metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(di­methyl­ammonium) [cadmate(II)-bis­­(μ-1,1′:4′,1′′-terphenyl-3,3′′-di­carboxyl­ato)]] di­methyl­formamide disolvate]

aDepartment of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 449-791, Republic of Korea, and bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: shuh@hufs.ac.kr

(Received 29 November 2010; accepted 7 December 2010; online 11 December 2010)

In the title compound, {(C2H8N)2[Cd(C20H12O4)2]·2C3H7NO}n, the CdII ion lies on a twofold rotation axis and is in a distorted octa­hedral CdO6 environment, defined by four O atoms of two μ2-coordinated 1,1′:4′,1′′-terphenyl-3,3′′-dicarboxyl­ate (DCT) ligands and two O atoms of two μ1-coordinated DCT ligands. Both types of DCT ligands act as bridging, forming a one-dimensional polymeric structure propagating parallel to [10[\overline1]].

Related literature

For background information on metal-organic frameworks (MOFs), see: Li & Zhou (2009[Li, J.-R. & Zhou, H.-C. (2009). Angew. Chem. Int. Ed. 48, 8465-8468.]); Huh et al. (2009[Huh, S., Kwon, T.-H., Park, N., Kim, S.-J. & Kim, Y. (2009). Chem. Commun. pp. 4953-4955.], 2010[Huh, S., Jung, S., Kim, Y., Kim, S.-J. & Park, S. (2010). Dalton Trans. pp. 1261-1265.]); Youm et al. (2004[Youm, K.-T., Huh, S., Park, Y. J., Park, S., Choi, M.-G. & Jun, M.-J. (2004). Chem. Commun. pp. 2384-2385.]); Gu et al. (2010[Gu, J.-M., Kwon, T.-H., Park, J.-H. & Huh, S. (2010). Dalton Trans. pp. 5608-5610.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)2[Cd(C20H12O4)2]·2C3H7NO

  • Mr = 983.37

  • Monoclinic, C 2/c

  • a = 28.525 (4) Å

  • b = 9.3267 (13) Å

  • c = 20.580 (3) Å

  • β = 114.752 (2)°

  • V = 4972.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 293 K

  • 0.08 × 0.08 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 13515 measured reflections

  • 4888 independent reflections

  • 2861 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.116

  • S = 0.90

  • 4888 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The role of bridging ligands in the formation of structurally interesting metal-organic frameworks (MOFs) is of significant importance for the design of multi-functional MOFs and coordination polymers (Li & Zhou, 2009; Huh et al., 2010; Huh et al., 2009; Youm et al., 2004). For instance, the reaction between a Zn(II) ion and a new C2 h-symmetric bridging ligand, 3,3"-dicarboxy-1,1':4',1"-terphenyl (DCT), in the presence of 1,4-diazacyclo[2,2,2]octane (DABCO) afforded a new nanoporous Zn-MOF containing DABCO ligands with an uncoordinated nitrogen atom towards one-dimensional channels. The resulting DABCO-functionalized Zn-MOF showed a better adsorption of CO2 over H2 and N2 with an exceptionally high CO2 adsorption enthalpy (Gu et al., 2010).

To prepare new functional MOFs and coordination polymers, a reaction between Cd(NO3)2.H2O and the DCT ligand was investigated. A new one-dimensional coordination polymer, [H2N(CH3)2]2[Cd(DCT)2].2DMF (I), was obtained as colorless crystals and the crystal structure of (I) is reported herein. In the crystal structure of the title compound the Cd atom is coordinated by four oxygen atoms of two µ2-coordinated DCT ligands and two oxygen atoms of two µ1-coordinated DCT ligands (Fig. 1). Two DCT ligands bridging two Cd atoms and the title compound forms an extended one-dimensional coordination polymer (Fig. 2). The overall coordination environment of a Cd atom is a distorted octahedral geometry. The title compound possesses periodically arranged CdII ions with two negative charges per Cd center because of the charge mismatching between CdII ions and the DCT ligands. Therefore two dimethylammonium cations are required for charge balancing. In addtion there are two dimethylformamide solvent molecules in the formula unit.

Related literature top

For background information on metal-organic frameworks (MOFs), see: Li & Zhou (2009); Huh et al. (2009, 2010); Youm et al. (2004); Gu et al. (2010).

Experimental top

The reaction mixture of Cd(NO3)2.H2O (30.8 mg, 0.1 mmol) and 3,3"-dicarboxy-1,1':4',1"-terphenyl (DCT, 32 mg, 0.1 mmol) in 10 ml of DMF was heated at 130 °C for 4 d. The resulting clear solution was storedat room temperature for few days gave colorless crystals.

Refinement top

H atoms were placed incalculated positions with C—H distances of 0.93 Å (phenyl) 0.96 Å (methyl) and N—H distances of 0.90 Å (ammonium). They were included in the refinement in riding-motion approximation with Uiso(H) = 1.2Ueq(C and N) and 1.5Ueq(C).

Structure description top

The role of bridging ligands in the formation of structurally interesting metal-organic frameworks (MOFs) is of significant importance for the design of multi-functional MOFs and coordination polymers (Li & Zhou, 2009; Huh et al., 2010; Huh et al., 2009; Youm et al., 2004). For instance, the reaction between a Zn(II) ion and a new C2 h-symmetric bridging ligand, 3,3"-dicarboxy-1,1':4',1"-terphenyl (DCT), in the presence of 1,4-diazacyclo[2,2,2]octane (DABCO) afforded a new nanoporous Zn-MOF containing DABCO ligands with an uncoordinated nitrogen atom towards one-dimensional channels. The resulting DABCO-functionalized Zn-MOF showed a better adsorption of CO2 over H2 and N2 with an exceptionally high CO2 adsorption enthalpy (Gu et al., 2010).

To prepare new functional MOFs and coordination polymers, a reaction between Cd(NO3)2.H2O and the DCT ligand was investigated. A new one-dimensional coordination polymer, [H2N(CH3)2]2[Cd(DCT)2].2DMF (I), was obtained as colorless crystals and the crystal structure of (I) is reported herein. In the crystal structure of the title compound the Cd atom is coordinated by four oxygen atoms of two µ2-coordinated DCT ligands and two oxygen atoms of two µ1-coordinated DCT ligands (Fig. 1). Two DCT ligands bridging two Cd atoms and the title compound forms an extended one-dimensional coordination polymer (Fig. 2). The overall coordination environment of a Cd atom is a distorted octahedral geometry. The title compound possesses periodically arranged CdII ions with two negative charges per Cd center because of the charge mismatching between CdII ions and the DCT ligands. Therefore two dimethylammonium cations are required for charge balancing. In addtion there are two dimethylformamide solvent molecules in the formula unit.

For background information on metal-organic frameworks (MOFs), see: Li & Zhou (2009); Huh et al. (2009, 2010); Youm et al. (2004); Gu et al. (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound's anion with labeling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. One-dimensional chain of the title compound. The dimethylammonium cations and DMF solvent molecules are omitted for clarity.
catena-Poly[[bis(dimethylammonium) [cadmate(II)-bis(µ-1,1':4',1''-terphenyl-3,3''-dicarboxylato)]] dimethylformamide disolvate] top
Crystal data top
(C2H8N)2[Cd(C20H12O4)2]·2C3H7NOF(000) = 2040
Mr = 983.37Dx = 1.314 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2049 reflections
a = 28.525 (4) Åθ = 2.3–27.0°
b = 9.3267 (13) ŵ = 0.50 mm1
c = 20.580 (3) ÅT = 293 K
β = 114.752 (2)°Block, colorless
V = 4972.1 (11) Å30.08 × 0.08 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2861 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
φ and ω scansh = 3532
13515 measured reflectionsk = 811
4888 independent reflectionsl = 2518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0481P)2]
where P = (Fo2 + 2Fc2)/3
4888 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
(C2H8N)2[Cd(C20H12O4)2]·2C3H7NOV = 4972.1 (11) Å3
Mr = 983.37Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.525 (4) ŵ = 0.50 mm1
b = 9.3267 (13) ÅT = 293 K
c = 20.580 (3) Å0.08 × 0.08 × 0.05 mm
β = 114.752 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2861 reflections with I > 2σ(I)
13515 measured reflectionsRint = 0.068
4888 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 0.90Δρmax = 1.47 e Å3
4888 reflectionsΔρmin = 0.76 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.22586 (5)0.75000.03992 (17)
O11.08028 (11)0.3209 (3)0.77314 (16)0.0572 (9)
O21.01785 (11)0.4040 (3)0.67570 (16)0.0621 (9)
O30.95903 (10)0.0827 (3)0.65658 (14)0.0505 (8)
O41.03902 (12)0.0114 (4)0.68232 (16)0.0719 (10)
C11.06411 (17)0.4007 (5)0.7194 (2)0.0449 (11)
C21.10258 (15)0.4955 (4)0.7074 (2)0.0389 (10)
C31.15225 (14)0.5095 (4)0.7608 (2)0.0390 (10)
H31.16100.46190.80400.047*
C41.18932 (14)0.5936 (4)0.7510 (2)0.0382 (10)
C51.17464 (16)0.6611 (5)0.6854 (2)0.0482 (12)
H51.19870.71640.67700.058*
C61.12548 (16)0.6485 (5)0.6323 (2)0.0534 (12)
H61.11670.69510.58880.064*
C71.08924 (16)0.5672 (5)0.6433 (2)0.0471 (11)
H71.05580.56050.60770.056*
C80.74239 (14)0.1084 (4)0.3083 (2)0.0377 (10)
C90.76565 (15)0.0007 (5)0.3571 (2)0.0452 (11)
H90.74670.08270.35600.054*
C100.81649 (16)0.0094 (5)0.4076 (2)0.0465 (11)
H100.83080.06570.43950.056*
C110.84628 (15)0.1288 (5)0.4114 (2)0.0379 (10)
C120.82222 (15)0.2418 (5)0.3648 (2)0.0443 (11)
H120.84040.32600.36770.053*
C130.77171 (15)0.2300 (5)0.3145 (2)0.0463 (11)
H130.75690.30660.28370.056*
C140.90158 (15)0.1368 (4)0.4619 (2)0.0385 (10)
C150.92021 (15)0.0652 (4)0.5273 (2)0.0408 (10)
H150.89750.01310.54000.049*
C160.97212 (15)0.0706 (4)0.5738 (2)0.0396 (10)
C171.00572 (16)0.1481 (5)0.5552 (2)0.0506 (12)
H171.04060.15230.58610.061*
C180.98748 (16)0.2195 (5)0.4906 (2)0.0541 (12)
H181.01020.27240.47820.065*
C190.93633 (16)0.2132 (5)0.4445 (2)0.0480 (11)
H190.92480.26090.40090.058*
C200.99169 (17)0.0116 (5)0.6434 (2)0.0473 (11)
N210.1478 (2)0.4189 (6)0.9596 (2)0.0814 (14)
O210.16600 (16)0.1981 (4)0.9324 (2)0.0925 (13)
C210.1350 (2)0.2929 (7)0.9302 (3)0.0737 (16)
H210.10000.27270.90570.088*
C220.2015 (3)0.4610 (9)0.9988 (4)0.146 (3)
H22A0.22350.38260.99960.220*
H22B0.20770.48631.04690.220*
H22C0.20880.54200.97570.220*
C230.1082 (3)0.5226 (8)0.9496 (3)0.126 (3)
H23A0.11430.60680.92750.189*
H23B0.10880.54750.99520.189*
H23C0.07520.48280.91960.189*
N310.12647 (13)1.0202 (4)0.80646 (18)0.0537 (10)
H31A0.13021.07700.84360.064*
H31B0.09431.03310.77240.064*
C310.16355 (19)1.0657 (7)0.7781 (3)0.0912 (19)
H31C0.19801.05790.81490.137*
H31D0.15681.16340.76230.137*
H31E0.16011.00550.73850.137*
C320.1320 (2)0.8719 (6)0.8299 (3)0.101 (2)
H32A0.13100.81070.79190.152*
H32B0.10420.84710.84260.152*
H32C0.16430.85990.87080.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0305 (2)0.0450 (3)0.0417 (3)0.0000.01258 (19)0.000
O10.0486 (19)0.058 (2)0.060 (2)0.0061 (16)0.0182 (16)0.0137 (17)
O20.0367 (18)0.067 (2)0.072 (2)0.0066 (16)0.0126 (17)0.0110 (17)
O30.0426 (18)0.061 (2)0.0476 (18)0.0010 (15)0.0182 (15)0.0085 (15)
O40.0410 (19)0.101 (3)0.055 (2)0.0050 (19)0.0016 (16)0.0156 (19)
C10.042 (3)0.041 (3)0.051 (3)0.002 (2)0.019 (2)0.003 (2)
C20.037 (2)0.035 (3)0.047 (3)0.0023 (19)0.020 (2)0.002 (2)
C30.038 (2)0.038 (3)0.040 (2)0.005 (2)0.015 (2)0.0036 (19)
C40.033 (2)0.037 (3)0.044 (3)0.0013 (19)0.015 (2)0.000 (2)
C50.040 (3)0.053 (3)0.053 (3)0.004 (2)0.020 (2)0.014 (2)
C60.043 (3)0.064 (3)0.048 (3)0.002 (2)0.014 (2)0.016 (2)
C70.035 (2)0.048 (3)0.051 (3)0.004 (2)0.011 (2)0.007 (2)
C80.035 (2)0.036 (3)0.042 (2)0.000 (2)0.016 (2)0.001 (2)
C90.041 (3)0.041 (3)0.052 (3)0.006 (2)0.017 (2)0.006 (2)
C100.046 (3)0.042 (3)0.045 (3)0.002 (2)0.013 (2)0.006 (2)
C110.039 (2)0.042 (3)0.034 (2)0.002 (2)0.0158 (19)0.002 (2)
C120.044 (2)0.040 (3)0.048 (3)0.006 (2)0.018 (2)0.002 (2)
C130.045 (2)0.040 (3)0.052 (3)0.003 (2)0.018 (2)0.011 (2)
C140.040 (2)0.040 (3)0.034 (2)0.001 (2)0.014 (2)0.001 (2)
C150.037 (2)0.042 (3)0.044 (3)0.001 (2)0.018 (2)0.002 (2)
C160.038 (2)0.040 (3)0.038 (2)0.002 (2)0.012 (2)0.001 (2)
C170.038 (3)0.057 (3)0.051 (3)0.009 (2)0.012 (2)0.001 (2)
C180.048 (3)0.056 (3)0.060 (3)0.010 (2)0.024 (2)0.008 (3)
C190.045 (3)0.051 (3)0.045 (3)0.002 (2)0.015 (2)0.010 (2)
C200.047 (3)0.046 (3)0.045 (3)0.002 (2)0.015 (2)0.003 (2)
N210.092 (4)0.076 (4)0.074 (3)0.010 (3)0.034 (3)0.021 (3)
O210.095 (3)0.086 (3)0.078 (3)0.011 (2)0.018 (2)0.011 (2)
C210.090 (4)0.067 (4)0.054 (3)0.016 (4)0.020 (3)0.010 (3)
C220.108 (6)0.159 (8)0.171 (7)0.055 (5)0.057 (5)0.080 (6)
C230.151 (7)0.092 (6)0.130 (6)0.007 (5)0.054 (5)0.012 (4)
N310.046 (2)0.060 (3)0.049 (2)0.010 (2)0.0142 (19)0.0055 (19)
C310.069 (4)0.108 (5)0.113 (5)0.000 (3)0.055 (4)0.002 (4)
C320.134 (6)0.064 (4)0.127 (5)0.021 (4)0.075 (5)0.014 (4)
Geometric parameters (Å, º) top
Cd1—O32.228 (3)C12—H120.9300
Cd1—O3i2.228 (3)C13—H130.9300
Cd1—O12.312 (3)C14—C191.383 (5)
Cd1—O1i2.312 (3)C14—C151.394 (5)
Cd1—O22.451 (3)C15—C161.387 (5)
Cd1—O2i2.451 (3)C15—H150.9300
Cd1—C1i2.714 (4)C16—C171.376 (5)
Cd1—C12.714 (4)C16—C201.510 (6)
O1—C11.250 (5)C17—C181.380 (6)
O2—C11.248 (4)C17—H170.9300
O3—C201.262 (5)C18—C191.369 (5)
O4—C201.249 (5)C18—H180.9300
C1—C21.508 (6)C19—H190.9300
C2—C71.383 (5)N21—C211.302 (6)
C2—C31.389 (5)N21—C231.434 (7)
C3—C41.397 (5)N21—C221.455 (7)
C3—H30.9300O21—C211.238 (6)
C4—C51.386 (5)C21—H210.9300
C4—C8ii1.485 (5)C22—H22A0.9600
C5—C61.375 (5)C22—H22B0.9600
C5—H50.9300C22—H22C0.9600
C6—C71.375 (5)C23—H23A0.9600
C6—H60.9300C23—H23B0.9600
C7—H70.9300C23—H23C0.9600
C8—C131.383 (5)N31—C321.452 (6)
C8—C91.388 (5)N31—C311.469 (6)
C8—C4iii1.485 (5)N31—H31A0.9000
C9—C101.389 (5)N31—H31B0.9000
C9—H90.9300C31—H31C0.9600
C10—C111.383 (5)C31—H31D0.9600
C10—H100.9300C31—H31E0.9600
C11—C121.396 (5)C32—H32A0.9600
C11—C141.484 (5)C32—H32B0.9600
C12—C131.383 (5)C32—H32C0.9600
O3—Cd1—O3i106.36 (15)C10—C11—C14121.9 (4)
O3—Cd1—O1121.60 (10)C12—C11—C14121.0 (4)
O3i—Cd1—O186.31 (11)C13—C12—C11120.9 (4)
O3—Cd1—O1i86.31 (11)C13—C12—H12119.6
O3i—Cd1—O1i121.60 (10)C11—C12—H12119.6
O1—Cd1—O1i134.91 (16)C12—C13—C8122.3 (4)
O3—Cd1—O292.22 (10)C12—C13—H13118.9
O3i—Cd1—O2140.68 (10)C8—C13—H13118.9
O1—Cd1—O254.70 (10)C19—C14—C15118.1 (4)
O1i—Cd1—O293.34 (10)C19—C14—C11120.8 (4)
O3—Cd1—O2i140.68 (10)C15—C14—C11121.0 (4)
O3i—Cd1—O2i92.22 (10)C16—C15—C14121.0 (4)
O1—Cd1—O2i93.34 (11)C16—C15—H15119.5
O1i—Cd1—O2i54.69 (10)C14—C15—H15119.5
O2—Cd1—O2i94.67 (15)C17—C16—C15119.6 (4)
O3—Cd1—C1i113.54 (12)C17—C16—C20120.4 (4)
O3i—Cd1—C1i108.72 (12)C15—C16—C20120.0 (4)
O1—Cd1—C1i115.31 (12)C16—C17—C18119.7 (4)
O1i—Cd1—C1i27.33 (10)C16—C17—H17120.1
O2—Cd1—C1i94.22 (11)C18—C17—H17120.1
O2i—Cd1—C1i27.36 (10)C19—C18—C17120.6 (4)
O3—Cd1—C1108.72 (12)C19—C18—H18119.7
O3i—Cd1—C1113.54 (12)C17—C18—H18119.7
O1—Cd1—C127.34 (10)C18—C19—C14121.0 (4)
O1i—Cd1—C1115.31 (12)C18—C19—H19119.5
O2—Cd1—C127.36 (10)C14—C19—H19119.5
O2i—Cd1—C194.22 (11)O4—C20—O3124.1 (4)
C1i—Cd1—C1106.12 (18)O4—C20—C16118.6 (4)
C1—O1—Cd194.5 (3)O3—C20—C16117.2 (4)
C1—O2—Cd188.1 (3)C21—N21—C23119.5 (6)
C20—O3—Cd1109.4 (3)C21—N21—C22121.7 (6)
O2—C1—O1122.7 (4)C23—N21—C22118.7 (6)
O2—C1—C2119.3 (4)O21—C21—N21124.9 (6)
O1—C1—C2118.0 (4)O21—C21—H21117.5
O2—C1—Cd164.5 (2)N21—C21—H21117.5
O1—C1—Cd158.1 (2)N21—C22—H22A109.5
C2—C1—Cd1176.1 (3)N21—C22—H22B109.5
C7—C2—C3119.4 (4)H22A—C22—H22B109.5
C7—C2—C1120.8 (4)N21—C22—H22C109.5
C3—C2—C1119.8 (4)H22A—C22—H22C109.5
C2—C3—C4121.4 (4)H22B—C22—H22C109.5
C2—C3—H3119.3N21—C23—H23A109.5
C4—C3—H3119.3N21—C23—H23B109.5
C5—C4—C3117.2 (4)H23A—C23—H23B109.5
C5—C4—C8ii121.5 (4)N21—C23—H23C109.5
C3—C4—C8ii121.3 (4)H23A—C23—H23C109.5
C6—C5—C4121.8 (4)H23B—C23—H23C109.5
C6—C5—H5119.1C32—N31—C31114.3 (4)
C4—C5—H5119.1C32—N31—H31A108.7
C7—C6—C5120.2 (4)C31—N31—H31A108.7
C7—C6—H6119.9C32—N31—H31B108.7
C5—C6—H6119.9C31—N31—H31B108.7
C6—C7—C2119.9 (4)H31A—N31—H31B107.6
C6—C7—H7120.1N31—C31—H31C109.5
C2—C7—H7120.1N31—C31—H31D109.5
C13—C8—C9116.6 (4)H31C—C31—H31D109.5
C13—C8—C4iii121.7 (4)N31—C31—H31E109.5
C9—C8—C4iii121.7 (4)H31C—C31—H31E109.5
C8—C9—C10121.6 (4)H31D—C31—H31E109.5
C8—C9—H9119.2N31—C32—H32A109.5
C10—C9—H9119.2N31—C32—H32B109.5
C11—C10—C9121.5 (4)H32A—C32—H32B109.5
C11—C10—H10119.3N31—C32—H32C109.5
C9—C10—H10119.3H32A—C32—H32C109.5
C10—C11—C12117.0 (4)H32B—C32—H32C109.5
O3—Cd1—O1—C168.3 (3)C2—C3—C4—C50.8 (6)
O3i—Cd1—O1—C1175.3 (3)C2—C3—C4—C8ii180.0 (4)
O1i—Cd1—O1—C152.1 (2)C3—C4—C5—C61.1 (6)
O2—Cd1—O1—C10.6 (2)C8ii—C4—C5—C6179.6 (4)
O2i—Cd1—O1—C192.7 (3)C4—C5—C6—C70.0 (7)
C1i—Cd1—O1—C175.8 (3)C5—C6—C7—C21.4 (7)
O3—Cd1—O2—C1128.6 (3)C3—C2—C7—C61.7 (6)
O3i—Cd1—O2—C19.1 (3)C1—C2—C7—C6177.4 (4)
O1—Cd1—O2—C10.6 (2)C13—C8—C9—C102.6 (6)
O1i—Cd1—O2—C1145.0 (3)C4iii—C8—C9—C10175.6 (4)
O2i—Cd1—O2—C190.1 (3)C8—C9—C10—C110.1 (6)
C1i—Cd1—O2—C1117.6 (3)C9—C10—C11—C123.3 (6)
O3i—Cd1—O3—C2064.4 (3)C9—C10—C11—C14175.9 (4)
O1—Cd1—O3—C2031.4 (3)C10—C11—C12—C133.7 (6)
O1i—Cd1—O3—C20173.7 (3)C14—C11—C12—C13175.5 (4)
O2—Cd1—O3—C2080.5 (3)C11—C12—C13—C81.0 (6)
O2i—Cd1—O3—C20179.4 (2)C9—C8—C13—C122.2 (6)
C1i—Cd1—O3—C20176.1 (3)C4iii—C8—C13—C12176.1 (4)
C1—Cd1—O3—C2058.2 (3)C10—C11—C14—C19148.1 (4)
Cd1—O2—C1—O11.1 (4)C12—C11—C14—C1931.1 (6)
Cd1—O2—C1—C2179.3 (3)C10—C11—C14—C1530.5 (6)
Cd1—O1—C1—O21.2 (5)C12—C11—C14—C15150.4 (4)
Cd1—O1—C1—C2179.2 (3)C19—C14—C15—C160.1 (6)
O3—Cd1—C1—O255.5 (3)C11—C14—C15—C16178.7 (4)
O3i—Cd1—C1—O2173.7 (2)C14—C15—C16—C170.2 (6)
O1—Cd1—C1—O2178.9 (4)C14—C15—C16—C20178.1 (4)
O1i—Cd1—C1—O239.3 (3)C15—C16—C17—C180.0 (7)
O2i—Cd1—C1—O292.0 (3)C20—C16—C17—C18178.3 (4)
C1i—Cd1—C1—O266.9 (2)C16—C17—C18—C190.5 (7)
O3—Cd1—C1—O1123.3 (3)C17—C18—C19—C140.8 (7)
O3i—Cd1—C1—O15.2 (3)C15—C14—C19—C180.6 (6)
O1i—Cd1—C1—O1141.8 (2)C11—C14—C19—C18179.2 (4)
O2—Cd1—C1—O1178.9 (4)Cd1—O3—C20—O47.4 (5)
O2i—Cd1—C1—O189.1 (3)Cd1—O3—C20—C16168.7 (3)
C1i—Cd1—C1—O1114.2 (3)C17—C16—C20—O42.3 (6)
O2—C1—C2—C710.8 (6)C15—C16—C20—O4176.0 (4)
O1—C1—C2—C7168.7 (4)C17—C16—C20—O3178.6 (4)
O2—C1—C2—C3170.1 (4)C15—C16—C20—O30.4 (6)
O1—C1—C2—C310.3 (6)C23—N21—C21—O21176.3 (6)
C7—C2—C3—C40.6 (6)C22—N21—C21—O210.3 (9)
C1—C2—C3—C4178.5 (4)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C2H8N)2[Cd(C20H12O4)2]·2C3H7NO
Mr983.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)28.525 (4), 9.3267 (13), 20.580 (3)
β (°) 114.752 (2)
V3)4972.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.08 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13515, 4888, 2861
Rint0.068
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.116, 0.90
No. of reflections4888
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.47, 0.76

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic ResearchPromotion Fund) (KRF-2008–331-C00149).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGu, J.-M., Kwon, T.-H., Park, J.-H. & Huh, S. (2010). Dalton Trans. pp. 5608–5610.  Web of Science CSD CrossRef Google Scholar
First citationHuh, S., Jung, S., Kim, Y., Kim, S.-J. & Park, S. (2010). Dalton Trans. pp. 1261–1265.  Web of Science CSD CrossRef Google Scholar
First citationHuh, S., Kwon, T.-H., Park, N., Kim, S.-J. & Kim, Y. (2009). Chem. Commun. pp. 4953-4955.  Web of Science CSD CrossRef Google Scholar
First citationLi, J.-R. & Zhou, H.-C. (2009). Angew. Chem. Int. Ed. 48, 8465–8468.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoum, K.-T., Huh, S., Park, Y. J., Park, S., Choi, M.-G. & Jun, M.-J. (2004). Chem. Commun. pp. 2384–2385.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds