metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(2-amino-4-methyl­pyridinium) cyclo-tetra-μ2-oxido-tetra­kis­[dioxido­vanadate(V)] tetra­hydrate

aDepartment of Chemistry, Islamic Azad University, Yazd branch, Yazd, Iran, and bDepartment of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 28 June 2011; accepted 5 July 2011; online 13 July 2011)

The asymmetric unit of the title compound, (C6H9N2)4[V4O12]·4H2O, contains half of a [V4O12]4− anion, two 2-amino-4-methyl­pyridinium, (2a4mpH)+, cations and two water mol­ecules. One water mol­ecule is disordered over two sets of sites with equal occupancies and the H atoms for this mol­ecule were not included in the refinement. The cation lies on an inversion center with four tetra­hedral VO4 units each sharing two vertices, forming an eight-membered ring. In the crystal, the components are linked by inter­molecular N—H⋯O hydrogen bonds, forming a one-dimensional network along [100]. Further stabilization is provided by weak inter­molecular C—H⋯O hydrogen bonds. In addition, ππ stacking inter­actions with centroid–centroid distances of 3.5420 (18), 3.7577 (18) and 3.6311 (19) Å are observed.

Related literature

For related structures, see: Paredes-García et al. (2008)[Paredes-García, V., Gaune, S., Saldías, M., Garland, M. T., Baggio, R., Vega, A., Salah ElFallah, M., Escuer, A., Le Fur, E., Venegas-Yazigi, D. & Spodine, E. (2008). Inorg. Chim Acta, 361, 3681-3689.]; Nakano et al. (2002[Nakano, H., Ozeki, T. & Yagasaki, A. (2002). Acta Cryst. C58, m464-m465.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)4[V4O12]·4H2O

  • Mr = 900.39

  • Triclinic, [P \overline 1]

  • a = 7.8739 (3) Å

  • b = 11.1880 (5) Å

  • c = 11.7618 (6) Å

  • α = 73.609 (4)°

  • β = 76.945 (4)°

  • γ = 79.342 (4)°

  • V = 960.15 (7) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 8.59 mm−1

  • T = 293 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Nova R diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.518, Tmax = 1

  • 8031 measured reflections

  • 3932 independent reflections

  • 3371 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.05

  • 3932 reflections

  • 250 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.85 2.700 (3) 167
N2—H2A⋯O3i 0.86 2.00 2.861 (3) 178
N2—H2B⋯O2ii 0.86 2.13 2.959 (3) 161
N3—H3⋯O4ii 0.86 1.92 2.767 (3) 167
N4—H4A⋯O6ii 0.86 2.26 2.995 (4) 143
N4—H4B⋯O5i 0.86 2.04 2.883 (4) 165
C2—H2⋯O1ii 0.93 2.60 3.363 (4) 140
C2—H2⋯O2ii 0.93 2.64 3.371 (4) 136
C4—H4⋯O5 0.93 2.52 3.352 (4) 149
Symmetry codes: (i) x, y+1, z; (ii) x-1, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007)[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]; cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999)[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.].

Supporting information


Comment top

The chemistry of polyoxovanadate compounds are of great interest. Hybrid organo-inorganic compounds based on vanadium oxides present potential applications in catalysis, electron conductivity, magnetism and photochemistry (Paredes-García et al., 2008). The VO4 group is an important building block of many polynuclear species. A well known example is the V4O124– ring which has an eight-membered ring structure formed by four VO4 tetrahedra sharing vertices (Nakano et al., 2002). The complexing ability of the V4O124– ion with transition metal ions is of great interest and the ring takes part as a ligand (Paredes-García et al., 2008). Herein we report the crystal structure of the title compound obtained as a side product from a reaction of ammonium vanadate, cobalt nitrate, boric acid and 2-Amino-4-methylpyridine.

The asymmetric unit of the title compound, (2a4mpH)4(V4O12).4H2O, comprises a half of a V4O124– anion, two (2a4mpH)+ cations and two solvent molecules of water (Fig. 1). One molecule of water is disordered over two positions (O7 and O8) with equal occupancies.

The V4O124– ion is centrosymmetric with four tetrahedral VO4units which share two vertices with each other to form an eight-membered ring. The 2-Amino-4-methylpyridine molecule is protonated via its endocyclic nitrogen atom. In the crystal, extensive intermolecular N—H···O hydrogen-bonding interactions (Table 1) between cations, anions and solvent water molecules form 1-D motive chains along [100] (Fig.2). The crystal packing is defined by a layered structure in which chains involving 2a4mpH+ and V4O124– ions are associated via ππ stacking interactions between the aromatic rings of (2a4mpH)+ cations into layers parallel to (110) (Fig. 3).

Related literature top

For related structures, see: Paredes-García et al. (2008); Nakano et al. (2002).

Experimental top

Ammonium vanadate, cobalt nitrate hexahydrate, boric acidand 2-amino-4-methylpyridine (in molar ratio 0.5:1:1:2) were dissolved in H2O (50ml). The reaction mixture was placed in a Parr-Teflon lined stainless steel vessel. It was sealed and heated at 443K for 48 h. The reaction mixture was gradually cooled to room temperature. Pale yellow crystals were isolated from solution.

Refinement top

A water molecule is disordered over two positions (O7 and O8) with equal occupancies. The H atoms for this molecule were not located nor were they included in the refinement. They are however, included in the molecular formula. Hydrogen atoms bound to the water molecule O9 were refined using the following restraints: O—H bond length 0.95 (2) Å and H···H distance 1.50 (4) Å. All other H atoms were placed in calculated positions with C-H = 0.93 - 0.96Å and N-H = 0.86Å and were included in the refinement with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(Cmethyl)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 drawing of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50 % proabality leveland hydrogen atoms are depicted as spheres of arbitrary radii. Symmetry operator: (i) 2 - x, -y, 1 - z.
[Figure 2] Fig. 2. A hydrogen-bonded (dotted lines) chain consisting of anions and cations, extending in the direction [100]. The solvent water molecules are not shown.
[Figure 3] Fig. 3. Packing of the title compound viewed along [100] with ππ stacking interactions shown as dashed lines.
Tetrakis(2-amino-4-methylpyridinium) cyclo-tetra-µ2-oxido-tetrakis[dioxidovanadate(V)] tetrahydrate top
Crystal data top
(C6H9N2)4[V4O12]·4H2OZ = 1
Mr = 900.39F(000) = 332
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54179 Å
a = 7.8739 (3) ÅCell parameters from 4890 reflections
b = 11.1880 (5) Åθ = 4.0–75.8°
c = 11.7618 (6) ŵ = 8.59 mm1
α = 73.609 (4)°T = 293 K
β = 76.945 (4)°Prism, pale yellow
γ = 79.342 (4)°0.15 × 0.15 × 0.10 mm
V = 960.15 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Nova R
diffractometer
3932 independent reflections
Graphite monochromator3371 reflections with I > 2σ(I)
Detector resolution: 10.4323 pixels mm-1Rint = 0.033
ω scansθmax = 76.0°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
h = 99
Tmin = 0.518, Tmax = 1k = 1313
8031 measured reflectionsl = 1411
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.085P)2 + 0.0501P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.47 e Å3
3932 reflectionsΔρmin = 0.33 e Å3
250 parameters
Crystal data top
(C6H9N2)4[V4O12]·4H2Oγ = 79.342 (4)°
Mr = 900.39V = 960.15 (7) Å3
Triclinic, P1Z = 1
a = 7.8739 (3) ÅCu Kα radiation
b = 11.1880 (5) ŵ = 8.59 mm1
c = 11.7618 (6) ÅT = 293 K
α = 73.609 (4)°0.15 × 0.15 × 0.10 mm
β = 76.945 (4)°
Data collection top
Oxford Diffraction Xcalibur Nova R
diffractometer
3932 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
3371 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 1Rint = 0.033
8031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
3932 reflectionsΔρmin = 0.33 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V20.96401 (5)0.16480 (4)0.30891 (4)0.04115 (14)
V10.95947 (5)0.13283 (4)0.42124 (4)0.03986 (14)
O10.9714 (3)0.24965 (19)0.3592 (2)0.0530 (5)
O21.0932 (2)0.17853 (19)0.53675 (18)0.0498 (4)
O30.7553 (3)0.0950 (2)0.4789 (2)0.0589 (5)
O41.0430 (2)0.00128 (17)0.30665 (17)0.0473 (4)
O50.7916 (3)0.2148 (2)0.2444 (2)0.0575 (5)
O61.1255 (3)0.2451 (2)0.2325 (2)0.0600 (5)
C10.5148 (3)0.6860 (2)0.4084 (2)0.0446 (5)
C20.3830 (4)0.6228 (3)0.3964 (3)0.0489 (6)
H20.26630.6450.42920.059*
C30.4245 (5)0.5298 (3)0.3373 (3)0.0577 (7)
C40.6019 (5)0.4953 (3)0.2905 (3)0.0647 (8)
H40.63330.43110.25090.078*
C50.7261 (4)0.5561 (3)0.3034 (3)0.0620 (7)
H50.84320.5340.27140.074*
C60.2802 (6)0.4652 (4)0.3238 (4)0.0836 (12)
H6C0.33080.40220.28050.125*
H6A0.19940.5260.28010.125*
H6B0.21880.42640.40210.125*
N10.6839 (3)0.6492 (2)0.3625 (2)0.0497 (5)
H10.76620.68530.37080.06*
N20.4799 (3)0.7794 (2)0.4625 (2)0.0547 (6)
H2A0.56420.81550.46790.066*
H2B0.37310.80380.49210.066*
C70.5200 (4)1.0124 (3)0.2050 (3)0.0523 (6)
C80.6928 (4)0.9673 (3)0.1585 (3)0.0521 (6)
H80.78631.00160.16770.062*
C90.7251 (4)0.8738 (3)0.1000 (3)0.0563 (7)
C100.5819 (5)0.8220 (3)0.0874 (3)0.0622 (7)
H100.60110.75920.04660.075*
C110.4163 (4)0.8645 (3)0.1352 (3)0.0601 (7)
H110.32170.82950.12870.072*
C120.9095 (5)0.8251 (4)0.0517 (4)0.0783 (10)
H12B0.90780.76020.01330.117*
H12A0.97340.79140.11670.117*
H12C0.96560.89240.00610.117*
N30.3879 (3)0.9573 (3)0.1922 (2)0.0559 (6)
H30.28150.98270.22180.067*
N40.4820 (4)1.1037 (3)0.2601 (3)0.0750 (8)
H4A0.37431.12810.28780.09*
H4B0.56491.13910.26860.09*
O90.3335 (12)0.6497 (8)0.0146 (6)0.186 (3)
O70.0661 (13)0.4852 (7)0.0806 (8)0.121 (3)0.5
O80.754 (2)0.5676 (10)0.0400 (7)0.191 (7)0.5
H9A0.255 (15)0.616 (10)0.047 (11)0.3*
H9B0.385 (17)0.573 (7)0.037 (10)0.3*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V20.0395 (2)0.0430 (2)0.0433 (2)0.00904 (16)0.01011 (16)0.01024 (17)
V10.0361 (2)0.0433 (2)0.0449 (2)0.00975 (15)0.00796 (16)0.01537 (17)
O10.0542 (10)0.0535 (10)0.0622 (12)0.0098 (8)0.0159 (9)0.0259 (9)
O20.0471 (9)0.0566 (10)0.0500 (10)0.0079 (8)0.0129 (8)0.0164 (8)
O30.0415 (9)0.0704 (13)0.0701 (13)0.0124 (8)0.0044 (9)0.0273 (11)
O40.0453 (9)0.0458 (9)0.0518 (10)0.0089 (7)0.0060 (7)0.0141 (8)
O50.0538 (11)0.0611 (12)0.0635 (12)0.0017 (9)0.0250 (9)0.0175 (10)
O60.0578 (11)0.0601 (12)0.0615 (12)0.0238 (9)0.0071 (9)0.0069 (10)
C10.0447 (12)0.0455 (12)0.0445 (12)0.0119 (9)0.0129 (10)0.0050 (10)
C20.0446 (12)0.0478 (13)0.0556 (15)0.0120 (10)0.0164 (11)0.0057 (11)
C30.0701 (17)0.0508 (14)0.0603 (17)0.0165 (13)0.0298 (14)0.0074 (13)
C40.082 (2)0.0559 (16)0.0640 (18)0.0073 (15)0.0203 (16)0.0231 (14)
C50.0563 (16)0.0669 (18)0.0613 (18)0.0024 (13)0.0081 (13)0.0192 (15)
C60.103 (3)0.071 (2)0.098 (3)0.033 (2)0.049 (2)0.018 (2)
N10.0434 (11)0.0548 (12)0.0530 (13)0.0138 (9)0.0096 (9)0.0113 (10)
N20.0443 (11)0.0592 (13)0.0667 (15)0.0142 (9)0.0080 (10)0.0224 (12)
C70.0422 (13)0.0661 (16)0.0475 (14)0.0106 (11)0.0094 (10)0.0095 (12)
C80.0453 (13)0.0668 (17)0.0436 (13)0.0120 (11)0.0086 (10)0.0097 (12)
C90.0547 (15)0.0694 (18)0.0410 (13)0.0093 (13)0.0070 (11)0.0086 (12)
C100.0710 (19)0.0665 (18)0.0530 (16)0.0120 (15)0.0173 (14)0.0147 (14)
C110.0597 (16)0.0683 (18)0.0555 (16)0.0216 (14)0.0220 (13)0.0033 (14)
C120.066 (2)0.097 (3)0.069 (2)0.0061 (18)0.0031 (17)0.032 (2)
N30.0404 (11)0.0698 (15)0.0544 (13)0.0123 (10)0.0082 (9)0.0077 (11)
N40.0472 (13)0.090 (2)0.097 (2)0.0088 (13)0.0057 (14)0.0436 (19)
O90.225 (8)0.230 (8)0.116 (4)0.091 (6)0.042 (4)0.016 (5)
O70.161 (8)0.072 (4)0.101 (6)0.012 (4)0.004 (5)0.007 (4)
O80.38 (2)0.118 (7)0.071 (5)0.122 (11)0.017 (8)0.006 (5)
Geometric parameters (Å, º) top
V2—O51.636 (2)N2—H2A0.86
V2—O61.637 (2)N2—H2B0.86
V2—O2i1.812 (2)C7—N41.314 (4)
V2—O41.8258 (18)C7—N31.358 (4)
V1—O31.625 (2)C7—C81.404 (4)
V1—O11.6467 (19)C8—C91.364 (5)
V1—O21.809 (2)C8—H80.93
V1—O41.8232 (19)C9—C101.414 (5)
O2—V2i1.812 (2)C9—C121.495 (5)
C1—N21.328 (4)C10—C111.353 (5)
C1—N11.353 (4)C10—H100.93
C1—C21.411 (4)C11—N31.349 (5)
C2—C31.361 (4)C11—H110.93
C2—H20.93C12—H12B0.96
C3—C41.406 (5)C12—H12A0.96
C3—C61.513 (4)C12—H12C0.96
C4—C51.346 (5)N3—H30.86
C4—H40.93N4—H4A0.86
C5—N11.362 (4)N4—H4B0.86
C5—H50.93O9—H9A0.97 (2)
C6—H6C0.96O9—H9B0.98 (2)
C6—H6A0.96O7—O8ii1.460 (18)
C6—H6B0.96O8—O7ii1.460 (18)
N1—H10.86
O5—V2—O6109.93 (12)C1—N1—C5121.2 (3)
O5—V2—O2i109.51 (10)C1—N1—H1119.4
O6—V2—O2i111.16 (11)C5—N1—H1119.4
O5—V2—O4110.27 (10)C1—N2—H2A120
O6—V2—O4106.15 (10)C1—N2—H2B120
O2i—V2—O4109.79 (9)H2A—N2—H2B120
O3—V1—O1108.79 (11)N4—C7—N3119.4 (3)
O3—V1—O2110.32 (11)N4—C7—C8123.0 (3)
O1—V1—O2110.20 (10)N3—C7—C8117.5 (3)
O3—V1—O4110.02 (11)C9—C8—C7120.8 (3)
O1—V1—O4109.41 (10)C9—C8—H8119.6
O2—V1—O4108.10 (9)C7—C8—H8119.6
V1—O2—V2i129.30 (11)C8—C9—C10119.0 (3)
V1—O4—V2123.94 (10)C8—C9—C12120.7 (3)
N2—C1—N1118.9 (2)C10—C9—C12120.3 (3)
N2—C1—C2122.9 (3)C11—C10—C9119.4 (3)
N1—C1—C2118.2 (3)C11—C10—H10120.3
C3—C2—C1120.8 (3)C9—C10—H10120.3
C3—C2—H2119.6N3—C11—C10120.4 (3)
C1—C2—H2119.6N3—C11—H11119.8
C2—C3—C4118.9 (3)C10—C11—H11119.8
C2—C3—C6119.7 (3)C9—C12—H12B109.5
C4—C3—C6121.4 (3)C9—C12—H12A109.5
C5—C4—C3119.5 (3)H12B—C12—H12A109.5
C5—C4—H4120.3C9—C12—H12C109.5
C3—C4—H4120.3H12B—C12—H12C109.5
C4—C5—N1121.4 (3)H12A—C12—H12C109.5
C4—C5—H5119.3C11—N3—C7122.8 (3)
N1—C5—H5119.3C11—N3—H3118.6
C3—C6—H6C109.5C7—N3—H3118.6
C3—C6—H6A109.5C7—N4—H4A120
H6C—C6—H6A109.5C7—N4—H4B120
C3—C6—H6B109.5H4A—N4—H4B120
H6C—C6—H6B109.5H9A—O9—H9B102 (4)
H6A—C6—H6B109.5
O3—V1—O2—V2i9.82 (19)C3—C4—C5—N10.9 (5)
O1—V1—O2—V2i129.97 (15)N2—C1—N1—C5178.3 (3)
O4—V1—O2—V2i110.52 (14)C2—C1—N1—C51.7 (4)
O3—V1—O4—V229.34 (16)C4—C5—N1—C11.3 (5)
O1—V1—O4—V2148.80 (13)N4—C7—C8—C9178.8 (3)
O2—V1—O4—V291.18 (13)N3—C7—C8—C91.7 (5)
O5—V2—O4—V186.26 (15)C7—C8—C9—C100.5 (5)
O6—V2—O4—V1154.71 (13)C7—C8—C9—C12179.4 (3)
O2i—V2—O4—V134.48 (15)C8—C9—C10—C111.1 (5)
N2—C1—C2—C3178.2 (3)C12—C9—C10—C11177.8 (3)
N1—C1—C2—C31.8 (4)C9—C10—C11—N31.4 (5)
C1—C2—C3—C41.4 (5)C10—C11—N3—C70.0 (5)
C1—C2—C3—C6178.9 (3)N4—C7—N3—C11179.0 (3)
C2—C3—C4—C51.0 (5)C8—C7—N3—C111.5 (4)
C6—C3—C4—C5179.3 (4)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iii0.861.852.700 (3)167
N2—H2A···O3iii0.862.002.861 (3)178
N2—H2B···O2iv0.862.132.959 (3)161
N3—H3···O4iv0.861.922.767 (3)167
N4—H4A···O6iv0.862.262.995 (4)143
N4—H4B···O5iii0.862.042.883 (4)165
C2—H2···O1iv0.932.603.363 (4)140
C2—H2···O2iv0.932.643.371 (4)136
C4—H4···O50.932.523.352 (4)149
Symmetry codes: (iii) x, y+1, z; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H9N2)4[V4O12]·4H2O
Mr900.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8739 (3), 11.1880 (5), 11.7618 (6)
α, β, γ (°)73.609 (4), 76.945 (4), 79.342 (4)
V3)960.15 (7)
Z1
Radiation typeCu Kα
µ (mm1)8.59
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Nova R
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.518, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
8031, 3932, 3371
Rint0.033
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.05
No. of reflections3932
No. of parameters250
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.852.700 (3)167
N2—H2A···O3i0.862.002.861 (3)178
N2—H2B···O2ii0.862.132.959 (3)161
N3—H3···O4ii0.861.922.767 (3)167
N4—H4A···O6ii0.862.262.995 (4)143
N4—H4B···O5i0.862.042.883 (4)165
C2—H2···O1ii0.932.603.363 (4)140
C2—H2···O2ii0.932.643.371 (4)136
C4—H4···O50.932.523.352 (4)149
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z.
 

Acknowledgements

This research was supported by the Islamic Azad University, Yazd Branch, and by the Ministry of Science, Education and Sports of Croatia, grant No. 098–1191344-2943.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNakano, H., Ozeki, T. & Yagasaki, A. (2002). Acta Cryst. C58, m464–m465.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParedes-García, V., Gaune, S., Saldías, M., Garland, M. T., Baggio, R., Vega, A., Salah ElFallah, M., Escuer, A., Le Fur, E., Venegas-Yazigi, D. & Spodine, E. (2008). Inorg. Chim Acta, 361, 3681–3689.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds