. Med. Chem. 46, 2731-2739.]); Devi & Bhuyan (2005[Devi, I. & Bhuyan, P. J. (2005). Tetrahedron Lett. 46, 5727-5729.]). For the biological activity of pyrimidine scaffolds, see: Makarov et al. (2005[Makarov, V. A., Riabova, O. B., Granik, V. G., Dahse, H., -, M., Stelzner, A., Wutzlerc, P. & Schmidtke, M. (2005). Bioorg. Med. Chem. Lett. 15, 37-39.]); Deshmukh et al. (2009[Deshmukh, M. B., Salunkhe, S. M., Patil, D. R. & Anbhule, P. V. (2009). Eur. J. Med. Chem. 44, 2651-2654.]); Ibrahim & El-Metwally (2010[Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158-1166.]). For the synthesis of bis-uracil derivatives, see: Karimi et al. (2013[Karimi, A. R., Dalirnasab, Z., Karimi, M. & Bagherian, F. (2013). Synthesis, 45, 3300-3304.]). For a related structure, see: Das et al. (2009[Das, S., Saikia, B. K., Das, B., Saikia, L. & Thakur, A. J. (2009). Acta Cryst. E65, o2416-o2417.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H21FN6O4

  • Mr = 416.42

  • Orthorhombic, P b c a

  • a = 14.6208 (6) Å

  • b = 11.3324 (7) Å

  • c = 22.6410 (12) Å

  • V = 3751.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.862, Tmax = 1.000

  • 9655 measured reflections

  • 3665 independent reflections

  • 2208 reflections with I > 2σ(I)

  • Rint = 0.047

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.130

  • S = 1.04

  • 3665 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H40⋯O3A 0.96 (3) 1.96 (3) 2.916 (3) 174 (2)
N18—H50⋯O3A 0.93 (3) 1.88 (3) 2.803 (3) 170 (2)
N15—H30⋯O3Ai 0.86 (3) 2.26 (3) 3.083 (3) 161 (3)
N18—H60⋯O3Aii 0.91 (3) 2.14 (3) 3.007 (3) 159 (2)
C13—H13A⋯O3Ai 0.96 2.41 3.154 (3) 134
C13—H13ACgiii 0.96 2.98 3.744 (3) 138
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

Uracil derivatives represent a "privileged" structural motif in a wide variety of natural and synthetic compounds with a broad spectrum of significant biological activities (Muller et al., 1993). 6-Amino­uracils are the important starting compounds for the synthesis of medicinally useful xanthines and theophyllines, which are now routinely used as a phospho­diesterase inhibitor for the treatment of asthma (Buckle et al., 1994). 6-Amino­uracils are regarded as the key inter­mediates for the synthesis of purine-based drugs, such as penciclovir, caffeine, theophylline, and theobromine (Zhi et al., (2003); Devi & Bhuyan, 2005). In addition, pyrimidine scaffolds are reported to exhibit diverse biological and pharmaceutical activities (Ibrahim & El-Metwally, 2010; Deshmukh et al., 2009), Makarov et al., 2005). Herein, we report the synthesis and crystal structure of a new aryl­methyl­ene-bis uracil derivative, namely 5,5'-((4-fluoro­phenyl)­methyl­ene) bis­(6-amino-1,3-di­methyl­pyrimidine-2,4(1H,3H)-dione) synthesized via one-pot pseudo multicomponent reaction at room temperature using iodine as inexpensive and eco-friendly catalyst.

The molecular structure of the title compound is shown in Fig. 1. The distances are in the normal ranges and correspond to those observed in a related structure (Das et al., 2009). The pyrimidine rings are essentially planar with maximum deviations of 0.036 (2) and 0.056 (2) Å for C6 and N1', respectively. The dihedral angle between the mean plane of benzene ring [C7—C12] and pyrimidine rings-A and B are 73.32 (7) ° and 63.81 (8) ° respectively. The dihedral angle between the two pyrimidine rings is 61.43 (6) °. The planarity of the phenyl group confirms its aromatic character. From the least-squares plane calculations of the phenyl moiety, the maximum deviation observed is 0.014 (2) Å for atom C8. The double bond distances C2—O2 = 1.220 (4) Å, C3—O3A = 1.257 (3) Å (ring-A) and C2'- O2' = 1.217 (4) Å, C3A'- O3A' = 1.261 (4) Å (ring-B), are significantly larger than the standard value for carbonyl group (1.192 Å) and lengthening of the CO double bond is due their involvment in N—H···O and C—H···O hydrogen bonds. In the crystal, N—H···O hydrogen bonds link molecules forming a two-dimensional network parallel to (001) (Fig. 2) and in combination with weak C—H···O hydrogen bonds a three-dimensional network is formed. Weak C—H···π inter­actions and ππ inter­actions with a centroid–centroid distance of 3.599 (2) Å between pyrimidine ring-B and benzene ring-C at (1/2 - x, -1/2 + y, z) are also observed.

Synthesis and crystallization top

An oven-dried screw cap test tube was charged with a magnetic stir bar, 6-amino-1,3-di­methyl­uracil (0.155 g, 1.0 mmol), 4-fluoro­benzaldehyde (0.062 g, 0.5 mmol), iodine (0.025 g, 10 mol % as catalyst), and EtOH:H2O (1:1 v/v; 4 ml) in a sequential manner. The reaction mixture was then stirred vigorously at room temperature and the stirring was continued for 4 h; the progress of the reaction was monitored by TLC. On completion of the reaction, a solid mass precipitated out, which was filtered, and washed with aqueous ethanol to obtain the crude product that was purified just by recrystallization from ethanol without carrying out column chromatography (72% yield). The title compound forms as a White solid. Yield 72%. Mp: 537–539 K. IR (KBr) νmax cm-1: 3430, 3104, 2956, 1690, 1603, 1498, 1247, 1216, 1142, 1070, 870, 789, 756. 1H NMR (400 MHz, DMSO-d6) δ/p.p.m.: 7.42 (4H, s, –NH2), 7.11 (2H, dd, J = 8.4 & 5.6 Hz, aromatic H), 6.99 (2H, t, J = 8.8 Hz, aromatic H), 5.56 (1H, s, –CH–), 3.32 (6H, s, 2 × NCH3), 3.14 (6H, s, 2 × NCH3). TOF-MS: 439.1513 [M+Na]+. The structure of 5,5'-((4-fluoro­phenyl)­methyl­ene)bis­(6-amino-1, 3-di­methyl­pyrimidine-2,4(1H,3H)-dione) was characterized by means of spectral studies including FT—IR, 1H NMR, and TOF-MS. Crystals suitable for X-ray diffraction were grown by dissolving 50 mg of the title compound in 5 ml DMSO and after several days at ambient temperature colourless block-shaped crystals were formed.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Atoms H30, H40 attached to N15 and H50, H60 attached to N18 were located in a difference Fourier map and refined isotropically. All the remaining H atoms were geometrically fixed and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.98 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Related literature top

For the biological activity of uracil derivatives, see: Muller et al. (1993); Buckle et al. (1994). For drugs containing purine moieties, see: Zhi et al. (2003); Devi & Bhuyan (2005). For the biological activity of pyrimidine scaffolds, see: Makarov et al. (2005); Deshmukh et al. (2009); Ibrahim & El-Metwally (2010). For the synthesis of bis-uracil derivatives, see: Karimi et al. (2013). For a related structure, see: Das et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure viewed along the a axis. Hydrogen bonds are shown as dashed lines.
5,5'-[(4-Fluorophenyl)methylene]bis[6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione] top
Crystal data top
C19H21FN6O4F(000) = 1744
Mr = 416.42Dx = 1.475 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2766 reflections
a = 14.6208 (6) Åθ = 4.0–29.0°
b = 11.3324 (7) ŵ = 0.11 mm1
c = 22.6410 (12) ÅT = 293 K
V = 3751.4 (3) Å3Rectangular, white
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3665 independent reflections
Radiation source: fine-focus sealed tube2208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1718
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1310
Tmin = 0.862, Tmax = 1.000l = 2727
9655 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.280P]
where P = (Fo2 + 2Fc2)/3
3665 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H21FN6O4V = 3751.4 (3) Å3
Mr = 416.42Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.6208 (6) ŵ = 0.11 mm1
b = 11.3324 (7) ÅT = 293 K
c = 22.6410 (12) Å0.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3665 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2208 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 1.000Rint = 0.047
9655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
3665 reflectionsΔρmin = 0.20 e Å3
291 parameters
Special details top

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O3A0.12040 (11)0.70286 (16)0.47999 (8)0.0448 (5)
O3A'0.41972 (12)0.90382 (17)0.35851 (8)0.0481 (5)
N30.21150 (13)0.67789 (19)0.56011 (9)0.0385 (5)
N1'0.27279 (15)0.63863 (19)0.28860 (9)0.0445 (6)
C5'0.28708 (16)0.7846 (2)0.36460 (10)0.0336 (6)
N10.35782 (12)0.7609 (2)0.56448 (9)0.0388 (5)
C50.26609 (15)0.7945 (2)0.47801 (10)0.0317 (6)
N180.16272 (16)0.6468 (2)0.36253 (12)0.0445 (6)
O20.29971 (14)0.6586 (2)0.64250 (9)0.0697 (7)
C40.25464 (16)0.8542 (2)0.41822 (10)0.0337 (6)
H40.29920.91870.42030.040*
C60.34765 (15)0.8050 (2)0.50801 (10)0.0328 (6)
C6'0.24099 (18)0.6903 (2)0.34020 (11)0.0374 (6)
N150.42224 (15)0.8593 (2)0.48533 (11)0.0410 (6)
C70.16385 (16)0.9204 (2)0.41091 (11)0.0323 (6)
C3A'0.37186 (18)0.8189 (2)0.34004 (11)0.0393 (6)
N3'0.40473 (15)0.7555 (2)0.29207 (9)0.0465 (6)
C3A0.19584 (17)0.7257 (2)0.50409 (11)0.0366 (6)
F200.06866 (11)1.12341 (16)0.39325 (9)0.0834 (7)
C20.28952 (18)0.6969 (3)0.59256 (12)0.0437 (7)
O2'0.39032 (16)0.60699 (19)0.22495 (9)0.0746 (7)
C2'0.3585 (2)0.6640 (3)0.26558 (12)0.0503 (8)
C130.44207 (17)0.7825 (3)0.59804 (11)0.0499 (8)
H13A0.49180.74040.58010.075*
H13B0.43410.75580.63800.075*
H13C0.45540.86550.59800.075*
C120.13307 (17)0.9921 (2)0.45682 (12)0.0441 (7)
H120.16510.99320.49230.053*
C80.11561 (17)0.9230 (2)0.35843 (12)0.0405 (7)
H80.13620.87860.32650.049*
C100.00938 (18)1.0575 (2)0.39853 (15)0.0505 (8)
C110.05596 (19)1.0616 (3)0.45075 (14)0.0510 (8)
H110.03631.10980.48150.061*
C90.03704 (18)0.9907 (2)0.35245 (14)0.0502 (8)
H90.00400.99000.31740.060*
C140.14123 (18)0.6033 (3)0.58682 (13)0.0536 (8)
H14A0.16770.55790.61830.080*
H14B0.11670.55090.55750.080*
H14C0.09310.65190.60220.080*
C170.4962 (2)0.7837 (3)0.26916 (14)0.0683 (10)
H17A0.54090.73510.28850.102*
H17B0.50960.86530.27660.102*
H17C0.49790.76900.22740.102*
C160.2188 (2)0.5502 (3)0.25638 (13)0.0626 (9)
H16A0.23780.54860.21580.094*
H16B0.15510.57040.25850.094*
H16C0.22830.47390.27380.094*
H600.1393 (18)0.576 (3)0.3509 (12)0.057 (9)*
H500.1483 (16)0.675 (2)0.4000 (13)0.049 (8)*
H400.4206 (17)0.880 (2)0.4441 (13)0.060 (9)*
H300.476 (2)0.856 (3)0.5011 (13)0.069 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O3A0.0359 (10)0.0609 (13)0.0376 (10)0.0095 (9)0.0013 (8)0.0047 (10)
O3A'0.0439 (10)0.0557 (12)0.0446 (11)0.0059 (10)0.0066 (9)0.0039 (11)
N30.0360 (11)0.0470 (14)0.0326 (11)0.0023 (10)0.0028 (10)0.0068 (12)
N1'0.0635 (15)0.0365 (13)0.0335 (12)0.0040 (11)0.0064 (11)0.0008 (11)
C5'0.0385 (14)0.0364 (15)0.0259 (12)0.0042 (12)0.0025 (11)0.0036 (12)
N10.0311 (11)0.0530 (15)0.0322 (11)0.0047 (10)0.0026 (9)0.0040 (12)
C50.0263 (12)0.0375 (15)0.0313 (12)0.0021 (11)0.0015 (11)0.0023 (12)
N180.0511 (15)0.0398 (15)0.0424 (14)0.0043 (12)0.0052 (13)0.0045 (13)
O20.0658 (14)0.1013 (19)0.0420 (12)0.0168 (13)0.0105 (11)0.0299 (13)
C40.0340 (13)0.0350 (15)0.0320 (13)0.0015 (12)0.0005 (11)0.0012 (12)
C60.0320 (13)0.0355 (14)0.0310 (13)0.0041 (11)0.0008 (11)0.0001 (12)
C6'0.0450 (15)0.0349 (15)0.0324 (13)0.0090 (13)0.0004 (12)0.0048 (13)
N150.0305 (12)0.0565 (15)0.0361 (13)0.0035 (11)0.0025 (11)0.0055 (12)
C70.0302 (13)0.0315 (14)0.0352 (14)0.0001 (11)0.0000 (11)0.0043 (12)
C3A'0.0466 (16)0.0409 (16)0.0306 (13)0.0059 (13)0.0038 (13)0.0092 (14)
N3'0.0534 (14)0.0510 (15)0.0349 (12)0.0043 (12)0.0139 (11)0.0073 (12)
C3A0.0380 (14)0.0399 (16)0.0320 (13)0.0041 (12)0.0000 (12)0.0005 (13)
F200.0666 (12)0.0682 (13)0.1154 (17)0.0373 (10)0.0044 (11)0.0026 (13)
C20.0443 (16)0.0500 (18)0.0366 (15)0.0012 (14)0.0019 (13)0.0050 (15)
O2'0.1086 (18)0.0632 (15)0.0521 (13)0.0067 (13)0.0384 (13)0.0086 (13)
C2'0.071 (2)0.0446 (18)0.0354 (15)0.0101 (16)0.0139 (15)0.0097 (15)
C130.0360 (14)0.078 (2)0.0360 (14)0.0019 (15)0.0102 (12)0.0074 (16)
C120.0468 (16)0.0436 (17)0.0420 (16)0.0021 (13)0.0006 (13)0.0035 (14)
C80.0459 (15)0.0344 (15)0.0414 (15)0.0067 (12)0.0041 (13)0.0006 (13)
C100.0418 (16)0.0333 (16)0.076 (2)0.0096 (13)0.0004 (16)0.0073 (17)
C110.0578 (18)0.0398 (17)0.0554 (19)0.0045 (14)0.0075 (16)0.0067 (16)
C90.0519 (17)0.0431 (17)0.0556 (18)0.0095 (14)0.0143 (15)0.0051 (16)
C140.0539 (18)0.060 (2)0.0474 (17)0.0143 (15)0.0038 (14)0.0125 (17)
C170.0648 (19)0.082 (3)0.0577 (18)0.0027 (18)0.0337 (16)0.008 (2)
C160.095 (3)0.0499 (19)0.0431 (17)0.0025 (18)0.0072 (17)0.0099 (17)
Geometric parameters (Å, º) top
O3A—C3A1.257 (3)C7—C121.394 (3)
O3A'—C3A'1.261 (3)C3A'—N3'1.388 (3)
N3—C21.374 (3)N3'—C2'1.376 (3)
N3—C3A1.398 (3)N3'—C171.470 (3)
N3—C141.462 (3)F20—C101.369 (3)
N1'—C2'1.387 (3)O2'—C2'1.217 (3)
N1'—C6'1.387 (3)C13—H13A0.9600
N1'—C161.469 (3)C13—H13B0.9600
C5'—C6'1.379 (3)C13—H13C0.9600
C5'—C3A'1.413 (3)C12—C111.382 (4)
C5'—C41.523 (3)C12—H120.9300
N1—C61.381 (3)C8—C91.388 (3)
N1—C21.388 (3)C8—H80.9300
N1—C131.468 (3)C10—C91.351 (4)
C5—C61.377 (3)C10—C111.365 (4)
C5—C3A1.419 (3)C11—H110.9300
C5—C41.522 (3)C9—H90.9300
N18—C6'1.345 (3)C14—H14A0.9600
N18—H600.91 (3)C14—H14B0.9600
N18—H500.93 (3)C14—H14C0.9600
O2—C21.220 (3)C17—H17A0.9600
C4—C71.533 (3)C17—H17B0.9600
C4—H40.9800C17—H17C0.9600
C6—N151.354 (3)C16—H16A0.9600
N15—H400.96 (3)C16—H16B0.9600
N15—H300.87 (3)C16—H16C0.9600
C7—C81.382 (3)
C2—N3—C3A124.1 (2)O2—C2—N3122.8 (3)
C2—N3—C14116.9 (2)O2—C2—N1121.5 (3)
C3A—N3—C14119.0 (2)N3—C2—N1115.7 (2)
C2'—N1'—C6'122.1 (2)O2'—C2'—N3'122.8 (3)
C2'—N1'—C16116.1 (2)O2'—C2'—N1'121.3 (3)
C6'—N1'—C16121.8 (2)N3'—C2'—N1'115.9 (2)
C6'—C5'—C3A'119.0 (2)N1—C13—H13A109.5
C6'—C5'—C4124.6 (2)N1—C13—H13B109.5
C3A'—C5'—C4116.4 (2)H13A—C13—H13B109.5
C6—N1—C2122.4 (2)N1—C13—H13C109.5
C6—N1—C13120.6 (2)H13A—C13—H13C109.5
C2—N1—C13117.0 (2)H13B—C13—H13C109.5
C6—C5—C3A118.0 (2)C11—C12—C7121.4 (3)
C6—C5—C4119.7 (2)C11—C12—H12119.3
C3A—C5—C4122.3 (2)C7—C12—H12119.3
C6'—N18—H60122.2 (17)C7—C8—C9121.2 (3)
C6'—N18—H50114.3 (16)C7—C8—H8119.4
H60—N18—H50119 (2)C9—C8—H8119.4
C5—C4—C5'116.4 (2)C9—C10—C11122.6 (3)
C5—C4—C7114.11 (19)C9—C10—F20119.2 (3)
C5'—C4—C7115.9 (2)C11—C10—F20118.2 (3)
C5—C4—H4102.5C10—C11—C12118.3 (3)
C5'—C4—H4102.5C10—C11—H11120.9
C7—C4—H4102.5C12—C11—H11120.9
N15—C6—C5123.3 (2)C10—C9—C8118.8 (3)
N15—C6—N1115.4 (2)C10—C9—H9120.6
C5—C6—N1121.2 (2)C8—C9—H9120.6
N18—C6'—C5'123.3 (2)N3—C14—H14A109.5
N18—C6'—N1'116.6 (2)N3—C14—H14B109.5
C5'—C6'—N1'120.1 (2)H14A—C14—H14B109.5
C6—N15—H40117.4 (16)N3—C14—H14C109.5
C6—N15—H30124 (2)H14A—C14—H14C109.5
H40—N15—H30116 (3)H14B—C14—H14C109.5
C8—C7—C12117.6 (2)N3'—C17—H17A109.5
C8—C7—C4123.0 (2)N3'—C17—H17B109.5
C12—C7—C4119.0 (2)H17A—C17—H17B109.5
O3A'—C3A'—N3'117.6 (2)N3'—C17—H17C109.5
O3A'—C3A'—C5'124.5 (2)H17A—C17—H17C109.5
N3'—C3A'—C5'118.0 (2)H17B—C17—H17C109.5
C2'—N3'—C3A'124.1 (2)N1'—C16—H16A109.5
C2'—N3'—C17117.2 (2)N1'—C16—H16B109.5
C3A'—N3'—C17118.6 (2)H16A—C16—H16B109.5
O3A—C3A—N3117.2 (2)N1'—C16—H16C109.5
O3A—C3A—C5124.6 (2)H16A—C16—H16C109.5
N3—C3A—C5118.2 (2)H16B—C16—H16C109.5
C6—C5—C4—C5'86.2 (3)C5'—C3A'—N3'—C17175.0 (2)
C3A—C5—C4—C5'92.6 (3)C2—N3—C3A—O3A178.5 (2)
C6—C5—C4—C7134.7 (2)C14—N3—C3A—O3A1.2 (4)
C3A—C5—C4—C746.5 (3)C2—N3—C3A—C52.5 (4)
C6'—C5'—C4—C575.3 (3)C14—N3—C3A—C5177.9 (2)
C3A'—C5'—C4—C5102.8 (3)C6—C5—C3A—O3A175.5 (2)
C6'—C5'—C4—C763.1 (3)C4—C5—C3A—O3A3.4 (4)
C3A'—C5'—C4—C7118.8 (2)C6—C5—C3A—N33.5 (4)
C3A—C5—C6—N15173.9 (2)C4—C5—C3A—N3177.7 (2)
C4—C5—C6—N154.9 (4)C3A—N3—C2—O2176.5 (3)
C3A—C5—C6—N16.9 (4)C14—N3—C2—O23.2 (4)
C4—C5—C6—N1174.3 (2)C3A—N3—C2—N14.8 (4)
C2—N1—C6—N15176.2 (2)C14—N3—C2—N1175.5 (2)
C13—N1—C6—N155.1 (3)C6—N1—C2—O2180.0 (3)
C2—N1—C6—C54.6 (4)C13—N1—C2—O21.3 (4)
C13—N1—C6—C5174.1 (2)C6—N1—C2—N31.3 (4)
C3A'—C5'—C6'—N18176.0 (2)C13—N1—C2—N3179.9 (2)
C4—C5'—C6'—N182.1 (4)C3A'—N3'—C2'—O2'177.2 (3)
C3A'—C5'—C6'—N1'6.9 (4)C17—N3'—C2'—O2'0.2 (4)
C4—C5'—C6'—N1'175.0 (2)C3A'—N3'—C2'—N1'1.8 (4)
C2'—N1'—C6'—N18171.0 (2)C17—N3'—C2'—N1'179.3 (2)
C16—N1'—C6'—N186.6 (4)C6'—N1'—C2'—O2'170.1 (2)
C2'—N1'—C6'—C5'11.7 (4)C16—N1'—C2'—O2'7.6 (4)
C16—N1'—C6'—C5'170.7 (2)C6'—N1'—C2'—N3'8.9 (4)
C5—C4—C7—C8142.5 (2)C16—N1'—C2'—N3'173.4 (2)
C5'—C4—C7—C83.2 (3)C8—C7—C12—C111.4 (4)
C5—C4—C7—C1244.9 (3)C4—C7—C12—C11174.4 (2)
C5'—C4—C7—C12175.8 (2)C12—C7—C8—C92.7 (4)
C6'—C5'—C3A'—O3A'179.7 (2)C4—C7—C8—C9175.4 (2)
C4—C5'—C3A'—O3A'2.0 (4)C9—C10—C11—C121.6 (4)
C6'—C5'—C3A'—N3'0.1 (4)F20—C10—C11—C12177.9 (2)
C4—C5'—C3A'—N3'178.3 (2)C7—C12—C11—C100.7 (4)
O3A'—C3A'—N3'—C2'177.2 (2)C11—C10—C9—C80.3 (4)
C5'—C3A'—N3'—C2'2.4 (4)F20—C10—C9—C8179.2 (2)
O3A'—C3A'—N3'—C175.4 (3)C7—C8—C9—C101.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N15—H40···O3A0.96 (3)1.96 (3)2.916 (3)174 (2)
N18—H50···O3A0.93 (3)1.88 (3)2.803 (3)170 (2)
N15—H30···O3Ai0.86 (3)2.26 (3)3.083 (3)161 (3)
N18—H60···O3Aii0.91 (3)2.14 (3)3.007 (3)159 (2)
C13—H13A···O3Ai0.962.413.154 (3)134
C13—H13A···Cgiii0.962.983.744 (3)138
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z; (iii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H21FN6O4
Mr416.42
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.6208 (6), 11.3324 (7), 22.6410 (12)
V3)3751.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.862, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9655, 3665, 2208
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.130, 1.04
No. of reflections3665
No. of parameters291
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N15—H40···O3A'0.96 (3)1.96 (3)2.916 (3)174 (2)
N18—H50···O3A0.93 (3)1.88 (3)2.803 (3)170 (2)
N15—H30···O3Ai0.86 (3)2.26 (3)3.083 (3)161 (3)
N18—H60···O3A'ii0.91 (3)2.14 (3)3.007 (3)159 (2)
C13—H13A···O3Ai0.962.413.154 (3)134
C13—H13A···Cgiii0.962.983.744 (3)138
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z; (iii) x1/2, y+3/2, z+1.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II]. BB is grateful to the UGC, New Delhi, for the award of a Senior Research Fellowship.

References

First citationBuckle, D. R., Arch, J. R. S., Connolly, B. J., Fenwick, A. E., Foster, K. A., Murray, K. J., Readshaw, S. A., Smallridge, M. & Smith, D. G. (1994). J. Med. Chem. 37, 476–480.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDas, S., Saikia, B. K., Das, B., Saikia, L. & Thakur, A. J. (2009). Acta Cryst. E65, o2416–o2417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDeshmukh, M. B., Salunkhe, S. M., Patil, D. R. & Anbhule, P. V. (2009). Eur. J. Med. Chem. 44, 2651–2654.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDevi, I. & Bhuyan, P. J. (2005). Tetrahedron Lett. 46, 5727–5729.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIbrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158–1166.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKarimi, A. R., Dalirnasab, Z., Karimi, M. & Bagherian, F. (2013). Synthesis, 45, 3300–3304.  Web of Science CrossRef CAS Google Scholar
First citationMakarov, V. A., Riabova, O. B., Granik, V. G., Dahse, H., -, M., Stelzner, A., Wutzlerc, P. & Schmidtke, M. (2005). Bioorg. Med. Chem. Lett. 15, 37–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuller, C. E., Shi, D., Manning, M. & Daly, J. W. (1993). J. Med. Chem. 36, 3341–3349.  CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhi, C., Long, Z.-Y., Gambino, J., Xu, W.-C., Brown, N. C., Barnes, M., Butler, M., LaMarr, W. & Wright, G. E. (2003). J. Med. Chem. 46, 2731–2739.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1098-o1099
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds