organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o878-o879

(7-Chloro-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodi­thio­ate

aDepartment of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India, and bX-ray Crystallography Laboratory, Postgraduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 14 February 2012; accepted 22 February 2012; online 29 February 2012)

In the title compound, C16H16ClNO2S2, the piperidine ring is in a chair conformation. In the coumarin ring system, the dihedral angle between the benzene and pyran rings is 3.5 (1)°. In the crystal, a weak C—H⋯O hydrogen bond links mol­ecules into chains along [001]. In addition, ππ stacking inter­actions are present involving the benzene and pyran rings, with a centroid-to-centroid distance of 3.712 (2) Å. The crystal studied is a nonmerohedral twin with refined components 0.221 (1) and 0.779 (1).

Related literature

For structures and properties of coumarins, see: Kulkarni et al. (2006[Kulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795-2818.]); Jones et al. (1985[Jones, G., Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). J. Phys. Chem. 89, 294-300.]); Trenor et al. (2004[Trenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. (2004). Chem. Rev. 104, 3059-3077.]); Hung et al. (2007[Hung, T. T., Lu, Y. J., Liao, W. Y. & Huang, C. L. (2007). IEEE Trans. Magn. 43, 867-869.]). For the applications of dithio­carbamate compounds, see: Bergendorff & Hansson (2002[Bergendorff, O. & Hansson, C. (2002). J. Agric. Food Chem. 50, 1092-1096.]); Huang et al. (2009[Huang, W., Ding, Y., Miao, Y., Liu, M.-Z., Li, Y. & Yang, G.-F. (2009). Eur. J. Med. Chem. 44, 3687-3696.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]). For the synthesis of the title compound, see: Shastri et al. (2004[Shastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416-2422.]); Vasilliev & Polackov (2000[Vasilliev, A. N. & Polackov, A. D. (2000). Molecules, 5, 1014-1017.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16ClNO2S2

  • Mr = 353.87

  • Monoclinic, P c

  • a = 4.9427 (3) Å

  • b = 11.5010 (6) Å

  • c = 14.0006 (8) Å

  • β = 90.271 (6)°

  • V = 795.87 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.886, Tmax = 1.000

  • 13944 measured reflections

  • 2801 independent reflections

  • 2678 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 1.04

  • 2801 reflections

  • 200 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1394 Friedel pairs

  • Flack parameter: −0.01 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.41 3.167 (5) 139
Symmetry code: (i) [x-1, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO ; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins are an important class of heterocycles, which are widespread in the plant kingdom and have been extensively reported. Coumarin derivatives with various substituents at the C-4 position have revealed potential as anti-microbial, anti-viral, anti-oxidant, anti-inflammatory and anti-cancer agents (Kulkarni et al., 2006). They have also found a place and subsequent use in laser dyes, non-linear optical chromophores, fluorescent whiteners, fluorescent probes and solar energy collectors due to their outstanding optical properties (Jones et al., 1985; Trenor et al., 2004; Hung et al., 2007). Dithiocarbamate (DTC) derivatives are valuable compounds due to their interesting chemistry and utility. These compounds have shown wide applications as pesticides, fungicides in agriculture, sulfur vulcanization and anti-cancer agents (Bergendorff & Hansson, 2002; Huang et al., 2009). In our work, we have been able to link a DTC moiety at C-4 methylene carbon and it was a thought of considerable interest to study the effect of this moiety on the total solid-state conformation of the molecule. A new series of piperidine-1-dithiocarbomate derivatives of 4-substituted coumarin was synthesized in a single step and screened for antimicrobial, anti-diabetic, DNA binding and DNA cleavage activity. In this paper we report the crystal structure of (7-Chloro-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithioate (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges. The pyridine ring adopts a normal chair conformation (asymmetry parameters: ΔCs(C15—N1) = 0.94; ΔC2(C16—C15) = 2.5 (Duax & Norton, 1975). The dihedral angle bewteen pyran and benzene rings in the coumarin moiety 3.5 (1)°. In the crystal, weak C—H···O hydrogen bonds link molecules along [001] (Fig. 2). In addition, ππ interactions between the pyran ring at (x, y, z) and the benzene ring at (1 + x, y, z) are present [centroid separation = 3.712 (2) Å, interplanar spacing = 3.407 Å and centroid shift = 1.47 Å].

Related literature top

For structures and properties of coumarins, see: Kulkarni et al. (2006); Jones et al.(1985); Trenor et al. (2004); Hung et al. (2007). For the applications of dithiocarbamate compounds, see: Bergendorff & Hansson (2002); Huang et al. (2009). For standard bond lengths, see: Allen et al. (1987). For ring conformations, see: Duax & Norton (1975). For the synthesis of the title compound, see: Shastri et al. (2004); Vasilliev & Polackov (2000).

Experimental top

4-Bromomethyl coumarin required for the synthesis of the target molecule was synthesized according to an already reported procedure (Shastri et al., 2004) involving the Pechmann cyclization of phenols with 4-Bromoethyl acetoacetate and the potassium salt of piperidine-1-dithiocarbomate was synthesized according to the procedure reported (Vasilliev & Polackov, 2000).

A mixture of 2.73 g (0.01 mol) of 7-chloro-4-bromomethyl coumarin and 1.99 g (0.01 mol) of potassium salt of piperidine-1-dithiocarbomate in 30 ml dry alcohol was stirred for 12 h at room temperature (the reaction was monitored by TLC). The solvent was evaporated and the solid was extracted twice with MDC–water mixture. The organic solvent was dried over CaCl2, the solvent evaporated and recrystallized from ethanol–chloroform. A slow evaporation technique was used to grow crystals suitable for diffraction studies in an ethanol–chloroform mixture. Yield = 89%, m.p. 407–409 K. IR (KBr): 1720 cm-1 (CO), 1430 cm-1 (CS), 849 cm-1 (C—N), 771 cm-1 (C—Cl). GCMS: m/e: 353.03. 1H NMR (300 MHz, CdCl3, δ, p.p.m.): 2.81 (s, 4H, C13 & C17—H), 2.79 (s, 6H, C14, C16 & C16—H), 4.72 (s, 2H, C4—CH2), 6.21 (s, 1H, C3—H), 7.18 (d, 2H, C6 & C8—H), 7.47 (d, 1H C5—H). Elemental analysis: C, 54.27; H, 4.54; Cl, 10.00; N, 3.92; O, 9.01; S, 18.09.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). The crystal studied is a non-merohedral twin with refined components 0.221 (1) and 0.779 (1) and twin law 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 -1.00.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis. The broken lines show the intermolecular C—H···O interactions.
(7-Chloro-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithioate top
Crystal data top
C16H16ClNO2S2F(000) = 368
Mr = 353.87Dx = 1.477 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: p -2ycCell parameters from 7572 reflections
a = 4.9427 (3) Åθ = 3.4–29.0°
b = 11.5010 (6) ŵ = 0.51 mm1
c = 14.0006 (8) ÅT = 293 K
β = 90.271 (6)°Block, white
V = 795.87 (8) Å30.3 × 0.2 × 0.2 mm
Z = 2
Data collection top
Oxford Xcalibur Sapphire3
diffractometer
2801 independent reflections
Radiation source: fine-focus sealed tube2678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.886, Tmax = 1.000l = 1616
13944 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.3317P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2801 reflectionsΔρmax = 0.14 e Å3
200 parametersΔρmin = 0.18 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1394 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (10)
Crystal data top
C16H16ClNO2S2V = 795.87 (8) Å3
Mr = 353.87Z = 2
Monoclinic, PcMo Kα radiation
a = 4.9427 (3) ŵ = 0.51 mm1
b = 11.5010 (6) ÅT = 293 K
c = 14.0006 (8) Å0.3 × 0.2 × 0.2 mm
β = 90.271 (6)°
Data collection top
Oxford Xcalibur Sapphire3
diffractometer
2801 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2678 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 1.000Rint = 0.047
13944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.14 e Å3
S = 1.04Δρmin = 0.18 e Å3
2801 reflectionsAbsolute structure: Flack (1983), with 1394 Friedel pairs
200 parametersAbsolute structure parameter: 0.01 (10)
2 restraints
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1990 (2)0.77560 (7)0.36977 (7)0.0421 (3)
S20.4685 (3)0.60142 (9)0.24062 (9)0.0525 (3)
Cl10.4816 (2)1.27262 (9)0.15209 (9)0.0577 (3)
O10.2148 (6)0.9922 (2)0.03114 (17)0.0429 (7)
C20.4260 (9)0.9155 (3)0.0384 (3)0.0431 (10)
O20.5440 (8)0.8931 (3)0.03402 (19)0.0583 (9)
C30.4925 (9)0.8712 (3)0.1330 (3)0.0373 (9)
H30.62900.81610.13930.045*
C40.3622 (8)0.9077 (3)0.2120 (2)0.0328 (8)
C100.1525 (8)0.9952 (3)0.2026 (2)0.0315 (8)
C50.0142 (9)1.0460 (3)0.2788 (2)0.0362 (8)
H50.05311.02250.34100.043*
C60.1802 (9)1.1309 (3)0.2633 (3)0.0405 (10)
H60.26961.16440.31470.049*
C70.2409 (8)1.1657 (3)0.1707 (3)0.0372 (9)
C80.1117 (9)1.1168 (3)0.0933 (3)0.0385 (9)
H80.15381.13960.03130.046*
C90.0813 (8)1.0334 (3)0.1108 (2)0.0354 (9)
C110.4485 (9)0.8620 (3)0.3081 (3)0.0382 (9)
H11B0.49670.92760.34840.046*
H11A0.61000.81530.29980.046*
C120.2473 (9)0.6313 (3)0.3254 (3)0.0378 (9)
N10.0894 (7)0.5538 (3)0.3692 (3)0.0487 (9)
C170.0804 (10)0.5754 (4)0.4518 (4)0.0538 (12)
H17A0.26720.55770.43600.065*
H17B0.06970.65690.46940.065*
C160.0100 (13)0.5010 (4)0.5353 (4)0.0637 (12)
H16A0.11260.51270.58840.076*
H16B0.18910.52530.55570.076*
C150.0164 (14)0.3726 (4)0.5096 (4)0.0732 (16)
H15A0.16680.34460.49970.088*
H15B0.09620.32870.56180.088*
C140.1810 (12)0.3540 (4)0.4192 (4)0.0719 (17)
H14B0.36970.37120.43230.086*
H14A0.16840.27310.40000.086*
C130.0825 (11)0.4303 (3)0.3383 (4)0.0609 (14)
H13A0.19710.41980.28290.073*
H13B0.10080.40870.32070.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0626 (7)0.0293 (5)0.0344 (5)0.0036 (5)0.0134 (5)0.0018 (4)
S20.0701 (7)0.0446 (6)0.0429 (5)0.0132 (5)0.0119 (6)0.0038 (5)
Cl10.0600 (7)0.0446 (6)0.0686 (8)0.0118 (5)0.0082 (6)0.0067 (5)
O10.0627 (18)0.0443 (16)0.0218 (12)0.0010 (14)0.0080 (13)0.0001 (11)
C20.064 (3)0.0350 (19)0.031 (2)0.003 (2)0.0083 (19)0.0062 (16)
O20.083 (2)0.0600 (19)0.0322 (16)0.0051 (18)0.0230 (17)0.0058 (13)
C30.048 (2)0.0316 (18)0.0324 (19)0.0030 (18)0.0071 (19)0.0001 (15)
C40.041 (2)0.0289 (18)0.0287 (19)0.0076 (15)0.0040 (15)0.0011 (14)
C100.040 (2)0.0283 (18)0.0258 (19)0.0056 (16)0.0035 (15)0.0010 (14)
C50.050 (2)0.0362 (19)0.0224 (17)0.0096 (19)0.0046 (16)0.0007 (14)
C60.053 (3)0.034 (2)0.035 (2)0.0039 (18)0.0123 (18)0.0036 (16)
C70.040 (2)0.0297 (19)0.042 (2)0.0062 (16)0.0032 (18)0.0033 (16)
C80.051 (3)0.034 (2)0.0305 (19)0.0055 (18)0.0035 (18)0.0056 (16)
C90.050 (2)0.0311 (18)0.0255 (18)0.0070 (17)0.0069 (16)0.0014 (14)
C110.050 (3)0.0372 (18)0.0272 (19)0.0007 (18)0.0024 (17)0.0029 (16)
C120.049 (2)0.034 (2)0.0302 (19)0.0047 (18)0.0042 (18)0.0013 (15)
N10.061 (2)0.0286 (16)0.056 (2)0.0022 (15)0.006 (2)0.0004 (15)
C170.060 (3)0.037 (2)0.064 (3)0.001 (2)0.013 (2)0.009 (2)
C160.076 (3)0.055 (3)0.060 (3)0.005 (3)0.005 (3)0.012 (2)
C150.087 (4)0.044 (2)0.088 (4)0.011 (3)0.029 (4)0.023 (3)
C140.070 (4)0.034 (2)0.112 (5)0.001 (2)0.028 (4)0.003 (3)
C130.077 (4)0.031 (2)0.075 (3)0.003 (2)0.006 (3)0.008 (2)
Geometric parameters (Å, º) top
S1—C121.788 (4)C8—H80.9300
S1—C111.807 (4)C11—H11B0.9700
S2—C121.654 (4)C11—H11A0.9700
Cl1—C71.730 (4)C12—N11.336 (5)
O1—C21.371 (5)N1—C171.454 (5)
O1—C91.382 (4)N1—C131.485 (5)
C2—O21.200 (4)C17—C161.514 (6)
C2—C31.456 (5)C17—H17A0.9700
C3—C41.349 (5)C17—H17B0.9700
C3—H30.9300C16—C151.521 (7)
C4—C101.450 (5)C16—H16A0.9700
C4—C111.505 (5)C16—H16B0.9700
C10—C51.398 (5)C15—C141.524 (8)
C10—C91.402 (5)C15—H15A0.9700
C5—C61.386 (6)C15—H15B0.9700
C5—H50.9300C14—C131.511 (7)
C6—C71.388 (5)C14—H14B0.9700
C6—H60.9300C14—H14A0.9700
C7—C81.380 (6)C13—H13A0.9700
C8—C91.374 (6)C13—H13B0.9700
C12—S1—C11104.60 (18)N1—C12—S1112.4 (3)
C2—O1—C9121.8 (3)S2—C12—S1122.2 (2)
O2—C2—O1116.7 (4)C12—N1—C17126.3 (3)
O2—C2—C3125.9 (4)C12—N1—C13121.2 (4)
O1—C2—C3117.5 (3)C17—N1—C13112.5 (4)
C4—C3—C2122.1 (4)N1—C17—C16110.4 (4)
C4—C3—H3119.0N1—C17—H17A109.6
C2—C3—H3119.0C16—C17—H17A109.6
C3—C4—C10119.1 (3)N1—C17—H17B109.6
C3—C4—C11119.3 (4)C16—C17—H17B109.6
C10—C4—C11121.5 (3)H17A—C17—H17B108.1
C5—C10—C9116.6 (3)C17—C16—C15111.8 (5)
C5—C10—C4125.0 (3)C17—C16—H16A109.2
C9—C10—C4118.5 (3)C15—C16—H16A109.2
C6—C5—C10121.0 (3)C17—C16—H16B109.2
C6—C5—H5119.5C15—C16—H16B109.2
C10—C5—H5119.5H16A—C16—H16B107.9
C5—C6—C7119.8 (4)C16—C15—C14110.2 (4)
C5—C6—H6120.1C16—C15—H15A109.6
C7—C6—H6120.1C14—C15—H15A109.6
C8—C7—C6121.1 (4)C16—C15—H15B109.6
C8—C7—Cl1119.5 (3)C14—C15—H15B109.6
C6—C7—Cl1119.4 (3)H15A—C15—H15B108.1
C9—C8—C7117.9 (4)C13—C14—C15111.7 (5)
C9—C8—H8121.0C13—C14—H14B109.3
C7—C8—H8121.0C15—C14—H14B109.3
C8—C9—O1115.4 (3)C13—C14—H14A109.3
C8—C9—C10123.6 (3)C15—C14—H14A109.3
O1—C9—C10120.9 (3)H14B—C14—H14A107.9
C4—C11—S1115.4 (3)N1—C13—C14109.3 (4)
C4—C11—H11B108.4N1—C13—H13A109.8
S1—C11—H11B108.4C14—C13—H13A109.8
C4—C11—H11A108.4N1—C13—H13B109.8
S1—C11—H11A108.4C14—C13—H13B109.8
H11B—C11—H11A107.5H13A—C13—H13B108.3
N1—C12—S2125.5 (3)
C9—O1—C2—O2173.5 (4)C5—C10—C9—C80.5 (5)
C9—O1—C2—C34.7 (5)C4—C10—C9—C8179.1 (4)
O2—C2—C3—C4174.8 (4)C5—C10—C9—O1177.1 (3)
O1—C2—C3—C43.2 (6)C4—C10—C9—O12.5 (5)
C2—C3—C4—C101.1 (6)C3—C4—C11—S1115.6 (4)
C2—C3—C4—C11177.6 (4)C10—C4—C11—S168.0 (4)
C3—C4—C10—C5175.7 (4)C12—S1—C11—C486.3 (3)
C11—C4—C10—C50.7 (5)C11—S1—C12—N1175.5 (3)
C3—C4—C10—C93.9 (5)C11—S1—C12—S23.6 (3)
C11—C4—C10—C9179.7 (3)S2—C12—N1—C17171.5 (4)
C9—C10—C5—C60.9 (5)S1—C12—N1—C177.6 (5)
C4—C10—C5—C6178.7 (4)S2—C12—N1—C135.4 (6)
C10—C5—C6—C70.5 (6)S1—C12—N1—C13175.4 (3)
C5—C6—C7—C80.3 (6)C12—N1—C17—C16117.9 (5)
C5—C6—C7—Cl1179.4 (3)C13—N1—C17—C1659.3 (5)
C6—C7—C8—C90.7 (6)N1—C17—C16—C1555.2 (6)
Cl1—C7—C8—C9179.0 (3)C17—C16—C15—C1452.2 (7)
C7—C8—C9—O1176.5 (3)C16—C15—C14—C1353.3 (6)
C7—C8—C9—C100.3 (6)C12—N1—C13—C14117.5 (5)
C2—O1—C9—C8175.0 (3)C17—N1—C13—C1459.8 (6)
C2—O1—C9—C101.9 (5)C15—C14—C13—N156.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···S10.972.362.923 (5)116
C13—H13A···S20.972.553.067 (4)113
C6—H6···O2i0.932.413.167 (5)139
Symmetry code: (i) x1, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16ClNO2S2
Mr353.87
Crystal system, space groupMonoclinic, Pc
Temperature (K)293
a, b, c (Å)4.9427 (3), 11.5010 (6), 14.0006 (8)
β (°) 90.271 (6)
V3)795.87 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.886, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13944, 2801, 2678
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.04
No. of reflections2801
No. of parameters200
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18
Absolute structureFlack (1983), with 1394 Friedel pairs
Absolute structure parameter0.01 (10)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.413.167 (5)139
Symmetry code: (i) x1, y+2, z+1/2.
 

Acknowledgements

KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities. RK acknowledges the Department of Science and Technology for the single-crystal X-ray diffractometer, sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBergendorff, O. & Hansson, C. (2002). J. Agric. Food Chem. 50, 1092–1096.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, W., Ding, Y., Miao, Y., Liu, M.-Z., Li, Y. & Yang, G.-F. (2009). Eur. J. Med. Chem. 44, 3687–3696.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHung, T. T., Lu, Y. J., Liao, W. Y. & Huang, C. L. (2007). IEEE Trans. Magn. 43, 867–869.  Web of Science CrossRef CAS Google Scholar
First citationJones, G., Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). J. Phys. Chem. 89, 294–300.  CrossRef CAS Web of Science Google Scholar
First citationKulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795–2818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationShastri, L. A., Ghate, M. D. & Kulkarni, M. V. (2004). Indian J. Chem. Sect. B, 43, 2416–2422.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. (2004). Chem. Rev. 104, 3059–3077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVasilliev, A. N. & Polackov, A. D. (2000). Molecules, 5, 1014–1017.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o878-o879
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds