metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m30-m31

Di­aqua­{μ2-N,N′-bis­­[(cyclo­hexa­nyl­­idene)amino]­oxamide}­bis­­(tri­phenyl­phosphane)silver(I) dinitrate

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

(Received 17 December 2013; accepted 22 December 2013; online 4 January 2014)

The dinuclear title compound, [Ag2(C14H22N4O2)(C18H15P)2(H2O)2](NO3)2, lies across an inversion center and consists of two [Ag(H2O)(PPh3)] units bridged by a bis­(cyclo­hexa­none)oxalydihydrazone ligand. The charge-balance is supplied by two nitrate anions. The symmetry-unique AgI ion is in a distorted tetra­hedral geometry coordinated by a P atom from a tri­phenyl­phosphane ligand, an O atom from a water mol­ecule and a bis­(cyclo­hexa­none)oxalydihydrazone ligand bidentate chelating through the O atom and one of N atoms. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the components, forming chains along the b-axis direction. These chains are connected through weak C—H⋯O hydrogen bonds, leading to the formation of a two-dimensional supra­molecular network parallel to (001).

Related literature

For potential applications of hydrazone derivatives, see: Fouda et al. (2007[Fouda, A. S., Mostafa, H. A., Ghazy, S. E. & El-Farah, S. A. (2007). Int. J. Electrochem. Sci. 2, 182-194.]); Qu et al. (2011[Qu, Q., Gao, G., Gao, H., Li, L. & Ding, Z. (2011). Mater. Corros. 62, 778-785.]); van der Star et al. (2012[Star, B. J. van der, Vogel, D. Y., Kipp, M., Puentes, F., Baker, D. & Amor, S. (2012). CNS Neurol. Disord. Drug Targets, 11, 570-588.]). For the use of metal(I) complexes of phosphine ligands as precursors for the preparation of mixed-ligand complexes, see: Nawaz et al. (2011[Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502-1506.]); Pakawatchai et al. (2012[Pakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506-m1507.]). For a related structure, see: Wattanakanjana et al. (2013[Wattanakanjana, Y., Pakawatchai, C. & Nimthong, R. (2013). Acta Cryst. E69, m83-m84.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C14H22N4O2)(C18H15P)2(H2O)2](NO3)2

  • Mr = 1178.68

  • Triclinic, [P \overline 1]

  • a = 9.0903 (8) Å

  • b = 9.5730 (8) Å

  • c = 15.2638 (13) Å

  • α = 74.617 (1)°

  • β = 83.676 (1)°

  • γ = 77.091 (1)°

  • V = 1246.49 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.42 × 0.38 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.624, Tmax = 0.746

  • 29613 measured reflections

  • 7621 independent reflections

  • 7076 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.02

  • 7621 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.80 2.02 2.8103 (17) 167
O2—H2B⋯O3i 0.88 1.98 2.8684 (16) 177
N1—H1⋯O5i 0.88 2.16 2.8407 (19) 134
C22—H22⋯O4 0.95 2.58 3.297 (2) 133
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Studies of hydrazone derivatives containing nitrogen and oxygen have recently attracted considerable attention because not only are they corrosion inhibitors but it has been discovered that they are effective in different types of media (Fouda et al., 2007; Qu et al., 2011). They are an invaluable tool for studying mechanisms of acquired demyelination and remyelination which are histological hallmarks of multiple sclerosis (MS) (van der Star et al., 2012). Silver(I) complexes of phosphine ligands have been extensively studied as precursors for preparing mixed-ligand complexes having different geometries such as mononuclear and dinuclear (Nawaz et al., 2011; Pakawatchai et al., 2012). Here, we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The symmetry unique AgI ion is coordinated to the P atom of a triphenylphosphane ligand and the O atom of water molecule which forms the [Ag(H2O)(PPh3)] units. The bis(cyclohexanone)oxalydihydrazone ligand, located on an inversion center, acts as a bidentate bridging ligand between the two [Ag(H2O)(PPh3)] units by way of one O atom and one N atom. The AgI ion displays a distorted tetrahedral coordination. The P1—Ag1 bond length of 2.3369 (4) Å is shorter than that found in for example [Ag2Cl2(CH5N3S)2(C18H15P)2], which is 2.4225 (4) Å (Wattanakanjana et al., 2013). In the crystal, hydrogen bonds play a key role stabilizing a 2-D network. Intermolecular O—H···O hydrogen bonds occur where the oxygen atoms of nitrate anions serve as acceptors while H atoms of water molecules act as donors (Table 1). In addition, a pair of O—H···O hydrogen bonds form a four-membered O2H2 ring within a 1-D chain along [010] (Fig. 2). The chains are connected through weak C—H···O hydrogen bonds leading to the formation of a 2-D supramolecular network parallel to (001) as shown in Figure 3.

Related literature top

For potential applications of hydrazone derivatives, see: Fouda et al. (2007); Qu et al. (2011); van der Star et al. (2012). For the use of metal(I) complexes of phosphine ligands as precursors for the preparation of mixed-ligand complexes, see: Nawaz et al. (2011); Pakawatchai et al. (2012). For a related structure, see: Wattanakanjana et al. (2013).

Experimental top

Bis(cyclohexanone)oxalydihydrazone, BCO, (0.16g,0.58 mmol) was dissolved in 30 cm3 of methanol at 332 K. AgNO3 (0.10g,0.59 mmol) was added and the mixture was stirred for 3 hours. Triphenylphosphine, PPh3, (0.31g,1.18 mmol) was added and new reaction mixture was heated under reflux for 2 hours. The resulting clear solution was filtered off and left to evaporate at room temperature. Colorless crystals, which were deposited upon standing for 6 days, were filtered off and dried under reduced pressure.

Refinement top

H atoms bonded to C and N atoms were included in calculated positions with C—H = 0.95–0.99Å, N—H = 0.88Å and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N). The H atoms of the water molecules were included 'as found' positions with 1.5Ueq(O).

Structure description top

Studies of hydrazone derivatives containing nitrogen and oxygen have recently attracted considerable attention because not only are they corrosion inhibitors but it has been discovered that they are effective in different types of media (Fouda et al., 2007; Qu et al., 2011). They are an invaluable tool for studying mechanisms of acquired demyelination and remyelination which are histological hallmarks of multiple sclerosis (MS) (van der Star et al., 2012). Silver(I) complexes of phosphine ligands have been extensively studied as precursors for preparing mixed-ligand complexes having different geometries such as mononuclear and dinuclear (Nawaz et al., 2011; Pakawatchai et al., 2012). Here, we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The symmetry unique AgI ion is coordinated to the P atom of a triphenylphosphane ligand and the O atom of water molecule which forms the [Ag(H2O)(PPh3)] units. The bis(cyclohexanone)oxalydihydrazone ligand, located on an inversion center, acts as a bidentate bridging ligand between the two [Ag(H2O)(PPh3)] units by way of one O atom and one N atom. The AgI ion displays a distorted tetrahedral coordination. The P1—Ag1 bond length of 2.3369 (4) Å is shorter than that found in for example [Ag2Cl2(CH5N3S)2(C18H15P)2], which is 2.4225 (4) Å (Wattanakanjana et al., 2013). In the crystal, hydrogen bonds play a key role stabilizing a 2-D network. Intermolecular O—H···O hydrogen bonds occur where the oxygen atoms of nitrate anions serve as acceptors while H atoms of water molecules act as donors (Table 1). In addition, a pair of O—H···O hydrogen bonds form a four-membered O2H2 ring within a 1-D chain along [010] (Fig. 2). The chains are connected through weak C—H···O hydrogen bonds leading to the formation of a 2-D supramolecular network parallel to (001) as shown in Figure 3.

For potential applications of hydrazone derivatives, see: Fouda et al. (2007); Qu et al. (2011); van der Star et al. (2012). For the use of metal(I) complexes of phosphine ligands as precursors for the preparation of mixed-ligand complexes, see: Nawaz et al. (2011); Pakawatchai et al. (2012). For a related structure, see: Wattanakanjana et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level. Only the symmetry unique anion is shown and the asymmetric unit labelled.
[Figure 2] Fig. 2. Part of the crystal structure of [{Ag(H2O)(C18H15P)}2(C14H22N4O2)]·(NO3)2 with O—H···O hydrogen bonds (red dashed lines) showing 1-D chain along [010] axis.
[Figure 3] Fig. 3. A Fragment of the 2-D network of [{Ag(H2O)(C18H15P)}2(C14H22N4O2)]·(NO3)2, showing C—H···O hydrogen bonds viewed along the a axis.
Diaqua{µ2-N,N'-bis[(cyclohexanylidene)amino]oxamide}bis(triphenylphosphane)silver(I) dinitrate top
Crystal data top
[Ag2(C14H22N4O2)(C18H15P)2(H2O)2](NO3)2Z = 1
Mr = 1178.68F(000) = 602
Triclinic, P1Dx = 1.570 Mg m3
a = 9.0903 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5730 (8) ÅCell parameters from 6878 reflections
c = 15.2638 (13) Åθ = 2.3–31.3°
α = 74.617 (1)°µ = 0.91 mm1
β = 83.676 (1)°T = 100 K
γ = 77.091 (1)°Plate, colourless
V = 1246.49 (18) Å30.42 × 0.38 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7076 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.032
φ and ω scansθmax = 31.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1313
Tmin = 0.624, Tmax = 0.746k = 1313
29613 measured reflectionsl = 2222
7621 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.072H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.444P]
where P = (Fo2 + 2Fc2)/3
7621 reflections(Δ/σ)max = 0.001
313 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Ag2(C14H22N4O2)(C18H15P)2(H2O)2](NO3)2γ = 77.091 (1)°
Mr = 1178.68V = 1246.49 (18) Å3
Triclinic, P1Z = 1
a = 9.0903 (8) ÅMo Kα radiation
b = 9.5730 (8) ŵ = 0.91 mm1
c = 15.2638 (13) ÅT = 100 K
α = 74.617 (1)°0.42 × 0.38 × 0.10 mm
β = 83.676 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7621 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
7076 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.746Rint = 0.032
29613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.02Δρmax = 1.50 e Å3
7621 reflectionsΔρmin = 0.54 e Å3
313 parameters
Special details top

Experimental. Reflections 0 0 1 was affected by the beam stop and was omitted from the refinement.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.77397 (2)0.67531 (2)0.14033 (2)0.01512 (4)
P10.87389 (4)0.59821 (4)0.28403 (3)0.01204 (7)
O10.58233 (10)0.91020 (10)0.10413 (6)0.0182 (2)
O20.60176 (10)0.57786 (10)0.07530 (6)0.0278 (3)
H2A0.54530.52160.09510.042*
H2B0.59350.59900.01580.042*
O30.41980 (18)0.36454 (16)0.11758 (9)0.0311 (3)
O40.46973 (17)0.30464 (18)0.26020 (10)0.0327 (3)
O50.37588 (17)0.15741 (16)0.20689 (9)0.0289 (3)
N10.67258 (14)0.90320 (14)0.04115 (9)0.0146 (2)
H10.65970.93870.09980.017*
N20.80176 (14)0.79893 (14)0.00875 (9)0.0144 (2)
N30.42173 (16)0.27494 (17)0.19571 (10)0.0211 (3)
C10.56953 (16)0.94638 (16)0.02131 (10)0.0132 (3)
C20.91980 (17)0.79182 (17)0.06359 (10)0.0160 (3)
C30.93888 (19)0.88935 (19)0.15685 (11)0.0203 (3)
H3A0.84660.96720.17070.024*
H3B0.95400.83010.20250.024*
C41.0763 (2)0.96139 (19)0.16206 (12)0.0220 (3)
H4A1.09591.01520.22580.026*
H4B1.05281.03430.12450.026*
C51.21787 (19)0.8478 (2)0.12903 (12)0.0222 (3)
H5A1.24740.78020.16990.027*
H5B1.30200.89890.13090.027*
C61.19021 (19)0.75881 (19)0.03247 (12)0.0210 (3)
H6A1.16590.82550.00910.025*
H6B1.28270.68460.01230.025*
C71.05827 (18)0.68022 (18)0.02872 (11)0.0185 (3)
H7A1.08610.60740.06630.022*
H7B1.03710.62640.03480.022*
C110.74414 (17)0.67524 (18)0.36679 (11)0.0163 (3)
C120.66381 (18)0.82024 (19)0.33780 (12)0.0204 (3)
H120.67800.87470.27680.024*
C130.5628 (2)0.8854 (2)0.39823 (15)0.0289 (4)
H130.50840.98420.37860.035*
C140.5425 (2)0.8049 (3)0.48700 (15)0.0347 (5)
H140.47410.84920.52840.042*
C150.6211 (2)0.6599 (3)0.51627 (14)0.0338 (4)
H150.60580.60540.57720.041*
C160.7224 (2)0.5946 (2)0.45616 (12)0.0244 (3)
H160.77650.49570.47590.029*
C210.91018 (18)0.39933 (16)0.33027 (10)0.0146 (3)
C220.7932 (2)0.32645 (19)0.32916 (11)0.0201 (3)
H220.69840.38140.30670.024*
C230.8160 (2)0.1736 (2)0.36097 (12)0.0262 (4)
H230.73620.12400.36130.031*
C240.9551 (3)0.0933 (2)0.39231 (13)0.0297 (4)
H240.97030.01130.41390.036*
C251.0718 (3)0.1643 (2)0.39229 (14)0.0309 (4)
H251.16710.10840.41320.037*
C261.0499 (2)0.31784 (19)0.36159 (12)0.0222 (3)
H261.12990.36670.36200.027*
C311.05027 (17)0.65300 (16)0.29052 (11)0.0152 (3)
C321.07908 (19)0.70550 (18)0.36258 (12)0.0204 (3)
H321.00650.71010.41200.025*
C331.2145 (2)0.7513 (2)0.36192 (15)0.0296 (4)
H331.23380.78770.41080.036*
C341.3209 (2)0.7438 (2)0.29016 (16)0.0337 (4)
H341.41210.77690.28950.040*
C351.2953 (2)0.6887 (3)0.21933 (15)0.0322 (4)
H351.36960.68160.17090.039*
C361.1601 (2)0.6437 (2)0.21948 (13)0.0243 (3)
H361.14210.60620.17080.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01432 (6)0.01811 (6)0.01070 (6)0.00005 (4)0.00308 (4)0.00155 (4)
P10.01111 (16)0.01418 (16)0.01055 (16)0.00195 (13)0.00170 (12)0.00267 (13)
O10.0195 (5)0.0194 (5)0.0129 (5)0.0032 (4)0.0034 (4)0.0040 (4)
O20.0328 (7)0.0370 (7)0.0208 (6)0.0188 (6)0.0022 (5)0.0096 (5)
O30.0411 (8)0.0359 (7)0.0194 (6)0.0171 (6)0.0039 (6)0.0038 (5)
O40.0329 (7)0.0479 (9)0.0250 (7)0.0109 (6)0.0062 (6)0.0180 (6)
O50.0355 (7)0.0358 (7)0.0203 (6)0.0179 (6)0.0022 (5)0.0078 (5)
N10.0128 (6)0.0159 (6)0.0118 (5)0.0001 (5)0.0018 (4)0.0000 (5)
N20.0106 (5)0.0161 (6)0.0137 (6)0.0000 (4)0.0011 (4)0.0010 (5)
N30.0161 (6)0.0308 (7)0.0187 (6)0.0047 (6)0.0005 (5)0.0107 (6)
C10.0121 (6)0.0127 (6)0.0146 (6)0.0020 (5)0.0030 (5)0.0023 (5)
C20.0140 (7)0.0186 (7)0.0151 (7)0.0040 (5)0.0003 (5)0.0034 (5)
C30.0171 (7)0.0265 (8)0.0140 (7)0.0055 (6)0.0016 (5)0.0005 (6)
C40.0216 (8)0.0230 (8)0.0205 (8)0.0075 (6)0.0036 (6)0.0033 (6)
C50.0177 (7)0.0277 (8)0.0237 (8)0.0084 (6)0.0026 (6)0.0092 (7)
C60.0151 (7)0.0267 (8)0.0219 (8)0.0028 (6)0.0003 (6)0.0088 (6)
C70.0139 (7)0.0193 (7)0.0203 (7)0.0008 (6)0.0003 (6)0.0041 (6)
C110.0124 (6)0.0231 (7)0.0168 (7)0.0053 (6)0.0005 (5)0.0095 (6)
C120.0148 (7)0.0222 (7)0.0286 (8)0.0055 (6)0.0001 (6)0.0131 (7)
C130.0178 (8)0.0323 (9)0.0458 (11)0.0070 (7)0.0044 (7)0.0266 (9)
C140.0253 (9)0.0514 (12)0.0426 (11)0.0163 (9)0.0126 (8)0.0367 (10)
C150.0325 (10)0.0552 (13)0.0228 (9)0.0190 (9)0.0096 (7)0.0213 (9)
C160.0246 (8)0.0339 (9)0.0160 (7)0.0081 (7)0.0016 (6)0.0079 (7)
C210.0181 (7)0.0148 (6)0.0109 (6)0.0044 (5)0.0003 (5)0.0022 (5)
C220.0209 (8)0.0215 (7)0.0201 (7)0.0086 (6)0.0028 (6)0.0069 (6)
C230.0357 (10)0.0241 (8)0.0231 (8)0.0164 (7)0.0103 (7)0.0094 (7)
C240.0493 (12)0.0160 (7)0.0212 (8)0.0078 (8)0.0020 (8)0.0008 (6)
C250.0383 (11)0.0196 (8)0.0289 (9)0.0019 (7)0.0101 (8)0.0010 (7)
C260.0249 (8)0.0183 (7)0.0213 (8)0.0020 (6)0.0074 (6)0.0005 (6)
C310.0128 (6)0.0141 (6)0.0180 (7)0.0027 (5)0.0029 (5)0.0021 (5)
C320.0175 (7)0.0209 (7)0.0248 (8)0.0042 (6)0.0044 (6)0.0073 (6)
C330.0219 (8)0.0336 (10)0.0408 (11)0.0080 (7)0.0083 (8)0.0173 (8)
C340.0171 (8)0.0388 (11)0.0508 (13)0.0101 (8)0.0037 (8)0.0163 (9)
C350.0167 (8)0.0450 (11)0.0377 (11)0.0099 (8)0.0055 (7)0.0147 (9)
C360.0175 (8)0.0337 (9)0.0253 (8)0.0082 (7)0.0026 (6)0.0123 (7)
Geometric parameters (Å, º) top
Ag1—N22.2849 (13)C11—C161.395 (2)
Ag1—P12.3369 (4)C11—C121.396 (2)
Ag1—O22.4068C12—C131.395 (2)
Ag1—O12.4898 (9)C12—H120.9500
P1—C211.8137 (15)C13—C141.385 (3)
P1—C311.8149 (16)C13—H130.9500
P1—C111.8187 (16)C14—C151.391 (3)
O1—C11.2304 (17)C14—H140.9500
O2—H2A0.8048C15—C161.393 (3)
O2—H2B0.8848C15—H150.9500
O3—N31.270 (2)C16—H160.9500
O4—N31.2404 (19)C21—C261.394 (2)
O5—N31.249 (2)C21—C221.400 (2)
N1—C11.340 (2)C22—C231.389 (2)
N1—N21.4008 (17)C22—H220.9500
N1—H10.8800C23—C241.387 (3)
N2—C21.287 (2)C23—H230.9500
C1—C1i1.524 (3)C24—C251.382 (3)
C2—C31.497 (2)C24—H240.9500
C2—C71.501 (2)C25—C261.394 (2)
C3—C41.542 (2)C25—H250.9500
C3—H3A0.9900C26—H260.9500
C3—H3B0.9900C31—C321.395 (2)
C4—C51.523 (2)C31—C361.398 (2)
C4—H4A0.9900C32—C331.394 (2)
C4—H4B0.9900C32—H320.9500
C5—C61.519 (2)C33—C341.385 (3)
C5—H5A0.9900C33—H330.9500
C5—H5B0.9900C34—C351.384 (3)
C6—C71.541 (2)C34—H340.9500
C6—H6A0.9900C35—C361.390 (3)
C6—H6B0.9900C35—H350.9500
C7—H7A0.9900C36—H360.9500
C7—H7B0.9900
N2—Ag1—P1146.83 (3)C2—C7—H7B109.7
N2—Ag1—O280.48 (4)C6—C7—H7B109.7
P1—Ag1—O2130.70 (2)H7A—C7—H7B108.2
N2—Ag1—O169.04 (4)C16—C11—C12120.00 (15)
P1—Ag1—O1118.43 (2)C16—C11—P1122.44 (13)
O2—Ag1—O184.40 (3)C12—C11—P1117.56 (12)
C21—P1—C31105.26 (7)C13—C12—C11120.17 (17)
C21—P1—C11105.67 (7)C13—C12—H12119.9
C31—P1—C11104.89 (7)C11—C12—H12119.9
C21—P1—Ag1113.89 (5)C14—C13—C12119.49 (19)
C31—P1—Ag1115.29 (5)C14—C13—H13120.3
C11—P1—Ag1110.99 (5)C12—C13—H13120.3
C1—O1—Ag1107.71 (8)C13—C14—C15120.72 (17)
Ag1—O2—H2A135.1C13—C14—H14119.6
Ag1—O2—H2B121.5C15—C14—H14119.6
H2A—O2—H2B103.3C14—C15—C16119.94 (19)
C1—N1—N2116.91 (12)C14—C15—H15120.0
C1—N1—H1121.5C16—C15—H15120.0
N2—N1—H1121.5C15—C16—C11119.67 (19)
C2—N2—N1117.05 (13)C15—C16—H16120.2
C2—N2—Ag1129.26 (11)C11—C16—H16120.2
N1—N2—Ag1113.55 (9)C26—C21—C22119.82 (15)
O4—N3—O5120.55 (16)C26—C21—P1122.88 (12)
O4—N3—O3119.69 (16)C22—C21—P1117.21 (12)
O5—N3—O3119.76 (14)C23—C22—C21119.81 (17)
O1—C1—N1125.99 (13)C23—C22—H22120.1
O1—C1—C1i121.54 (17)C21—C22—H22120.1
N1—C1—C1i112.43 (16)C24—C23—C22120.06 (17)
N2—C2—C3127.37 (15)C24—C23—H23120.0
N2—C2—C7117.00 (14)C22—C23—H23120.0
C3—C2—C7115.50 (13)C25—C24—C23120.41 (16)
C2—C3—C4109.85 (14)C25—C24—H24119.8
C2—C3—H3A109.7C23—C24—H24119.8
C4—C3—H3A109.7C24—C25—C26120.14 (18)
C2—C3—H3B109.7C24—C25—H25119.9
C4—C3—H3B109.7C26—C25—H25119.9
H3A—C3—H3B108.2C21—C26—C25119.75 (17)
C5—C4—C3112.15 (14)C21—C26—H26120.1
C5—C4—H4A109.2C25—C26—H26120.1
C3—C4—H4A109.2C32—C31—C36119.17 (15)
C5—C4—H4B109.2C32—C31—P1122.66 (12)
C3—C4—H4B109.2C36—C31—P1118.16 (12)
H4A—C4—H4B107.9C33—C32—C31119.95 (17)
C6—C5—C4110.70 (14)C33—C32—H32120.0
C6—C5—H5A109.5C31—C32—H32120.0
C4—C5—H5A109.5C34—C33—C32120.11 (18)
C6—C5—H5B109.5C34—C33—H33119.9
C4—C5—H5B109.5C32—C33—H33119.9
H5A—C5—H5B108.1C35—C34—C33120.54 (17)
C5—C6—C7109.82 (14)C35—C34—H34119.7
C5—C6—H6A109.7C33—C34—H34119.7
C7—C6—H6A109.7C34—C35—C36119.52 (18)
C5—C6—H6B109.7C34—C35—H35120.2
C7—C6—H6B109.7C36—C35—H35120.2
H6A—C6—H6B108.2C35—C36—C31120.69 (17)
C2—C7—C6109.86 (13)C35—C36—H36119.7
C2—C7—H7A109.7C31—C36—H36119.7
C6—C7—H7A109.7
C1—N1—N2—C2158.29 (14)C12—C11—C16—C150.4 (3)
C1—N1—N2—Ag117.79 (16)P1—C11—C16—C15179.89 (14)
Ag1—O1—C1—N122.20 (17)C31—P1—C21—C260.36 (16)
Ag1—O1—C1—C1i160.03 (15)C11—P1—C21—C26111.04 (14)
N2—N1—C1—O15.0 (2)Ag1—P1—C21—C26126.88 (13)
N2—N1—C1—C1i177.05 (14)C31—P1—C21—C22176.91 (12)
N1—N2—C2—C34.3 (2)C11—P1—C21—C2272.41 (13)
Ag1—N2—C2—C3171.05 (12)Ag1—P1—C21—C2249.67 (13)
N1—N2—C2—C7179.89 (13)C26—C21—C22—C231.3 (2)
Ag1—N2—C2—C74.5 (2)P1—C21—C22—C23177.95 (13)
N2—C2—C3—C4123.63 (18)C21—C22—C23—C241.1 (3)
C7—C2—C3—C452.01 (19)C22—C23—C24—C250.1 (3)
C2—C3—C4—C551.65 (19)C23—C24—C25—C260.7 (3)
C3—C4—C5—C656.69 (19)C22—C21—C26—C250.5 (3)
C4—C5—C6—C758.54 (18)P1—C21—C26—C25176.97 (14)
N2—C2—C7—C6121.04 (16)C24—C25—C26—C210.5 (3)
C3—C2—C7—C655.07 (19)C21—P1—C31—C3295.87 (14)
C5—C6—C7—C256.55 (18)C11—P1—C31—C3215.37 (15)
C21—P1—C11—C1617.38 (16)Ag1—P1—C31—C32137.74 (12)
C31—P1—C11—C1693.57 (15)C21—P1—C31—C3685.04 (14)
Ag1—P1—C11—C16141.31 (13)C11—P1—C31—C36163.72 (13)
C21—P1—C11—C12162.09 (12)Ag1—P1—C31—C3641.35 (15)
C31—P1—C11—C1286.96 (13)C36—C31—C32—C331.6 (3)
Ag1—P1—C11—C1238.16 (13)P1—C31—C32—C33177.50 (14)
C16—C11—C12—C130.6 (2)C31—C32—C33—C340.4 (3)
P1—C11—C12—C13179.91 (13)C32—C33—C34—C351.1 (3)
C11—C12—C13—C140.2 (3)C33—C34—C35—C361.5 (3)
C12—C13—C14—C150.3 (3)C34—C35—C36—C310.3 (3)
C13—C14—C15—C160.5 (3)C32—C31—C36—C351.2 (3)
C14—C15—C16—C110.1 (3)P1—C31—C36—C35177.89 (16)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.802.022.8103 (17)167
O2—H2B···O3ii0.881.982.8684 (16)177
N1—H1···O5ii0.882.162.8407 (19)134
C22—H22···O40.952.583.297 (2)133
Symmetry code: (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.802.022.8103 (17)166.5
O2—H2B···O3i0.881.982.8684 (16)176.9
N1—H1···O5i0.882.162.8407 (19)133.6
C22—H22···O40.952.583.297 (2)132.6
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), the Office of the Higher Education Commission, Ministry of Education, and the Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. RN would like to thank Dr Matthias Zeller for valuable suggestions and assistance with the X-ray structure determination and use of structure refinement programs.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFouda, A. S., Mostafa, H. A., Ghazy, S. E. & El-Farah, S. A. (2007). Int. J. Electrochem. Sci. 2, 182–194.  CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502–1506.  Web of Science CSD CrossRef CAS Google Scholar
First citationPakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506–m1507.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationQu, Q., Gao, G., Gao, H., Li, L. & Ding, Z. (2011). Mater. Corros. 62, 778–785.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStar, B. J. van der, Vogel, D. Y., Kipp, M., Puentes, F., Baker, D. & Amor, S. (2012). CNS Neurol. Disord. Drug Targets, 11, 570–588.  Web of Science PubMed Google Scholar
First citationWattanakanjana, Y., Pakawatchai, C. & Nimthong, R. (2013). Acta Cryst. E69, m83–m84.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m30-m31
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds