metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aquabis[N-(pyridin-3-yl)isonicotinamide-κN1]copper(II)]-μ-fumarato-κ2O1:O4]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825 USA
*Correspondence e-mail: laduca@msu.edu

(Received 13 November 2012; accepted 15 November 2012; online 24 November 2012)

In the title compound, [Cu(C4H2O4)(C11H9N3O)2(H2O)]n, CuII ions on crystallographic twofold rotation axes are coordinated in a square pyramidal environment by two trans O atoms belonging to two monodentate fumarate anions, two trans isonicotinamide pyridyl N-donor atoms from monodentate, pendant 3-pyridyl­isonicotinamide (3-pina) ligands, and one apical aqua ligand, also sited on the crystallographic twofold rotation axis. The exobidentate fumarate ligands form [Cu(fumar­ate)(3-pina)2(H2O)]n coordination polymer chains that are arranged parallel to [001]. In the crystal, these polymeric chains are anchored into supra­molecular layers parallel to (100) by O—H⋯O hydrogen bonds between aqua ligands and unligating fumarate O atoms, and N—H⋯O(=C) hydrogen bonds between 3-pina ligands. In turn, the layers aggregate by weak C—H⋯N and C—H⋯O hydrogen bonds, affording a three-dimensional network.

Related literature

For the preparation of 3-pyridyl­isonicotinamide, see: Gardner et al. (1954[Gardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem. 19, 753-757.]). For the preparation of other dicarboxyl­ate coordination polymers containing 3-pyridyl­isonicotinamide, see: Kumar (2009[Kumar, D. K. (2009). Inorg. Chim. Acta, 362, 1767-1771.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H2O4)(C11H9N3O)2(H2O)]

  • Mr = 594.04

  • Monoclinic, C 2/c

  • a = 29.854 (4) Å

  • b = 5.3535 (7) Å

  • c = 17.353 (2) Å

  • β = 118.686 (2)°

  • V = 2433.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 173 K

  • 0.25 × 0.13 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.794, Tmax = 0.919

  • 9406 measured reflections

  • 2240 independent reflections

  • 1758 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.083

  • S = 1.04

  • 2240 reflections

  • 188 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1i 0.84 (1) 1.83 (1) 2.660 (2) 169 (3)
N2—H2N⋯O2i 0.88 (2) 2.33 (2) 3.153 (3) 155 (3)
C2—H2⋯O4ii 0.95 2.48 3.360 (4) 153
C7—H7⋯O1iii 0.95 2.48 3.430 (4) 178
C9—H9⋯N1iv 0.95 2.39 3.263 (4) 153
C12—H12⋯O1v 0.95 2.43 3.374 (4) 171
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (iii) [-x, y+1, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal Maker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In comparison to divalent metal coordination polymers containing rigid rod dipyridine ligands such as 4,4'-bipyridine, related materials containing the kinked dipodal ligand 3-pyridylisonicotinamide (3-pina) are much less common (Kumar, 2009). The title compound was obtained as blue crystals through the hydrothermal reaction of copper nitrate, fumaric acid, and 3-pina.

The asymmetric unit of the title compound contains a divalent copper atom and an aqua ligand on a crystallographic twofold rotation axis, a 3-pina ligand, and one half of a fumarate ligand whose centroid rests on a crystallographic inversion centre. The copper atom is square pyramidally coordinated (Fig. 1), with the basal plane containing trans isonicotinamide pyridyl N atom donors from two 3-pina ligands and trans O atom donors from monodentate carboxylate groups belonging to two fumarate ligands. The aqua ligand is located in the apical position.

The Cu atoms are linked by exobidentate, bis(monodentate) fumarate ligands to form [Cu(fumarate)(3-pina)2(H2O)]n coordination polymer chains that are oriented parallel to [0 0 1] (Fig. 2). Each individual chain is anchored to two others via O—H···O pairwise hydrogen bonding (Table 1) between aqua ligands and unligated fumarate O atoms, thereby constructing supramolecular two-dimensional layers arranged parallel to the bc crystal planes (Fig. 3). The stability of the layer motifs is enhanced by N—H···O hydrogen bonding between amide groups of adjacent 3-pina ligands (Fig. 4). In turn the layers stack along [1 0 0] in an AAA pattern via C—H···N interactions mediated by unligated 3-pyridyl N atoms belonging to the pendant 3-pina ligands (Fig. 5), thus forming the three-dimensional structure of the title compound which is also stabilized by weak C—H···O interactions.

Related literature top

For the preparation of 3-pyridylisonicotinamide, see: Gardner et al. (1954). For the preparation of other dicarboxylate coordination polymers containing 3-pyridylisonicotinamide, see: Kumar (2009).

Experimental top

Copper(II) nitrate hydrate and fumaric acid were obtained commercially. 3-Pyridylisonicotinamide (3-pina) was prepared via a published procedure (Gardner et al., 1954). A mixture of copper nitrate hydrate (86 mg, 0.37 mmol), fumaric acid (42 mg, 0.36 mmol), 3-pina (74 mg, 0.37 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 24 h. Blue needles of the title compound were obtained.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atom within the amide group of the 3-pina ligand was found in a difference Fourier map, restrained with N—H = 0.90 (2) Å and refined with Uiso = 1.2Ueq(N). The H atoms within the aqua ligand were found in a difference Fourier map, restrained with O—H = 0.85 (2) Å and refined with Uiso = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Cu, red O, light blue N, black C, pink H. Symmetry code: (i) -x, y, -z + 1/2
[Figure 2] Fig. 2. A single [Cu(fumarate)(3-pina)2(H2O)]n coordination polymer chain.
[Figure 3] Fig. 3. Supramolecular layer of [Cu(fumarate)(3-pina)2(H2O)]n coordination polymer chains. O—H···O hydrogen bonding is shown as dashed lines.
[Figure 4] Fig. 4. Side view of the supramolecular layer of [Cu(fumarate)(3-pina)2(H2O)]n coordination polymer chains. N—H···O hydrogen bonding between 3-pina amide groups is shown as dashed lines.
[Figure 5] Fig. 5. Stacking of supramolecular layers within the title compound.
catena-Poly[[aquabis[N-(pyridin-3-yl)isonicotinamide- κN1]copper(II)]-µ-fumarato-κ2O1:O4] top
Crystal data top
[Cu(C4H2O4)(C11H9N3O)2(H2O)]F(000) = 1220
Mr = 594.04Dx = 1.622 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3329 reflections
a = 29.854 (4) Åθ = 2.7–25.3°
b = 5.3535 (7) ŵ = 0.96 mm1
c = 17.353 (2) ÅT = 173 K
β = 118.686 (2)°Needle, blue
V = 2433.0 (6) Å30.25 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2240 independent reflections
Radiation source: fine-focus sealed tube1758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ωϕ scansθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3535
Tmin = 0.794, Tmax = 0.919k = 66
9406 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0303P)2 + 4.2344P]
where P = (Fo2 + 2Fc2)/3
2240 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.34 e Å3
5 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu(C4H2O4)(C11H9N3O)2(H2O)]V = 2433.0 (6) Å3
Mr = 594.04Z = 4
Monoclinic, C2/cMo Kα radiation
a = 29.854 (4) ŵ = 0.96 mm1
b = 5.3535 (7) ÅT = 173 K
c = 17.353 (2) Å0.25 × 0.13 × 0.09 mm
β = 118.686 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2240 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1758 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.919Rint = 0.053
9406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0365 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
2240 reflectionsΔρmin = 0.36 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.98462 (9)0.25000.01332 (15)
O10.01260 (9)0.5988 (4)0.10232 (13)0.0329 (6)
O20.23784 (7)0.6328 (4)0.58520 (13)0.0277 (5)
O30.00001.3863 (5)0.25000.0288 (7)
H3O0.0035 (12)1.471 (4)0.2067 (12)0.035*
O40.01923 (7)0.9749 (3)0.15746 (11)0.0170 (4)
N10.34390 (10)0.8621 (5)0.83508 (17)0.0384 (7)
N20.24546 (9)1.0496 (5)0.61401 (16)0.0232 (6)
H2N0.2343 (11)1.199 (4)0.5910 (18)0.028*
N30.07405 (8)0.9573 (4)0.34350 (14)0.0159 (5)
C10.37744 (12)1.0459 (6)0.8530 (2)0.0344 (8)
H10.40761.04480.90830.041*
C20.37059 (12)1.2372 (6)0.7956 (2)0.0339 (8)
H20.39551.36520.81080.041*
C30.32648 (12)1.2391 (6)0.7149 (2)0.0295 (8)
H30.32031.36980.67390.035*
C40.30186 (11)0.8643 (6)0.75726 (19)0.0292 (7)
H40.27770.73350.74380.035*
C50.29173 (10)1.0479 (5)0.69522 (18)0.0201 (6)
C60.16993 (10)0.8946 (5)0.48796 (18)0.0187 (6)
C70.09141 (10)1.1150 (5)0.41137 (18)0.0199 (6)
H70.07021.24980.40940.024*
C80.15215 (10)0.7307 (5)0.41788 (18)0.0195 (6)
H80.17250.59330.41880.023*
C90.13897 (10)1.0906 (5)0.48445 (18)0.0214 (7)
H90.15021.20680.53150.026*
C100.10459 (10)0.7686 (5)0.34665 (18)0.0193 (6)
H100.09300.65750.29810.023*
C110.00282 (10)0.8103 (5)0.09670 (18)0.0180 (6)
C120.00079 (10)0.8823 (5)0.01221 (17)0.0169 (6)
H120.00060.75400.02570.020*
C130.22077 (10)0.8447 (5)0.56670 (18)0.0205 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0147 (2)0.0154 (3)0.0090 (2)0.0000.00500 (19)0.000
O10.0667 (16)0.0171 (11)0.0272 (12)0.0040 (11)0.0324 (12)0.0003 (9)
O20.0219 (11)0.0249 (12)0.0250 (12)0.0040 (9)0.0022 (9)0.0016 (10)
O30.058 (2)0.0146 (16)0.0144 (16)0.0000.0181 (16)0.000
O40.0193 (10)0.0222 (11)0.0111 (9)0.0034 (8)0.0086 (8)0.0021 (9)
N10.0373 (16)0.0429 (18)0.0212 (15)0.0081 (14)0.0030 (13)0.0075 (13)
N20.0191 (13)0.0230 (15)0.0187 (13)0.0024 (11)0.0020 (11)0.0017 (11)
N30.0172 (12)0.0188 (13)0.0120 (11)0.0005 (10)0.0073 (10)0.0011 (10)
C10.0261 (17)0.043 (2)0.0208 (16)0.0033 (15)0.0005 (14)0.0006 (15)
C20.0243 (17)0.035 (2)0.0302 (19)0.0102 (14)0.0033 (15)0.0011 (15)
C30.0307 (18)0.0241 (18)0.0255 (18)0.0030 (14)0.0068 (15)0.0037 (14)
C40.0262 (17)0.0343 (19)0.0206 (16)0.0115 (15)0.0060 (14)0.0012 (14)
C50.0144 (14)0.0256 (17)0.0171 (15)0.0011 (12)0.0050 (12)0.0024 (12)
C60.0153 (14)0.0218 (15)0.0169 (15)0.0008 (12)0.0060 (12)0.0019 (12)
C70.0193 (15)0.0225 (16)0.0172 (15)0.0030 (12)0.0082 (12)0.0008 (13)
C80.0159 (14)0.0199 (16)0.0214 (16)0.0017 (12)0.0080 (13)0.0020 (12)
C90.0195 (15)0.0234 (16)0.0156 (15)0.0008 (12)0.0040 (12)0.0076 (12)
C100.0223 (15)0.0201 (16)0.0158 (15)0.0008 (12)0.0094 (13)0.0035 (12)
C110.0209 (15)0.0160 (15)0.0168 (15)0.0057 (12)0.0088 (12)0.0027 (12)
C120.0215 (14)0.0157 (13)0.0154 (15)0.0008 (12)0.0103 (12)0.0035 (12)
C130.0161 (14)0.0241 (17)0.0176 (15)0.0023 (13)0.0051 (12)0.0020 (13)
Geometric parameters (Å, º) top
Cu1—O4i1.9485 (17)C2—C31.388 (4)
Cu1—O41.9485 (17)C2—H20.9500
Cu1—N32.024 (2)C3—C51.379 (4)
Cu1—N3i2.024 (2)C3—H30.9500
Cu1—O32.151 (3)C4—C51.380 (4)
O1—C111.244 (3)C4—H40.9500
O2—C131.222 (3)C6—C91.380 (4)
O3—H3Oi0.839 (11)C6—C81.382 (4)
O3—H3O0.839 (11)C6—C131.500 (4)
O4—C111.278 (3)C7—C91.383 (4)
N1—C11.330 (4)C7—H70.9500
N1—C41.331 (4)C8—C101.378 (4)
N2—C131.356 (4)C8—H80.9500
N2—C51.423 (3)C9—H90.9500
N2—H2N0.883 (17)C10—H100.9500
N3—C71.335 (3)C11—C121.489 (4)
N3—C101.344 (3)C12—C12ii1.323 (5)
C1—C21.374 (4)C12—H120.9500
C1—H10.9500
O4i—Cu1—O4176.95 (12)N1—C4—C5123.0 (3)
O4i—Cu1—N388.74 (8)N1—C4—H4118.5
O4—Cu1—N391.04 (8)C5—C4—H4118.5
O4i—Cu1—N3i91.04 (8)C3—C5—C4118.6 (3)
O4—Cu1—N3i88.74 (8)C3—C5—N2119.8 (3)
N3—Cu1—N3i171.71 (13)C4—C5—N2121.5 (3)
O4i—Cu1—O391.52 (6)C9—C6—C8118.5 (2)
O4—Cu1—O391.52 (6)C9—C6—C13122.6 (3)
N3—Cu1—O394.15 (6)C8—C6—C13118.8 (2)
N3i—Cu1—O394.15 (6)N3—C7—C9122.8 (3)
H3Oi—O3—Cu1122.6 (17)N3—C7—H7118.6
H3Oi—O3—H3O115 (3)C9—C7—H7118.6
Cu1—O3—H3O122.6 (17)C10—C8—C6119.4 (3)
C11—O4—Cu1123.39 (17)C10—C8—H8120.3
C1—N1—C4117.9 (3)C6—C8—H8120.3
C13—N2—C5125.5 (2)C6—C9—C7118.9 (3)
C13—N2—H2N119 (2)C6—C9—H9120.5
C5—N2—H2N115 (2)C7—C9—H9120.5
C7—N3—C10118.1 (2)N3—C10—C8122.3 (3)
C7—N3—Cu1118.25 (18)N3—C10—H10118.9
C10—N3—Cu1123.06 (18)C8—C10—H10118.9
N1—C1—C2123.3 (3)O1—C11—O4125.0 (3)
N1—C1—H1118.4O1—C11—C12118.1 (2)
C2—C1—H1118.4O4—C11—C12116.9 (2)
C1—C2—C3118.4 (3)C12ii—C12—C11122.7 (3)
C1—C2—H2120.8C12ii—C12—H12118.6
C3—C2—H2120.8C11—C12—H12118.6
C5—C3—C2118.8 (3)O2—C13—N2123.7 (3)
C5—C3—H3120.6O2—C13—C6121.1 (3)
C2—C3—H3120.6N2—C13—C6115.2 (2)
O4i—Cu1—O3—H3Oi22 (3)C13—N2—C5—C436.8 (4)
O4—Cu1—O3—H3Oi158 (3)C10—N3—C7—C90.6 (4)
N3—Cu1—O3—H3Oi66 (3)Cu1—N3—C7—C9170.8 (2)
N3i—Cu1—O3—H3Oi114 (3)C9—C6—C8—C100.6 (4)
N3—Cu1—O4—C11121.8 (2)C13—C6—C8—C10177.4 (3)
N3i—Cu1—O4—C1149.9 (2)C8—C6—C9—C70.3 (4)
O3—Cu1—O4—C11143.99 (19)C13—C6—C9—C7176.4 (3)
O4i—Cu1—N3—C750.8 (2)N3—C7—C9—C60.3 (4)
O4—Cu1—N3—C7132.2 (2)C7—N3—C10—C81.5 (4)
O3—Cu1—N3—C740.6 (2)Cu1—N3—C10—C8169.4 (2)
O4i—Cu1—N3—C10120.2 (2)C6—C8—C10—N31.5 (4)
O4—Cu1—N3—C1056.8 (2)Cu1—O4—C11—O124.5 (4)
O3—Cu1—N3—C10148.4 (2)Cu1—O4—C11—C12153.62 (18)
C4—N1—C1—C20.4 (5)O1—C11—C12—C12ii156.4 (3)
N1—C1—C2—C30.1 (5)O4—C11—C12—C12ii21.9 (5)
C1—C2—C3—C50.8 (5)C5—N2—C13—O26.2 (4)
C1—N1—C4—C50.1 (5)C5—N2—C13—C6174.0 (2)
C2—C3—C5—C41.0 (5)C9—C6—C13—O2150.1 (3)
C2—C3—C5—N2178.0 (3)C8—C6—C13—O226.5 (4)
N1—C4—C5—C30.6 (5)C9—C6—C13—N230.1 (4)
N1—C4—C5—N2177.6 (3)C8—C6—C13—N2153.3 (3)
C13—N2—C5—C3146.3 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1iii0.84 (1)1.83 (1)2.660 (2)169 (3)
N2—H2N···O2iii0.88 (2)2.33 (2)3.153 (3)155 (3)
C2—H2···O4iv0.952.483.360 (4)153
C7—H7···O1v0.952.483.430 (4)178
C9—H9···N1vi0.952.393.263 (4)153
C12—H12···O1vii0.952.433.374 (4)171
Symmetry codes: (iii) x, y+1, z; (iv) x+1/2, y+5/2, z+1; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+3/2; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C4H2O4)(C11H9N3O)2(H2O)]
Mr594.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)29.854 (4), 5.3535 (7), 17.353 (2)
β (°) 118.686 (2)
V3)2433.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.25 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.794, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
9406, 2240, 1758
Rint0.053
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.04
No. of reflections2240
No. of parameters188
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Crystal Maker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1i0.839 (11)1.832 (10)2.660 (2)169 (3)
N2—H2N···O2i0.883 (17)2.33 (2)3.153 (3)155 (3)
C2—H2···O4ii0.952.483.360 (4)153
C7—H7···O1iii0.952.483.430 (4)178
C9—H9···N1iv0.952.393.263 (4)153
C12—H12···O1v0.952.433.374 (4)171
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+5/2, z+1; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z+3/2; (v) x, y+1, z.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem. 19, 753–757.  CrossRef CAS Web of Science Google Scholar
First citationKumar, D. K. (2009). Inorg. Chim. Acta, 362, 1767–1771.  Web of Science CSD CrossRef Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds