organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Naphthalen-1-yl­methyl­­idene)-4H-1,2,4-triazol-4-amine

aTianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: qsdingbin@yahoo.com.cn

(Received 5 September 2012; accepted 13 September 2012; online 22 September 2012)

In the title mol­ecule, C13H10N4, the dihedral angle between the triazole ring and the naphthalene ring system is is 56.1 (2)°. In the crystal, mol­ecules are connected by weak C—H⋯N hydrogen bonds into chains along [100]. A short intra­molecular C—H⋯N contact is also observed.

Related literature

For applications of triazole derivatives, see: Demirbas et al. (2002[Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Foroumadi et al. (2003[Foroumadi, A., Mansouri, S., Kaini, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851-854.]); He et al. (2006[He, X., Lu, C. Z., Wu, C. D. & Chen, L. J. (2006). Eur. J. Inorg. Chem. pp. 2491-2503.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Il Farmaco, 57, 253-257.]); Manfredini et al. (2000[Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343-2346.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N4

  • Mr = 222.25

  • Monoclinic, P 21 /c

  • a = 5.499 (3) Å

  • b = 10.079 (6) Å

  • c = 19.942 (12) Å

  • β = 92.758 (7)°

  • V = 1104.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.5, Tmax = 1.0

  • 6574 measured reflections

  • 2168 independent reflections

  • 1787 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.08

  • 2168 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N1 0.93 2.36 2.914 (2) 118
C13—H13A⋯N4i 0.93 2.45 3.330 (3) 157
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2,4-Triazole is a basic aromatic ring and possesses good coordination ability due to the presence of nitrogen atoms. 1,2,4-Triazole derivatives can be used to build polymetallic complexes (He et al., 2006). Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties (Foroumadi et al., 2003). Some triazole Schiff bases also exhibit antiproliferative and anticancer activities (Manfredini et al., 2000). Due to their significant biological applications, triazoles have gained much attention in bioinorganic and metal-based drug discovery (Demirbas et al., 2002; Kritsanida et al., 2002).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the triazole and naphthalene ring system is is 56.1 (2)°. The C—N and CN bond lengths agree with standard values (Allen et al., (1987) and show the obvious effects of electron delocalization. In the crystal, molecules are connected by weak C—H···N hydrogen bonds into chains along [100] (Fig. 2).

Related literature top

For applications of triazole derivatives, see: Demirbas et al. (2002); Foroumadi et al. (2003); He et al. (2006); Kritsanida et al. (2002); Manfredini et al. (2000). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 1-naphthaldehyde (10 mmol) and 4-amino-4H-1,2,4-triazole (10 mmol) in ethanol (20 mL) was refluxed on a steam-bath for 30 min. The colour of the solution changed to reddish-orange and was kept under ice-cold conditions to obtain a white solid product. Single crystals were formed in the mother liquor after ten days.

Refinement top

H atoms were positioned geometrically (C-H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Structure description top

1,2,4-Triazole is a basic aromatic ring and possesses good coordination ability due to the presence of nitrogen atoms. 1,2,4-Triazole derivatives can be used to build polymetallic complexes (He et al., 2006). Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties (Foroumadi et al., 2003). Some triazole Schiff bases also exhibit antiproliferative and anticancer activities (Manfredini et al., 2000). Due to their significant biological applications, triazoles have gained much attention in bioinorganic and metal-based drug discovery (Demirbas et al., 2002; Kritsanida et al., 2002).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the triazole and naphthalene ring system is is 56.1 (2)°. The C—N and CN bond lengths agree with standard values (Allen et al., (1987) and show the obvious effects of electron delocalization. In the crystal, molecules are connected by weak C—H···N hydrogen bonds into chains along [100] (Fig. 2).

For applications of triazole derivatives, see: Demirbas et al. (2002); Foroumadi et al. (2003); He et al. (2006); Kritsanida et al. (2002); Manfredini et al. (2000). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing weak hydrogen bonds as dashed lines.
N-(Naphthalen-1-ylmethylidene)-4H-1,2,4-triazol-4-amine top
Crystal data top
C13H10N4F(000) = 464
Mr = 222.25Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6574 reflections
a = 5.499 (3) Åθ = 2.0–26°
b = 10.079 (6) ŵ = 0.09 mm1
c = 19.942 (12) ÅT = 296 K
β = 92.758 (7)°Block, colorless
V = 1104.0 (11) Å30.2 × 0.15 × 0.1 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2168 independent reflections
Radiation source: fine-focus sealed tube1787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.5, Tmax = 1.0k = 1212
6574 measured reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.1522P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.15 e Å3
2168 reflectionsΔρmin = 0.25 e Å3
154 parameters
Crystal data top
C13H10N4V = 1104.0 (11) Å3
Mr = 222.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.499 (3) ŵ = 0.09 mm1
b = 10.079 (6) ÅT = 296 K
c = 19.942 (12) Å0.2 × 0.15 × 0.1 mm
β = 92.758 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1787 reflections with I > 2σ(I)
Tmin = 0.5, Tmax = 1.0Rint = 0.019
6574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
2168 reflectionsΔρmin = 0.25 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6439 (2)0.79790 (12)0.97839 (6)0.0429 (3)
N20.8048 (2)0.84041 (11)1.02686 (6)0.0384 (3)
N30.9117 (2)0.91095 (15)1.12480 (6)0.0570 (4)
N41.1212 (2)0.88352 (14)1.08514 (6)0.0517 (3)
C10.5720 (2)0.77204 (14)0.86143 (6)0.0382 (3)
C20.6174 (3)0.84224 (16)0.80284 (7)0.0494 (4)
H2A0.74740.90120.80240.059*
C30.4736 (3)0.82456 (17)0.74739 (8)0.0595 (5)
H3A0.50010.87130.70820.071*
C40.2871 (3)0.73591 (17)0.75027 (7)0.0544 (4)
H4A0.18530.72530.71200.065*
C50.2370 (3)0.65767 (13)0.80837 (7)0.0400 (3)
C60.0469 (3)0.56297 (15)0.81066 (8)0.0489 (4)
H6A0.05760.55400.77290.059*
C70.0069 (3)0.48337 (16)0.86520 (8)0.0539 (4)
H7A0.12230.42380.86430.065*
C80.1586 (3)0.49371 (15)0.91971 (8)0.0518 (4)
H8A0.14050.43860.95650.062*
C90.3399 (3)0.58640 (14)0.92032 (7)0.0445 (4)
H9A0.44100.59380.95890.053*
C100.3841 (2)0.67329 (13)0.86498 (6)0.0356 (3)
C110.7224 (3)0.80772 (13)0.91754 (7)0.0398 (3)
H11A0.87920.83860.91140.048*
C121.0518 (3)0.84233 (14)1.02727 (7)0.0437 (4)
H12A1.14940.81850.99240.052*
C130.7272 (3)0.88263 (17)1.08876 (7)0.0489 (4)
H13A0.56660.88871.10110.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0343 (6)0.0541 (7)0.0390 (6)0.0046 (5)0.0129 (5)0.0057 (5)
N20.0317 (6)0.0439 (6)0.0385 (6)0.0033 (5)0.0114 (5)0.0025 (5)
N30.0428 (8)0.0794 (10)0.0471 (7)0.0031 (7)0.0143 (6)0.0101 (7)
N40.0383 (7)0.0617 (8)0.0534 (7)0.0040 (6)0.0154 (6)0.0039 (6)
C10.0372 (7)0.0403 (7)0.0362 (7)0.0026 (6)0.0062 (5)0.0008 (5)
C20.0502 (9)0.0541 (9)0.0432 (8)0.0083 (7)0.0050 (7)0.0064 (6)
C30.0709 (11)0.0685 (11)0.0378 (8)0.0079 (9)0.0108 (7)0.0141 (7)
C40.0592 (10)0.0630 (10)0.0389 (8)0.0006 (8)0.0188 (7)0.0019 (7)
C50.0385 (8)0.0413 (7)0.0393 (7)0.0056 (6)0.0082 (6)0.0065 (6)
C60.0434 (8)0.0501 (9)0.0516 (8)0.0021 (7)0.0130 (7)0.0127 (7)
C70.0499 (9)0.0480 (9)0.0631 (10)0.0109 (7)0.0042 (7)0.0123 (7)
C80.0653 (10)0.0427 (8)0.0471 (8)0.0082 (7)0.0005 (7)0.0007 (6)
C90.0536 (9)0.0406 (8)0.0384 (7)0.0030 (7)0.0088 (6)0.0012 (6)
C100.0364 (7)0.0361 (7)0.0337 (7)0.0052 (5)0.0045 (5)0.0046 (5)
C110.0350 (7)0.0406 (7)0.0429 (8)0.0030 (6)0.0078 (6)0.0002 (6)
C120.0337 (7)0.0489 (8)0.0475 (8)0.0005 (6)0.0079 (6)0.0018 (6)
C130.0356 (8)0.0692 (10)0.0411 (8)0.0031 (7)0.0073 (6)0.0067 (7)
Geometric parameters (Å, º) top
N1—C111.311 (2)C4—H4A0.9300
N1—N21.3486 (16)C5—C101.3661 (19)
N2—C121.3577 (19)C5—C61.418 (2)
N2—C131.392 (2)C6—C71.378 (2)
N3—C131.2481 (19)C6—H6A0.9300
N3—N41.455 (2)C7—C81.342 (2)
N4—C121.2679 (19)C7—H7A0.9300
C1—C21.399 (2)C8—C91.366 (2)
C1—C111.4059 (19)C8—H8A0.9300
C1—C101.438 (2)C9—C101.439 (2)
C2—C31.340 (2)C9—H9A0.9300
C2—H2A0.9300C11—H11A0.9300
C3—C41.363 (2)C12—H12A0.9300
C3—H3A0.9300C13—H13A0.9300
C4—C51.439 (2)
C11—N1—N2113.90 (12)C5—C6—H6A117.9
N1—N2—C12129.10 (12)C8—C7—C6118.53 (15)
N1—N2—C13120.92 (12)C8—C7—H7A120.7
C12—N2—C13109.85 (11)C6—C7—H7A120.7
C13—N3—N4106.65 (13)C7—C8—C9119.02 (15)
C12—N4—N3110.20 (12)C7—C8—H8A120.5
C2—C1—C11114.43 (13)C9—C8—H8A120.5
C2—C1—C10123.27 (12)C8—C9—C10124.04 (13)
C11—C1—C10122.29 (12)C8—C9—H9A118.0
C3—C2—C1120.01 (15)C10—C9—H9A118.0
C3—C2—H2A120.0C5—C10—C9116.64 (13)
C1—C2—H2A120.0C5—C10—C1115.93 (12)
C2—C3—C4117.87 (15)C9—C10—C1127.39 (12)
C2—C3—H3A121.1N1—C11—C1120.65 (13)
C4—C3—H3A121.1N1—C11—H11A119.7
C3—C4—C5124.52 (13)C1—C11—H11A119.7
C3—C4—H4A117.7N4—C12—N2105.52 (13)
C5—C4—H4A117.7N4—C12—H12A127.2
C10—C5—C6117.34 (13)N2—C12—H12A127.2
C10—C5—C4118.24 (14)N3—C13—N2107.76 (14)
C6—C5—C4124.40 (13)N3—C13—H13A126.1
C7—C6—C5124.29 (13)N2—C13—H13A126.1
C7—C6—H6A117.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N10.932.362.914 (2)118
C13—H13A···N4i0.932.453.330 (3)157
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H10N4
Mr222.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.499 (3), 10.079 (6), 19.942 (12)
β (°) 92.758 (7)
V3)1104.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.5, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
6574, 2168, 1787
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.08
No. of reflections2168
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N10.932.362.914 (2)117.7
C13—H13A···N4i0.932.453.330 (3)156.8
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported financially by Tianjin Education Committee (20090504 and 20110311).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationDemirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationForoumadi, A., Mansouri, S., Kaini, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851–854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHe, X., Lu, C. Z., Wu, C. D. & Chen, L. J. (2006). Eur. J. Inorg. Chem. pp. 2491–2503.  Web of Science CSD CrossRef Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Il Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343–2346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds