organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2406-o2407

(E)-1-(Pyridin-2-yl)-3-(3,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 11 August 2011; accepted 16 August 2011; online 27 August 2011)

In the title heteroaryl chalcone derivative, C17H17NO4, the dihedral angle between the pyridine and benzene rings is 10.82 (5)°. The two meth­oxy groups at the meta positions are essentially coplanar with the attached benzene rings [C—O—C—C torsion angles = −0.97 (14) and 179.47 (9)°], whereas the meth­oxy group at the para position is twisted from the attached ring with a C—O—C—C torsion angle of −104.48 (11)°. A C—H⋯O close contact involving two of the meth­oxy groups generates an S(6) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into columns along the b axis.

Related literature

For background and applications of chalcones, see: Gacche et al. (2008[Gacche, R. N., Dhole, N. A., Kamble, S. G. & Bandgar, B. P. (2008). J. Enzyme Inhib. Med. Chem. 23, 28-31.]); Isomoto et al. (2005[Isomoto, H., Furusu, H., Ohnita, K., Wen, C. Y., Inoue, K. & Kohno, S. (2005). World J. Gastroenterol. 11, 1629-1633.]); Jung et al. (2008[Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861-867.]); Nowakowska et al. (2001[Nowakowska, Z., Wyrzykiewicz, E. & Kedzia, B. (2001). Farmaco, 56, 325-329.]); Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]); Shibata (1994[Shibata, S. (1994). Stem Cells, 12, 44-52.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o3070-o3071.]); Suwunwong, Chantrapromma & Fun (2009[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.]); Suwunwong, Chantrapromma, Pakdeevanich & Fun (2009[Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO4

  • Mr = 299.32

  • Orthorhombic, P n a 21

  • a = 25.0498 (5) Å

  • b = 3.9799 (1) Å

  • c = 14.3267 (3) Å

  • V = 1428.31 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.58 × 0.41 × 0.32 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.969

  • 26700 measured reflections

  • 3245 independent reflections

  • 3130 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.08

  • 3245 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O3i 0.96 2.49 3.3358 (14) 147
C16—H16C⋯O4 0.96 2.57 3.0817 (15) 113
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones have a wide range of applications such as in non-linear optical devices (Patil & Dharmaprakash, 2008), electro-active fluorescent materials (Jung et al., 2008), HIV-1 protease inhibitory (Tewtrakul et al., 2003) as well as various biological properties including antioxidant (Gacche et al., 2008), antibacterial (Nowakowska et al., 2001; Isomoto et al., 2005), and anticancer activities (Shibata, 1994). The title heteroaryl chalcone derivative (I) was synthesized during the course of our study on biological and pharmacological properties of synthetic chalcones and heteroaryl chalcones. Our result shows that (I) possesses moderate analgesic activity. It was also tested for antibacterial activity and found to be inactive.

The molecule of the title heteroaryl chalcone derivative (Fig. 1) exists in an E configuration with respect to the C7C8 double bond [1.3456 (14) Å] and the torsion angle C6–C7–C8–C9 = -177.30 (10)°. The molecule is twisted as the dihedral angle between pyridine and 3,4,5-trimethoxyphenyl rings is 10.82 (5)°. The propenone bridge (C6-C8/O1) is nearly planar with the torsion angle O1–C6–C7–C8 = -7.16 (18)°. The mean plane through this bridge makes dihedral angles of 10.37 (8)° and 3.63 (8)° with the planes of pyridine and benzene rings, respectively. The three methoxy substituents of 3,4,5-trimethoxyphenyl unit have two different orientations in which the two methoxy groups at the meta-positions are co-planar with torsion angles C15–O2–C11–C10 = -0.97 (14)° and C17–O4–C13–C12 = 179.47 (9)°, whereas the third group at the para-position is twisted out of plane with a torsion angle of C16–O3–C12–C11 = -104.48 (11)°. A weak C16—H16C···O4 intramolecular interaction generates S(6) ring motif (Bernstein et al., 1995) (Table 1). The bond angles are of normal values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2010; Suwunwong, Chantrapromma & Fun, 2009; Suwunwong, Chantrapromma, Pakdeevanich & Fun, 2009).

In the crystal (Fig. 2), the molecules are linked by weak intemolecular C16—H16B···O3i interactions (Table 1) into columns along the b axis.

Related literature top

For background and applications of chalcones, see: Gacche et al. (2008); Isomoto et al. (2005); Jung et al. (2008); Nowakowska et al. (2001); Patil & Dharmaprakash (2008); Shibata (1994); Tewtrakul et al. (2003). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010); Suwunwong, Chantrapromma & Fun (2009); Suwunwong, Chantrapromma, Pakdeevanich & Fun (2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized by the condensation of 3,4,5-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 2-acetylpyridine (0.20 g, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH(aq) (5 ml). After stirring in ice bath at 278 K for 3 h, the resulting pale yellow solid appeared and was then collected by filtration, washed with distilled water, dried and purified by repeated recrystallization from acetone. Pale yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone/ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after four days, Mp. 434-435 K.

Refinement top

All H atoms were placed in calculated positions, with C-H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH and C-H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.12 Å from C4 and the deepest hole is located at 0.28 Å from N1. A total of 2730 Friedel pairs were merged before final refinement as there is no significant anomalous dispersion for the determination of the absolute structure.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a weak intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing columns along the b axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(Pyridin-2-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H17NO4Dx = 1.392 Mg m3
Mr = 299.32Melting point = 434–435 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3245 reflections
a = 25.0498 (5) Åθ = 2.2–35.0°
b = 3.9799 (1) ŵ = 0.10 mm1
c = 14.3267 (3) ÅT = 100 K
V = 1428.31 (5) Å3Block, pale yellow
Z = 40.58 × 0.41 × 0.32 mm
F(000) = 632
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3245 independent reflections
Radiation source: sealed tube3130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 35.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3440
Tmin = 0.945, Tmax = 0.969k = 66
26700 measured reflectionsl = 2320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.087P]
where P = (Fo2 + 2Fc2)/3
3245 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C17H17NO4V = 1428.31 (5) Å3
Mr = 299.32Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 25.0498 (5) ŵ = 0.10 mm1
b = 3.9799 (1) ÅT = 100 K
c = 14.3267 (3) Å0.58 × 0.41 × 0.32 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3245 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3130 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.969Rint = 0.026
26700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.091H-atom parameters constrained
S = 1.08Δρmax = 0.37 e Å3
3245 reflectionsΔρmin = 0.21 e Å3
202 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24601 (4)0.1060 (3)0.05761 (7)0.02596 (19)
O20.08957 (3)0.0024 (2)0.50009 (5)0.01754 (15)
O30.00155 (3)0.3315 (2)0.44825 (6)0.01804 (15)
O40.01556 (3)0.5094 (2)0.26892 (6)0.01841 (15)
C40.23610 (4)0.0027 (3)0.13617 (8)0.01727 (17)
H4A0.26570.12520.11670.021*
C30.22725 (5)0.0591 (3)0.23046 (8)0.01872 (18)
H3A0.25040.02550.27540.022*
C20.18322 (5)0.2495 (3)0.25613 (7)0.01913 (18)
H2A0.17660.29780.31860.023*
C10.14921 (4)0.3668 (3)0.18655 (8)0.01865 (19)
H1A0.11980.49470.20420.022*
N10.15656 (4)0.3053 (2)0.09560 (6)0.01632 (16)
C50.19958 (4)0.1232 (2)0.07164 (7)0.01393 (16)
C60.20623 (4)0.0461 (3)0.03063 (7)0.01630 (17)
C70.16244 (4)0.1520 (3)0.09225 (7)0.01565 (17)
H7A0.13540.28800.06870.019*
C80.16076 (4)0.0553 (3)0.18220 (7)0.01548 (16)
H8A0.18930.07240.20370.019*
C90.11859 (4)0.1310 (3)0.24945 (7)0.01371 (16)
C100.12577 (4)0.0284 (3)0.34211 (7)0.01412 (16)
H10A0.15700.08160.35960.017*
C110.08615 (4)0.0913 (2)0.40822 (6)0.01337 (16)
C120.03898 (4)0.2565 (3)0.38196 (7)0.01385 (15)
C130.03186 (4)0.3557 (2)0.28851 (7)0.01376 (16)
C140.07153 (4)0.2953 (3)0.22275 (7)0.01422 (16)
H14A0.06690.36380.16120.017*
C150.13684 (5)0.1702 (3)0.52820 (8)0.01924 (18)
H15A0.13390.23240.59270.029*
H15B0.16720.02580.51990.029*
H15C0.14120.36860.49090.029*
C160.04469 (5)0.1175 (3)0.44731 (9)0.02059 (19)
H16A0.07270.21960.48310.031*
H16B0.03570.09640.47400.031*
H16C0.05650.08640.38410.031*
C170.02386 (5)0.6161 (3)0.17457 (8)0.01905 (19)
H17A0.05800.72450.16950.029*
H17B0.02290.42440.13390.029*
H17C0.00380.77090.15700.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0183 (4)0.0404 (5)0.0192 (4)0.0113 (3)0.0019 (3)0.0060 (4)
O20.0191 (4)0.0228 (4)0.0107 (3)0.0004 (3)0.0005 (2)0.0022 (2)
O30.0168 (3)0.0225 (3)0.0148 (3)0.0011 (3)0.0040 (3)0.0044 (3)
O40.0152 (3)0.0256 (4)0.0144 (3)0.0049 (3)0.0000 (3)0.0018 (3)
C40.0158 (4)0.0190 (4)0.0171 (4)0.0019 (3)0.0036 (3)0.0001 (3)
C30.0215 (5)0.0190 (4)0.0157 (4)0.0015 (3)0.0065 (4)0.0015 (3)
C20.0220 (5)0.0218 (4)0.0136 (4)0.0027 (4)0.0009 (3)0.0001 (3)
C10.0178 (4)0.0238 (5)0.0144 (4)0.0007 (3)0.0011 (3)0.0019 (3)
N10.0134 (3)0.0218 (4)0.0137 (3)0.0011 (3)0.0000 (3)0.0012 (3)
C50.0126 (4)0.0168 (4)0.0124 (3)0.0001 (3)0.0017 (3)0.0006 (3)
C60.0136 (4)0.0210 (4)0.0143 (4)0.0013 (3)0.0012 (3)0.0012 (3)
C70.0140 (4)0.0203 (4)0.0126 (3)0.0018 (3)0.0013 (3)0.0003 (3)
C80.0146 (4)0.0188 (4)0.0131 (4)0.0012 (3)0.0006 (3)0.0003 (3)
C90.0132 (4)0.0162 (4)0.0117 (3)0.0009 (3)0.0002 (3)0.0000 (3)
C100.0133 (4)0.0178 (4)0.0112 (3)0.0003 (3)0.0006 (3)0.0003 (3)
C110.0149 (4)0.0149 (4)0.0103 (3)0.0014 (3)0.0004 (3)0.0001 (3)
C120.0144 (4)0.0157 (4)0.0114 (3)0.0005 (3)0.0003 (3)0.0014 (3)
C130.0129 (4)0.0157 (4)0.0127 (3)0.0003 (3)0.0005 (3)0.0011 (3)
C140.0130 (4)0.0179 (4)0.0118 (3)0.0001 (3)0.0001 (3)0.0003 (3)
C150.0227 (5)0.0193 (4)0.0157 (4)0.0006 (3)0.0038 (4)0.0031 (3)
C160.0180 (4)0.0202 (4)0.0235 (5)0.0009 (3)0.0060 (4)0.0008 (4)
C170.0177 (4)0.0226 (5)0.0168 (4)0.0018 (3)0.0027 (3)0.0038 (3)
Geometric parameters (Å, º) top
O1—C61.2285 (13)C7—H7A0.9300
O2—C111.3656 (12)C8—C91.4611 (14)
O2—C151.4269 (14)C8—H8A0.9300
O3—C121.3676 (12)C9—C101.4005 (14)
O3—C161.4376 (14)C9—C141.4013 (14)
O4—C131.3654 (13)C10—C111.3946 (14)
O4—C171.4320 (14)C10—H10A0.9300
C4—C31.3909 (16)C11—C121.4034 (14)
C4—C51.3938 (14)C12—C131.4072 (13)
C4—H4A0.9300C13—C141.3904 (14)
C3—C21.3877 (17)C14—H14A0.9300
C3—H3A0.9300C15—H15A0.9600
C2—C11.3918 (16)C15—H15B0.9600
C2—H2A0.9300C15—H15C0.9600
C1—N11.3386 (14)C16—H16A0.9600
C1—H1A0.9300C16—H16B0.9600
N1—C51.3434 (13)C16—H16C0.9600
C5—C61.5061 (14)C17—H17A0.9600
C6—C71.4697 (14)C17—H17B0.9600
C7—C81.3456 (14)C17—H17C0.9600
C11—O2—C15116.68 (9)C11—C10—H10A120.0
C12—O3—C16114.63 (8)C9—C10—H10A120.0
C13—O4—C17116.95 (8)O2—C11—C10124.28 (9)
C3—C4—C5118.42 (10)O2—C11—C12115.64 (9)
C3—C4—H4A120.8C10—C11—C12120.08 (9)
C5—C4—H4A120.8O3—C12—C11119.55 (9)
C2—C3—C4118.73 (9)O3—C12—C13120.83 (9)
C2—C3—H3A120.6C11—C12—C13119.56 (9)
C4—C3—H3A120.6O4—C13—C14124.05 (9)
C3—C2—C1118.68 (10)O4—C13—C12115.58 (8)
C3—C2—H2A120.7C14—C13—C12120.37 (9)
C1—C2—H2A120.7C13—C14—C9119.80 (9)
N1—C1—C2123.48 (10)C13—C14—H14A120.1
N1—C1—H1A118.3C9—C14—H14A120.1
C2—C1—H1A118.3O2—C15—H15A109.5
C1—N1—C5117.24 (9)O2—C15—H15B109.5
N1—C5—C4123.44 (9)H15A—C15—H15B109.5
N1—C5—C6116.56 (8)O2—C15—H15C109.5
C4—C5—C6119.96 (9)H15A—C15—H15C109.5
O1—C6—C7123.89 (10)H15B—C15—H15C109.5
O1—C6—C5119.75 (10)O3—C16—H16A109.5
C7—C6—C5116.32 (9)O3—C16—H16B109.5
C8—C7—C6121.12 (9)H16A—C16—H16B109.5
C8—C7—H7A119.4O3—C16—H16C109.5
C6—C7—H7A119.4H16A—C16—H16C109.5
C7—C8—C9126.53 (9)H16B—C16—H16C109.5
C7—C8—H8A116.7O4—C17—H17A109.5
C9—C8—H8A116.7O4—C17—H17B109.5
C10—C9—C14120.19 (9)H17A—C17—H17B109.5
C10—C9—C8118.17 (9)O4—C17—H17C109.5
C14—C9—C8121.63 (9)H17A—C17—H17C109.5
C11—C10—C9120.00 (9)H17B—C17—H17C109.5
C5—C4—C3—C21.43 (16)C15—O2—C11—C12179.12 (9)
C4—C3—C2—C10.96 (17)C9—C10—C11—O2179.72 (9)
C3—C2—C1—N10.13 (18)C9—C10—C11—C120.18 (15)
C2—C1—N1—C50.71 (17)C16—O3—C12—C11104.48 (11)
C1—N1—C5—C40.19 (15)C16—O3—C12—C1378.28 (12)
C1—N1—C5—C6177.94 (10)O2—C11—C12—O33.10 (14)
C3—C4—C5—N10.88 (16)C10—C11—C12—O3176.82 (9)
C3—C4—C5—C6176.80 (10)O2—C11—C12—C13179.63 (8)
N1—C5—C6—O1176.67 (11)C10—C11—C12—C130.45 (14)
C4—C5—C6—O15.50 (16)C17—O4—C13—C140.67 (15)
N1—C5—C6—C75.36 (14)C17—O4—C13—C12179.47 (9)
C4—C5—C6—C7172.47 (10)O3—C12—C13—O43.86 (14)
O1—C6—C7—C87.16 (18)C11—C12—C13—O4178.91 (9)
C5—C6—C7—C8170.72 (10)O3—C12—C13—C14176.28 (9)
C6—C7—C8—C9177.30 (10)C11—C12—C13—C140.96 (14)
C7—C8—C9—C10175.49 (10)O4—C13—C14—C9179.04 (9)
C7—C8—C9—C145.80 (17)C12—C13—C14—C90.81 (14)
C14—C9—C10—C110.33 (15)C10—C9—C14—C130.16 (15)
C8—C9—C10—C11179.06 (9)C8—C9—C14—C13178.52 (9)
C15—O2—C11—C100.97 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O3i0.962.493.3358 (14)147
C16—H16C···O40.962.573.0817 (15)113
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H17NO4
Mr299.32
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)25.0498 (5), 3.9799 (1), 14.3267 (3)
V3)1428.31 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.41 × 0.32
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.945, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
26700, 3245, 3130
Rint0.026
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.08
No. of reflections3245
No. of parameters202
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O3i0.962.493.3358 (14)147
C16—H16C···O40.962.573.0817 (15)113
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Thailand Research Fund (grant No. RSA5280033) and Prince of Songkla University for the financial support. The authors also thank the Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o3070–o3071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGacche, R. N., Dhole, N. A., Kamble, S. G. & Bandgar, B. P. (2008). J. Enzyme Inhib. Med. Chem. 23, 28–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsomoto, H., Furusu, H., Ohnita, K., Wen, C. Y., Inoue, K. & Kohno, S. (2005). World J. Gastroenterol. 11, 1629–1633.  PubMed CAS Google Scholar
First citationJung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationNowakowska, Z., Wyrzykiewicz, E. & Kedzia, B. (2001). Farmaco, 56, 325–329.  CrossRef CAS Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibata, S. (1994). Stem Cells, 12, 44–52.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2406-o2407
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds