metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N,N′,N′,N′-Hexa­kis­(2-hy­dr­oxy­ethyl)butane-1,4-diaminium bis­­(2-sul­fan­yl­idene-1,3-di­thiole-4,5-di­thiolato-κ2S4,S5)zincate

aInstitute of Functionalized Materials, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China, and bCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
*Correspondence e-mail: zxlsuse@sina.com

(Received 16 May 2013; accepted 31 May 2013; online 8 June 2013)

In the asymmetric unit of the title compound, (C16H38N2O6)[Zn(C3S5)2], two independent cations lie across inversion centers. In one of the cations, the three symmetry-unique O—H groups are disordered over two sets of sites with refined occupancy ratios of 0.701 (9):0.299 (9), 0.671 (8):0.329 (8) and 0.566 (7):0.434 (7). In the anion, the ZnII ion is coordinated in a distorted tetra­hedral environment by four S atoms of two chelating 1,3-di­thiole-2-thione-4,5-dithiolato ligands. The dihedral angle between the mean planes [maximun deviations = 0.022 (3) and 0.0656 (6) Å] of the two ligands is 87.76 (3)°. An intamolecular O—H⋯O hydrogen bond occurs in the disordered cation. In the crystal, O—H⋯O and O—H⋯S hydrogen bonds link the components into a two-dimensional network parallel to (0-11).

Related literature

For synthetic background to the title compound, see: Steimecke et al. (1982[Steimecke, G., Sieler, H. J. & Kirmse, R. (1982). Phosphorus Sulfur Silicon Relat. Elem. 12, 237-247.]); Xie et al. (2009[Xie, B., Zhang, X.-L., Zou, L.-K., Wang, J., Lai, C., Wu, Y. & Feng, J.-S. (2009). Chem. J. Chine. Univ. 30, 2337-2343.]). For a related crystal structure, see: Zhao et al. (2011[Zhao, X., Wang, Y.-L., Zhang, B.-P., Qin, Y.-M., Yao, J. & Jiang, G. C. (2011). Z. Kristallogr. New Cryst. Struct. 226, 251-253.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H38N2O6)[Zn(C3S5)2]

  • Mr = 812.51

  • Triclinic, [P \overline 1]

  • a = 9.051 (5) Å

  • b = 13.142 (7) Å

  • c = 15.321 (8) Å

  • α = 69.803 (5)°

  • β = 84.566 (5)°

  • γ = 76.909 (6)°

  • V = 1665.6 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.757, Tmax = 0.767

  • 11410 measured reflections

  • 7406 independent reflections

  • 6279 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.05

  • 7406 reflections

  • 401 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.82 2.03 2.800 (5) 157
O2—H2⋯O5i 0.82 1.93 2.668 (5) 149
O3—H3⋯O2ii 0.82 2.16 2.923 (3) 154
O4—H4⋯O6i 0.82 2.07 2.887 (8) 179
O5—H5⋯O6 0.82 1.79 2.615 (9) 179
O6—H6⋯S2iii 0.82 2.92 3.540 (8) 134
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

The crystal structure of the title compound is presented herein. The anion is shown in Fig. 1 and the cations are shown in Figs. 3 and 4. The asymmetric unit contains two independent cations which lie across inversion centers. In one of the cations the three symmetry unique O—H groups are disordered over two sets of sites with refined occupancy ratios of 0.701 (9):0.299 (9) for O4:O4', 0.671 (8):0.329 (8) for O5:O5' and 0.567 (7):0.434 (7) for O6:O6'. In the anion, the ZnII ion is coordinated in a distorted tetrahedral coordination environment by four S atoms of two chelating 1,3-dithiole-2-thione-4,5-dithilato ligands. The dihedral angle between the mean planes of the two ligands (with maximun deviations of 0.022 (3) for C3 and 0.0656 (6) Å for S8) is 87.76 (3)°. In the crystal, O—H···O and O—H···S hydrogen bonds link the components of the structure into a two-dimensional network parallel to (011) (Fig. 4). Only the donor H atoms of the major components of disorder have been considered. The bis(tetra-N-butylammoniun) analogue of the title compound has been reported in the literature (Zhao et al., 2011).

Related literature top

For synthetic background to the title compound, see: Steimecke et al. (1982); Xie et al. (2009). For a related crystal structure, see: Zhao et al. (2011).

Experimental top

All synthetic procedures were carried out under nitrogen using standard Schlenk techniques. The compound tdb(COPh)2 (tdb = 4,5-dimercapto-1,3-dithiole-2-thione) was synthesized according to procedure described by Steimecke et al. (1982) and Xie et al. (2009). The quatemary ammonium salt N,N'-bis(tri(2'-hydroethyl)-1,4-butanediammonium bromide [BDA]Br2 was obtained by the reaction of triethanolamine (30 g, 0.2 mol) and 1,4-dibromobutane (21 g, 0.1 mol) in refluxing acetone for one week. The compound tdb(COPh)2 (0.812 g, 2 mmol) was dissolved in sodium methoxide solution at room temperature to give a dark red solution after 0.5 h. To this solution ZnCl2.6H2O (0.244 g, 1 mmol) was added. After stirring the reaction mixture for 1 h, [BDA]Br2 (0.486 g, 1 mmol) was added to form a red solution. The reaction mixture was filtered off after 1 h, and the filtrate was then standed. The red crystals were obtained after two weeks.

Refinement top

H atoms were placed in calculated positions with C—H = 0.97 Å and O—H = 0.82 Å and included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The C—O distances in the major and minor components of disorder were constrined to be similar.

Structure description top

The crystal structure of the title compound is presented herein. The anion is shown in Fig. 1 and the cations are shown in Figs. 3 and 4. The asymmetric unit contains two independent cations which lie across inversion centers. In one of the cations the three symmetry unique O—H groups are disordered over two sets of sites with refined occupancy ratios of 0.701 (9):0.299 (9) for O4:O4', 0.671 (8):0.329 (8) for O5:O5' and 0.567 (7):0.434 (7) for O6:O6'. In the anion, the ZnII ion is coordinated in a distorted tetrahedral coordination environment by four S atoms of two chelating 1,3-dithiole-2-thione-4,5-dithilato ligands. The dihedral angle between the mean planes of the two ligands (with maximun deviations of 0.022 (3) for C3 and 0.0656 (6) Å for S8) is 87.76 (3)°. In the crystal, O—H···O and O—H···S hydrogen bonds link the components of the structure into a two-dimensional network parallel to (011) (Fig. 4). Only the donor H atoms of the major components of disorder have been considered. The bis(tetra-N-butylammoniun) analogue of the title compound has been reported in the literature (Zhao et al., 2011).

For synthetic background to the title compound, see: Steimecke et al. (1982); Xie et al. (2009). For a related crystal structure, see: Zhao et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The anion with displacement ellipsoids shown at the 30% level.
[Figure 2] Fig. 2. The ordered cation with displacement ellipsoids shown at the 30% level. Unlabled atoms are related by the symmetry operator (-x + 1, -y + 2, -z + 1).
[Figure 3] Fig. 3. The disordered cation with displacement ellipsoids shown at the 30% level. Unlabled atoms are related by the symmetry operator (-x + 1, -y + 1, -z). The minor components are shown with dashed lines.
[Figure 4] Fig. 4. Part of the crystal structure with donor-acceptor distances of hydrogen bonds shown as dashed lines.
N,N,N,N',N',N'-Hexakis(2-hydroxyethyl)butane-1,4-diaminium bis(2-sulfanylidene-1,3-dithiole-4,5-dithiolato-κ2S4,S5)zincate top
Crystal data top
(C16H38N2O6)[Zn(C3S5)2]Z = 2
Mr = 812.51F(000) = 844
Triclinic, P1Dx = 1.620 Mg m3
a = 9.051 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.142 (7) ÅCell parameters from 6094 reflections
c = 15.321 (8) Åθ = 2.5–28.4°
α = 69.803 (5)°µ = 1.40 mm1
β = 84.566 (5)°T = 296 K
γ = 76.909 (6)°Block, red
V = 1665.6 (15) Å30.21 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6279 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
φ and ω scansθmax = 28.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1211
Tmin = 0.757, Tmax = 0.767k = 1712
11410 measured reflectionsl = 1920
7406 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0483P)2 + 1.1464P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7406 reflectionsΔρmax = 0.89 e Å3
401 parametersΔρmin = 0.61 e Å3
Crystal data top
(C16H38N2O6)[Zn(C3S5)2]γ = 76.909 (6)°
Mr = 812.51V = 1665.6 (15) Å3
Triclinic, P1Z = 2
a = 9.051 (5) ÅMo Kα radiation
b = 13.142 (7) ŵ = 1.40 mm1
c = 15.321 (8) ÅT = 296 K
α = 69.803 (5)°0.21 × 0.20 × 0.20 mm
β = 84.566 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7406 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6279 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.767Rint = 0.017
11410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0354 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.89 e Å3
7406 reflectionsΔρmin = 0.61 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.72260 (3)0.31560 (2)0.29989 (2)0.03324 (9)
S11.43528 (9)0.07781 (8)0.13331 (7)0.0595 (2)
S21.16079 (8)0.26092 (7)0.11098 (5)0.04481 (17)
S31.19712 (7)0.07888 (6)0.28040 (5)0.04110 (16)
S40.86527 (8)0.38273 (6)0.16423 (5)0.03975 (16)
S50.91180 (7)0.16205 (5)0.37140 (4)0.03560 (14)
S60.60063 (7)0.43102 (5)0.38427 (4)0.03266 (14)
S70.49964 (7)0.27202 (5)0.26931 (5)0.03467 (14)
S80.18379 (7)0.36528 (5)0.31683 (4)0.03174 (13)
S90.26376 (7)0.50500 (5)0.40545 (4)0.03092 (13)
S100.06504 (7)0.51276 (7)0.38168 (6)0.04485 (18)
C11.2721 (3)0.1367 (2)0.1725 (2)0.0407 (6)
C21.0312 (3)0.1804 (2)0.27378 (17)0.0298 (5)
C31.0134 (3)0.2666 (2)0.19272 (17)0.0316 (5)
C40.3785 (3)0.35788 (19)0.32191 (16)0.0270 (5)
C50.4163 (3)0.42241 (19)0.36549 (16)0.0274 (5)
C60.1181 (3)0.4648 (2)0.36886 (17)0.0304 (5)
O10.8411 (3)1.0111 (2)0.13299 (15)0.0738 (8)
H10.92540.97450.12720.111*
O21.1048 (2)0.8211 (2)0.34668 (15)0.0574 (6)
H21.07530.82260.29720.086*
O30.3905 (2)0.79755 (19)0.43313 (15)0.0518 (5)
H30.31660.82420.39940.078*
N10.7275 (2)0.87055 (15)0.38146 (13)0.0259 (4)
C150.5189 (3)0.7627 (3)0.3815 (2)0.0452 (7)
H15A0.50920.81120.31720.054*
H15B0.51900.68840.38270.054*
C160.6697 (3)0.76267 (19)0.41688 (18)0.0325 (5)
H16A0.74600.70620.40150.039*
H16B0.66230.74030.48420.039*
C170.5665 (3)0.9539 (2)0.49775 (17)0.0374 (6)
H17A0.53930.88260.52900.045*
H17B0.65250.95720.52920.045*
C180.6089 (3)0.9665 (2)0.39676 (16)0.0303 (5)
H18A0.64701.03410.36880.036*
H18B0.51770.97480.36420.036*
C190.7612 (3)0.8966 (2)0.27804 (16)0.0332 (5)
H19A0.67000.89870.24840.040*
H19B0.83820.83600.26950.040*
C200.8147 (4)1.0040 (3)0.22751 (19)0.0460 (7)
H20A0.73791.06680.23220.055*
H20B0.90721.00400.25470.055*
C210.8694 (3)0.8543 (2)0.43514 (17)0.0307 (5)
H21A0.89700.92580.41920.037*
H21B0.84330.83100.50100.037*
C221.0087 (3)0.7720 (2)0.42009 (19)0.0362 (5)
H22A1.06580.73830.47710.043*
H22B0.97620.71370.40660.043*
C120.6135 (5)0.6888 (6)0.1276 (3)0.0924 (16)
H12A0.67340.63840.09780.111*0.701 (9)
H12B0.59200.76230.08140.111*0.701 (9)
O40.6950 (5)0.6901 (5)0.1991 (3)0.096 (2)0.701 (9)
H40.77450.70240.17110.144*0.701 (9)
C140.2392 (5)0.8699 (3)0.1175 (3)0.0687 (10)
H14A0.31980.85120.16130.082*0.671 (8)
H14B0.22460.94870.08310.082*0.671 (8)
O50.1091 (4)0.8486 (4)0.1657 (3)0.0746 (16)0.671 (8)
H50.06690.81260.14550.112*0.671 (8)
C70.0785 (5)0.6446 (4)0.0908 (3)0.0781 (12)
H7A0.10680.65770.02580.094*0.566 (7)
H7B0.03420.57930.11310.094*0.566 (7)
O60.0266 (7)0.7353 (6)0.1000 (6)0.132 (3)0.566 (7)
H60.05770.77650.04850.198*0.566 (7)
H12C0.69570.63760.16650.111*0.299 (9)
H12D0.63270.68500.06530.111*0.299 (9)
O4'0.6138 (17)0.7934 (8)0.1249 (11)0.130 (7)0.299 (9)
H4'0.69450.80990.10220.195*0.299 (9)
H14C0.18480.82660.16950.082*0.329 (8)
H14D0.32920.87840.14180.082*0.329 (8)
O5'0.1495 (14)0.9722 (7)0.0798 (9)0.141 (6)0.329 (8)
H5'0.19131.00770.03300.212*0.329 (8)
H7'10.04790.72320.05710.094*0.434 (7)
H7'20.10530.60700.04530.094*0.434 (7)
O6'0.0404 (6)0.6090 (5)0.1422 (5)0.074 (2)0.434 (7)
H6'0.06840.64400.17810.111*0.434 (7)
N20.3447 (3)0.68177 (19)0.09357 (14)0.0369 (5)
C80.2173 (3)0.6257 (3)0.1464 (2)0.0472 (7)
H8A0.25750.54660.17130.057*
H8B0.18610.65160.19870.057*
C90.4633 (4)0.5148 (3)0.0416 (2)0.0559 (8)
H9A0.53670.49130.09050.067*
H9B0.38010.47690.06540.067*
C100.4042 (3)0.6398 (2)0.01308 (18)0.0424 (6)
H10A0.32320.66070.03090.051*
H10B0.48540.67650.01870.051*
C110.4673 (3)0.6526 (3)0.1644 (2)0.0528 (8)
H11A0.42680.68520.21180.063*
H11B0.48980.57280.19430.063*
C130.2875 (4)0.8067 (2)0.0507 (2)0.0485 (7)
H13A0.36720.83750.01030.058*
H13B0.20200.81940.01190.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02578 (15)0.03610 (17)0.03580 (16)0.00251 (11)0.00140 (11)0.01242 (13)
S10.0344 (4)0.0688 (5)0.0720 (5)0.0009 (4)0.0130 (4)0.0290 (4)
S20.0335 (4)0.0567 (4)0.0376 (3)0.0042 (3)0.0051 (3)0.0122 (3)
S30.0283 (3)0.0377 (3)0.0515 (4)0.0017 (3)0.0002 (3)0.0112 (3)
S40.0327 (3)0.0404 (4)0.0361 (3)0.0009 (3)0.0001 (3)0.0047 (3)
S50.0329 (3)0.0352 (3)0.0331 (3)0.0036 (2)0.0006 (2)0.0070 (3)
S60.0228 (3)0.0394 (3)0.0415 (3)0.0072 (2)0.0022 (2)0.0198 (3)
S70.0306 (3)0.0353 (3)0.0433 (3)0.0053 (2)0.0013 (2)0.0211 (3)
S80.0252 (3)0.0344 (3)0.0413 (3)0.0095 (2)0.0010 (2)0.0175 (3)
S90.0248 (3)0.0339 (3)0.0393 (3)0.0058 (2)0.0003 (2)0.0191 (3)
S100.0227 (3)0.0550 (4)0.0645 (5)0.0040 (3)0.0011 (3)0.0325 (4)
C10.0292 (13)0.0487 (16)0.0478 (15)0.0086 (11)0.0008 (11)0.0209 (13)
C20.0227 (11)0.0323 (12)0.0376 (12)0.0060 (9)0.0006 (9)0.0155 (10)
C30.0250 (12)0.0392 (13)0.0336 (12)0.0071 (10)0.0013 (9)0.0154 (11)
C40.0243 (11)0.0270 (11)0.0302 (11)0.0069 (8)0.0000 (9)0.0092 (9)
C50.0221 (11)0.0291 (11)0.0314 (11)0.0057 (8)0.0015 (9)0.0108 (9)
C60.0245 (11)0.0317 (12)0.0356 (12)0.0057 (9)0.0005 (9)0.0125 (10)
O10.0740 (18)0.0860 (19)0.0353 (11)0.0018 (14)0.0146 (11)0.0034 (11)
O20.0394 (12)0.0719 (15)0.0470 (12)0.0044 (10)0.0077 (9)0.0093 (11)
O30.0262 (10)0.0638 (14)0.0569 (13)0.0061 (9)0.0003 (9)0.0119 (11)
N10.0251 (9)0.0245 (9)0.0274 (9)0.0024 (7)0.0012 (7)0.0098 (8)
C150.0380 (15)0.0541 (17)0.0509 (16)0.0195 (13)0.0036 (12)0.0216 (14)
C160.0303 (12)0.0256 (11)0.0416 (13)0.0056 (9)0.0032 (10)0.0123 (10)
C170.0383 (14)0.0381 (14)0.0314 (12)0.0051 (11)0.0017 (10)0.0149 (11)
C180.0304 (12)0.0279 (11)0.0297 (11)0.0035 (9)0.0005 (9)0.0124 (10)
C190.0318 (13)0.0392 (13)0.0294 (12)0.0043 (10)0.0028 (9)0.0154 (10)
C200.0457 (16)0.0521 (17)0.0334 (13)0.0116 (13)0.0064 (12)0.0067 (12)
C210.0285 (12)0.0314 (12)0.0326 (12)0.0051 (9)0.0015 (9)0.0117 (10)
C220.0276 (12)0.0344 (13)0.0438 (14)0.0025 (10)0.0024 (10)0.0116 (11)
C120.052 (2)0.166 (5)0.070 (3)0.045 (3)0.0022 (19)0.038 (3)
O40.063 (3)0.174 (6)0.073 (3)0.052 (3)0.000 (2)0.052 (3)
C140.074 (3)0.055 (2)0.081 (3)0.0139 (18)0.016 (2)0.032 (2)
O50.064 (3)0.090 (3)0.081 (3)0.011 (2)0.019 (2)0.051 (3)
C70.050 (2)0.100 (3)0.085 (3)0.029 (2)0.008 (2)0.022 (2)
O60.063 (4)0.155 (7)0.160 (7)0.022 (4)0.014 (4)0.027 (6)
C12'0.052 (2)0.166 (5)0.070 (3)0.045 (3)0.0022 (19)0.038 (3)
O4'0.118 (12)0.135 (14)0.144 (14)0.061 (10)0.011 (10)0.038 (11)
C14'0.074 (3)0.055 (2)0.081 (3)0.0139 (18)0.016 (2)0.032 (2)
O5'0.147 (13)0.120 (11)0.165 (13)0.029 (9)0.023 (10)0.064 (10)
C7'0.050 (2)0.100 (3)0.085 (3)0.029 (2)0.008 (2)0.022 (2)
O6'0.054 (4)0.075 (5)0.092 (5)0.017 (3)0.008 (3)0.026 (4)
N20.0359 (12)0.0431 (12)0.0289 (10)0.0098 (9)0.0011 (9)0.0073 (9)
C80.0456 (17)0.0516 (17)0.0398 (15)0.0170 (13)0.0037 (12)0.0064 (13)
C90.065 (2)0.0458 (17)0.0473 (17)0.0007 (15)0.0007 (15)0.0111 (14)
C100.0466 (16)0.0435 (15)0.0310 (13)0.0018 (12)0.0026 (11)0.0092 (11)
C110.0431 (17)0.082 (2)0.0343 (14)0.0149 (16)0.0041 (12)0.0180 (15)
C130.0537 (18)0.0422 (16)0.0448 (15)0.0095 (13)0.0081 (13)0.0111 (13)
Geometric parameters (Å, º) top
Zn1—S52.3384 (11)C19—H19B0.9700
Zn1—S42.3467 (11)C20—H20A0.9700
Zn1—S72.3468 (13)C20—H20B0.9700
Zn1—S62.3487 (10)C21—C221.520 (3)
S1—C11.666 (3)C21—H21A0.9700
S2—C11.715 (3)C21—H21B0.9700
S2—C31.748 (3)C22—H22A0.9700
S3—C11.710 (3)C22—H22B0.9700
S3—C21.753 (3)C12—O41.384 (5)
S4—C31.744 (3)C12—C111.501 (5)
S5—C21.740 (3)C12—H12A0.9700
S6—C51.754 (3)C12—H12B0.9700
S7—C41.739 (2)O4—H40.8200
S8—C61.726 (3)C14—O51.360 (5)
S8—C41.751 (3)C14—C131.506 (5)
S9—C61.730 (3)C14—H14A0.9700
S9—C51.755 (2)C14—H14B0.9700
S10—C61.653 (3)O5—H50.8200
C2—C31.355 (4)C7—O61.387 (6)
C4—C51.359 (3)C7—C81.510 (5)
O1—C201.419 (4)C7—H7A0.9700
O1—H10.8200C7—H7B0.9700
O2—C221.416 (3)O6—H60.8200
O2—H20.8200O4'—H4'0.8200
O3—C151.422 (4)O5'—H5'0.8200
O3—H30.8200O6'—H6'0.8200
N1—C191.517 (3)N2—C111.517 (4)
N1—C211.525 (3)N2—C81.524 (4)
N1—C161.526 (3)N2—C101.525 (3)
N1—C181.529 (3)N2—C131.526 (4)
C15—C161.515 (4)C8—H8A0.9700
C15—H15A0.9700C8—H8B0.9700
C15—H15B0.9700C9—C9ii1.511 (6)
C16—H16A0.9700C9—C101.524 (4)
C16—H16B0.9700C9—H9A0.9700
C17—C17i1.517 (5)C9—H9B0.9700
C17—C181.520 (3)C10—H10A0.9700
C17—H17A0.9700C10—H10B0.9700
C17—H17B0.9700C11—H11A0.9700
C18—H18A0.9700C11—H11B0.9700
C18—H18B0.9700C13—H13A0.9700
C19—C201.520 (4)C13—H13B0.9700
C19—H19A0.9700
S5—Zn1—S495.39 (4)C19—C20—H20A110.3
S5—Zn1—S7114.65 (5)O1—C20—H20B110.3
S4—Zn1—S7112.42 (4)C19—C20—H20B110.3
S5—Zn1—S6119.13 (4)H20A—C20—H20B108.5
S4—Zn1—S6121.38 (4)C22—C21—N1117.3 (2)
S7—Zn1—S695.16 (4)C22—C21—H21A108.0
C1—S2—C398.74 (13)N1—C21—H21A108.0
C1—S3—C298.65 (13)C22—C21—H21B108.0
C3—S4—Zn194.44 (9)N1—C21—H21B108.0
C2—S5—Zn194.63 (9)H21A—C21—H21B107.2
C5—S6—Zn195.26 (8)O2—C22—C21113.1 (2)
C4—S7—Zn195.17 (9)O2—C22—H22A109.0
C6—S8—C498.40 (11)C21—C22—H22A109.0
C6—S9—C597.96 (12)O2—C22—H22B109.0
S1—C1—S3123.13 (18)C21—C22—H22B109.0
S1—C1—S2124.60 (18)H22A—C22—H22B107.8
S3—C1—S2112.26 (15)O4—C12—C11110.5 (4)
C3—C2—S5127.41 (19)O4—C12—H12A109.6
C3—C2—S3115.23 (18)C11—C12—H12A109.5
S5—C2—S3117.34 (14)O4—C12—H12B109.6
C2—C3—S4127.16 (19)C11—C12—H12B109.6
C2—C3—S2115.10 (19)H12A—C12—H12B108.1
S4—C3—S2117.70 (15)C12—O4—H4100.0
C5—C4—S7127.82 (18)O5—C14—C13113.3 (3)
C5—C4—S8115.32 (18)O5—C14—H14A108.9
S7—C4—S8116.85 (13)C13—C14—H14A108.9
C4—C5—S6126.34 (18)O5—C14—H14B108.9
C4—C5—S9115.79 (18)C13—C14—H14B108.9
S6—C5—S9117.87 (14)H14A—C14—H14B107.7
S10—C6—S8122.11 (15)C14—O5—H5112.3
S10—C6—S9125.45 (15)O6—C7—C8109.5 (5)
S8—C6—S9112.43 (13)O6—C7—H7A109.8
C20—O1—H1109.5C8—C7—H7A109.8
C22—O2—H2109.5O6—C7—H7B109.8
C15—O3—H3109.5C8—C7—H7B109.8
C19—N1—C21111.68 (18)H7A—C7—H7B108.2
C19—N1—C16107.84 (18)C7—O6—H6109.5
C21—N1—C16108.20 (18)C11—N2—C8105.6 (2)
C19—N1—C18109.04 (17)C11—N2—C10111.1 (2)
C21—N1—C18108.76 (18)C8—N2—C10110.7 (2)
C16—N1—C18111.34 (18)C11—N2—C13112.3 (2)
O3—C15—C16114.3 (2)C8—N2—C13110.9 (2)
O3—C15—H15A108.7C10—N2—C13106.4 (2)
C16—C15—H15A108.7C7—C8—N2115.9 (3)
O3—C15—H15B108.7C7—C8—H8A108.3
C16—C15—H15B108.7N2—C8—H8A108.3
H15A—C15—H15B107.6C7—C8—H8B108.3
C15—C16—N1117.8 (2)N2—C8—H8B108.3
C15—C16—H16A107.9H8A—C8—H8B107.4
N1—C16—H16A107.9C9ii—C9—C10109.6 (3)
C15—C16—H16B107.9C9ii—C9—H9A109.8
N1—C16—H16B107.9C10—C9—H9A109.8
H16A—C16—H16B107.2C9ii—C9—H9B109.8
C17i—C17—C18109.6 (3)C10—C9—H9B109.8
C17i—C17—H17A109.8H9A—C9—H9B108.2
C18—C17—H17A109.8C9—C10—N2114.5 (2)
C17i—C17—H17B109.8C9—C10—H10A108.6
C18—C17—H17B109.8N2—C10—H10A108.6
H17A—C17—H17B108.2C9—C10—H10B108.6
C17—C18—N1115.26 (19)N2—C10—H10B108.6
C17—C18—H18A108.5H10A—C10—H10B107.6
N1—C18—H18A108.5C12—C11—N2116.3 (3)
C17—C18—H18B108.5C12—C11—H11A108.2
N1—C18—H18B108.5N2—C11—H11A108.2
H18A—C18—H18B107.5C12—C11—H11B108.2
N1—C19—C20116.6 (2)N2—C11—H11B108.2
N1—C19—H19A108.1H11A—C11—H11B107.4
C20—C19—H19A108.1C14—C13—N2116.5 (3)
N1—C19—H19B108.1C14—C13—H13A108.2
C20—C19—H19B108.1N2—C13—H13A108.2
H19A—C19—H19B107.3C14—C13—H13B108.2
O1—C20—C19107.3 (3)N2—C13—H13B108.2
O1—C20—H20A110.3H13A—C13—H13B107.3
C2—S3—C1—S1179.27 (18)O3—C15—C16—N186.4 (3)
C2—S3—C1—S21.05 (18)C19—N1—C16—C1565.9 (3)
C3—S2—C1—S1178.89 (19)C21—N1—C16—C15173.2 (2)
C3—S2—C1—S31.43 (18)C18—N1—C16—C1553.7 (3)
Zn1—S5—C2—C37.0 (2)C17i—C17—C18—N1172.2 (3)
Zn1—S5—C2—S3175.04 (12)C19—N1—C18—C17178.3 (2)
C1—S3—C2—C30.1 (2)C21—N1—C18—C1756.3 (3)
C1—S3—C2—S5178.35 (15)C16—N1—C18—C1762.8 (3)
S5—C2—C3—S40.1 (4)C21—N1—C19—C2063.6 (3)
S3—C2—C3—S4178.16 (14)C16—N1—C19—C20177.6 (2)
S5—C2—C3—S2177.16 (14)C18—N1—C19—C2056.6 (3)
S3—C2—C3—S20.9 (3)N1—C19—C20—O1179.3 (2)
Zn1—S4—C3—C26.8 (2)C19—N1—C21—C2252.4 (3)
Zn1—S4—C3—S2175.99 (13)C16—N1—C21—C2266.2 (3)
C1—S2—C3—C21.4 (2)C18—N1—C21—C22172.8 (2)
C1—S2—C3—S4178.98 (15)N1—C21—C22—O290.2 (3)
Zn1—S7—C4—C51.2 (2)O6—C7—C8—N292.6 (5)
Zn1—S7—C4—S8177.39 (12)C11—N2—C8—C7178.7 (3)
C6—S8—C4—C53.0 (2)C10—N2—C8—C761.0 (4)
C6—S8—C4—S7175.81 (14)C13—N2—C8—C756.8 (4)
S7—C4—C5—S62.9 (3)C9ii—C9—C10—N2172.9 (3)
S8—C4—C5—S6178.43 (13)C11—N2—C10—C959.0 (3)
S7—C4—C5—S9176.60 (14)C8—N2—C10—C957.9 (3)
S8—C4—C5—S92.0 (3)C13—N2—C10—C9178.5 (3)
Zn1—S6—C5—C45.0 (2)O4—C12—C11—N2160.9 (4)
Zn1—S6—C5—S9174.57 (12)C8—N2—C11—C12174.2 (4)
C6—S9—C5—C40.1 (2)C10—N2—C11—C1254.1 (4)
C6—S9—C5—S6179.63 (14)C13—N2—C11—C1264.9 (4)
C4—S8—C6—S10177.80 (16)O5—C14—C13—N269.8 (5)
C4—S8—C6—S92.82 (16)C11—N2—C13—C1451.4 (4)
C5—S9—C6—S10178.71 (17)C8—N2—C13—C1466.4 (4)
C5—S9—C6—S81.93 (16)C10—N2—C13—C14173.1 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5iii0.822.032.800 (5)157
O2—H2···O5iii0.821.932.668 (5)149
O3—H3···O2iv0.822.162.923 (3)154
O4—H4···O6iii0.822.072.887 (8)179
O5—H5···O60.821.792.615 (9)179
O6—H6···S2ii0.822.923.540 (8)134
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula(C16H38N2O6)[Zn(C3S5)2]
Mr812.51
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.051 (5), 13.142 (7), 15.321 (8)
α, β, γ (°)69.803 (5), 84.566 (5), 76.909 (6)
V3)1665.6 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.21 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.757, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
11410, 7406, 6279
Rint0.017
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.05
No. of reflections7406
No. of parameters401
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.61

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.822.032.800 (5)156.7
O2—H2···O5i0.821.932.668 (5)149.2
O3—H3···O2ii0.822.162.923 (3)154.0
O4—H4···O6i0.822.072.887 (8)179.3
O5—H5···O60.821.792.615 (9)179.2
O6—H6···S2iii0.822.923.540 (8)133.5
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge financial assistance from Sichuan University of Science and Engineering, the Institute of Functionalized Materials (grant No. 2009xjkpL004) and the Education Committee of Sichuan Province (Nos. 2011JY0052 and 13ZB0134).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteimecke, G., Sieler, H. J. & Kirmse, R. (1982). Phosphorus Sulfur Silicon Relat. Elem. 12, 237–247.  CrossRef CAS Google Scholar
First citationXie, B., Zhang, X.-L., Zou, L.-K., Wang, J., Lai, C., Wu, Y. & Feng, J.-S. (2009). Chem. J. Chine. Univ. 30, 2337–2343.  CAS Google Scholar
First citationZhao, X., Wang, Y.-L., Zhang, B.-P., Qin, Y.-M., Yao, J. & Jiang, G. C. (2011). Z. Kristallogr. New Cryst. Struct. 226, 251–253.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds