metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cyclo-Tetra­kis(μ-naphthalene-1,8-di­carboxyl­ato)tetra­kis­[di­aqua­(2,2′-bi­pyridine)­manganese(II)] tetra­hydrate

aSchool of Pharmacy and Material Engineering, Jinhua College of Vocation and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: chenling78@126.com

(Received 18 November 2010; accepted 26 November 2010; online 30 November 2010)

In the title centrosymmetric tetra­nuclear complex, [Mn4(C12H6O4)4(C10H8N2)4(H2O)8]·4H2O, two independent MnII ions are coordinated in a slightly disorted octa­hedral environment by two aqua ligands, two naphthalene-1,8-dicarboxyl­ate (1,8-nap) ligands and one bis-chelating 2,2′-bipyridine (2,2′-bipy) ligand. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds into chains along [100]. These chains are further linked by weak ππ inter­actions with centroid–centroid distances in the range of 3.609 (2)–3.758 (1) Å, forming a three-dimensional supra­molecular network.

Related literature

For related structures, see: Feng et al. (2008[Feng, X., Tang, Z. W., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Chin. J. Inorg. Chem. 24, 1713-1717.]); Fu et al. (2010[Fu, J. D., Tang, Z. W., Feng, X. & Wen, Y. H. (2010). Sci. China Chem. 53, 1060-1067.]); Wen et al. (2007[Wen, Y.-H., Feng, X., He, Y.-H., Lan, Y.-Z. & Sun, H. (2007). Acta Cryst. C63, m504-m506.], 2008[Wen, Y. H., Feng, X., Feng, Y. L., Lan, Y. Z. & Yao, Y. G. (2008). Inorg. Chem. Commun. 11, 659-661.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn4(C12H6O4)4(C10H8N2)4(H2O)8]·4H2O

  • Mr = 1917.36

  • Triclinic, [P \overline 1]

  • a = 10.3323 (3) Å

  • b = 14.3847 (4) Å

  • c = 15.4299 (5) Å

  • α = 77.760 (2)°

  • β = 74.198 (2)°

  • γ = 76.009 (2)°

  • V = 2114.77 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 296 K

  • 0.37 × 0.17 × 0.05 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.87, Tmax = 0.97

  • 32295 measured reflections

  • 9641 independent reflections

  • 6196 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.06

  • 9641 reflections

  • 577 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2 0.85 2.00 2.690 (2) 139
O1W—H1WB⋯O6i 0.84 2.01 2.776 (2) 151
O2W—H2WA⋯O4 0.83 1.90 2.712 (2) 166
O2W—H2WB⋯O5W 0.83 1.90 2.716 (3) 169
O3W—H3WA⋯O8 0.84 1.92 2.742 (2) 167
O3W—H3WB⋯O2W 0.84 2.24 3.083 (3) 180
O4W—H4WA⋯O6 0.87 1.78 2.622 (2) 161
O4W—H4WB⋯O6W 0.83 2.03 2.853 (3) 170
O5W—H5WA⋯O7i 0.97 2.16 2.807 (3) 123
O5W—H5WB⋯O6W 0.94 2.07 2.930 (3) 150
O6W—H6WA⋯O7ii 0.84 1.99 2.798 (3) 164
O6W—H6WB⋯O3 0.81 1.95 2.752 (3) 171
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999)[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Presently, our studies are focused on selecting suitable multidentate ligands to construct novel coordination architectures. 1,8-Naphthalenecarboxylic anhydride, which is can be hydrolysed to naphthalene-1,8-dicarboxylate(1,8-nap) under hydrothermal conditions, is a versatile building block which can be used to construct interesting structures due to the potential variety of bridging abilities. Some complexes containing 1,8-nap have already been reported (Fu et al., 2010; Feng et al., 2008; Wen et al., 2008; Wen et al., 2007). Herein,we report a new Mn(II) complex containing a 1,8-nap ligand, [Mn4(1,8-nap)4(2,2'-bipy)4(H2O)8].4(H2O),(I).

The molecular structure of (I) is shown in Fig.1. The formula unit consists of four Mn atoms, four 1,8-nap anions, eight coordinated water molecules, two 2,2'-bipy and four lattice water molecules. Unique atoms Mn1 and Mn2 are six-coordinated and have slightly distorted octahedral coordination environments formed by two 1,8-nap ligands, two N atoms from one 2,2'-bipy and two water molecules. All carboxylate groups of the 1,8-nap ligands are deprotonated, and adopt a monodentate coordination mode. Each 1,8-nap ligand links two MnII ions and hence each MnII ion coordinates to two 1,8-nap ligands to form a [Mn4(1,8-nap)4] neutral ring. Four 2,2'-bipy ligands are oriented to the outer side of the ring while the aqua ligands point to the inside of the ring.

In the crystal structure, (Fig. 2) intermolecular O—H···O hydrogen bonds involving coordinated water molecules, solvent water molecules and carboxylate group oxygen atoms, link molecules to form a one-dimensional chain along [100]. In addition, weak ππ interactions with centroid-centroid distance in the range of 3.609 (2) to 3.758 (1) Å between symmetry related 2,2'-bipy ligands lead to the the formation of a three-dimensional network.

Related literature top

For related structures, see: Feng et al. (2008); Fu et al. (2010); Wen et al. (2007, 2008).

Experimental top

A mixture of MnCl2(0.1003 g, 0.5 mmol), naphthalene-1,8-dicarboxylic anhydride (0.0991 g, 0.5 mmol), NaOH (0.0402 g, 1 mmol) and 2,2'-bipyridine (0.0378 g, 0.25 mmol) and ethanol-water (15 ml, V/V, 1:2) was sealed in a 25 ml stainless steel reactor with a Telflon liner and heated at 433 K for 72 h. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving colourless block-shaped single crystals suitable for X-ray analysis.

Refinement top

H-atoms were positioned geometrically and included in the refinement using a riding-model approximation [C–H = 0.93 and O–H = 'as found' positions] with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

Presently, our studies are focused on selecting suitable multidentate ligands to construct novel coordination architectures. 1,8-Naphthalenecarboxylic anhydride, which is can be hydrolysed to naphthalene-1,8-dicarboxylate(1,8-nap) under hydrothermal conditions, is a versatile building block which can be used to construct interesting structures due to the potential variety of bridging abilities. Some complexes containing 1,8-nap have already been reported (Fu et al., 2010; Feng et al., 2008; Wen et al., 2008; Wen et al., 2007). Herein,we report a new Mn(II) complex containing a 1,8-nap ligand, [Mn4(1,8-nap)4(2,2'-bipy)4(H2O)8].4(H2O),(I).

The molecular structure of (I) is shown in Fig.1. The formula unit consists of four Mn atoms, four 1,8-nap anions, eight coordinated water molecules, two 2,2'-bipy and four lattice water molecules. Unique atoms Mn1 and Mn2 are six-coordinated and have slightly distorted octahedral coordination environments formed by two 1,8-nap ligands, two N atoms from one 2,2'-bipy and two water molecules. All carboxylate groups of the 1,8-nap ligands are deprotonated, and adopt a monodentate coordination mode. Each 1,8-nap ligand links two MnII ions and hence each MnII ion coordinates to two 1,8-nap ligands to form a [Mn4(1,8-nap)4] neutral ring. Four 2,2'-bipy ligands are oriented to the outer side of the ring while the aqua ligands point to the inside of the ring.

In the crystal structure, (Fig. 2) intermolecular O—H···O hydrogen bonds involving coordinated water molecules, solvent water molecules and carboxylate group oxygen atoms, link molecules to form a one-dimensional chain along [100]. In addition, weak ππ interactions with centroid-centroid distance in the range of 3.609 (2) to 3.758 (1) Å between symmetry related 2,2'-bipy ligands lead to the the formation of a three-dimensional network.

For related structures, see: Feng et al. (2008); Fu et al. (2010); Wen et al. (2007, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x+1, -y+1, -z+1]
[Figure 2] Fig. 2. Part of the crystal structure with green dashed lines to show the donor-acceptor distances of hydrogen bonds (H atoms are not shown) and pink lines to show the ππ interactions.
cyclo-Tetrakis(µ-naphthalene-1,8-dicarboxylato)tetrakis[diaqua(2,2'- bipyridine)manganese(II)] tetrahydrate top
Crystal data top
[Mn4(C12H6O4)4(C10H8N2)4(H2O)8]·4H2OZ = 1
Mr = 1917.36F(000) = 988
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3323 (3) ÅCell parameters from 5948 reflections
b = 14.3847 (4) Åθ = 1.5–27.6°
c = 15.4299 (5) ŵ = 0.67 mm1
α = 77.760 (2)°T = 296 K
β = 74.198 (2)°Block, colourless
γ = 76.009 (2)°0.37 × 0.17 × 0.05 mm
V = 2114.77 (11) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
9641 independent reflections
Radiation source: fine-focus sealed tube6196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.6°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.87, Tmax = 0.97k = 1818
32295 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
9641 reflections(Δ/σ)max = 0.001
577 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mn4(C12H6O4)4(C10H8N2)4(H2O)8]·4H2Oγ = 76.009 (2)°
Mr = 1917.36V = 2114.77 (11) Å3
Triclinic, P1Z = 1
a = 10.3323 (3) ÅMo Kα radiation
b = 14.3847 (4) ŵ = 0.67 mm1
c = 15.4299 (5) ÅT = 296 K
α = 77.760 (2)°0.37 × 0.17 × 0.05 mm
β = 74.198 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
9641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6196 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.97Rint = 0.041
32295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
9641 reflectionsΔρmin = 0.41 e Å3
577 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.25463 (4)0.76117 (3)0.46946 (2)0.03213 (11)
Mn20.38953 (4)0.49105 (3)0.78495 (2)0.03230 (12)
O10.25004 (16)0.79966 (12)0.59713 (10)0.0354 (4)
O1W0.46961 (17)0.77539 (13)0.42064 (12)0.0494 (5)
H1WA0.50290.74300.46480.074*
H1WB0.52190.75100.37560.074*
O20.46969 (17)0.73941 (15)0.59898 (12)0.0540 (5)
O2W0.2899 (2)0.61536 (13)0.54280 (11)0.0602 (6)
H2WA0.27490.60610.59910.090*
H2WB0.27690.56610.52900.090*
O30.03335 (18)0.65873 (13)0.73071 (13)0.0510 (5)
O3W0.50323 (18)0.48414 (14)0.64458 (11)0.0562 (5)
H3WA0.56750.43640.63440.084*
H3WB0.44540.52000.61670.084*
O40.25706 (16)0.61265 (11)0.72371 (10)0.0354 (4)
O4W0.22730 (17)0.40881 (13)0.79531 (12)0.0482 (5)
H4WA0.28590.35960.77350.072*
H4WB0.17490.42490.75970.072*
O50.52168 (16)0.35117 (12)0.81890 (11)0.0377 (4)
O5W0.2207 (3)0.47052 (17)0.48764 (16)0.0944 (8)
H5WA0.15090.49210.45300.142*
H5WB0.14490.46910.53790.142*
O60.43026 (18)0.26289 (13)0.75699 (12)0.0477 (5)
O6W0.05204 (19)0.48703 (14)0.67218 (14)0.0626 (6)
H6WA0.02500.47300.68100.094*
H6WB0.03800.53950.68800.094*
O70.82217 (19)0.41392 (14)0.67703 (13)0.0521 (5)
O80.70690 (16)0.32143 (12)0.64178 (10)0.0357 (4)
N10.0249 (2)0.79384 (15)0.47871 (13)0.0358 (5)
N20.1971 (2)0.91457 (14)0.39807 (13)0.0344 (5)
N30.2996 (2)0.52060 (14)0.92913 (12)0.0346 (5)
N40.5154 (2)0.58391 (14)0.81433 (13)0.0359 (5)
C10.0580 (3)0.7300 (2)0.51645 (18)0.0473 (7)
H1A0.02060.66850.54260.057*
C20.1956 (3)0.7512 (2)0.5184 (2)0.0566 (8)
H2A0.24960.70470.54480.068*
C30.2516 (3)0.8414 (2)0.4810 (2)0.0588 (8)
H3A0.34480.85770.48230.071*
C40.1689 (3)0.9084 (2)0.44113 (19)0.0496 (7)
H4A0.20540.97020.41490.060*
C50.0304 (2)0.88263 (19)0.44059 (15)0.0341 (6)
C60.0646 (2)0.95046 (17)0.39762 (15)0.0311 (6)
C70.0205 (3)1.04443 (19)0.35954 (17)0.0430 (7)
H7A0.07201.06760.36050.052*
C80.1140 (3)1.1040 (2)0.31990 (18)0.0475 (7)
H8A0.08571.16770.29380.057*
C90.2486 (3)1.0680 (2)0.31958 (19)0.0505 (7)
H9A0.31391.10650.29320.061*
C100.2862 (3)0.97346 (19)0.35893 (18)0.0446 (7)
H10A0.37840.94930.35830.053*
C110.3276 (2)0.81466 (19)0.72314 (16)0.0370 (6)
C120.4079 (3)0.8776 (2)0.7214 (2)0.0562 (8)
H12A0.47580.88950.66900.067*
C130.3931 (3)0.9251 (3)0.7948 (2)0.0705 (10)
H13A0.44840.96900.79050.085*
C140.2979 (3)0.9066 (2)0.8714 (2)0.0630 (9)
H14A0.28890.93700.92080.076*
C150.1091 (3)0.8272 (2)0.95932 (19)0.0625 (9)
H15A0.10450.85631.00880.075*
C160.0179 (4)0.7714 (2)0.96595 (19)0.0650 (9)
H16A0.05090.76411.01880.078*
C170.0273 (3)0.7245 (2)0.89283 (18)0.0513 (7)
H17A0.03700.68730.89720.062*
C180.1297 (3)0.73254 (18)0.81485 (16)0.0372 (6)
C190.2234 (2)0.79467 (18)0.80346 (16)0.0359 (6)
C200.2114 (3)0.8423 (2)0.87871 (17)0.0476 (7)
C210.3518 (3)0.77905 (18)0.63364 (16)0.0344 (6)
C220.1399 (3)0.66459 (18)0.75014 (16)0.0352 (6)
C230.1922 (3)0.48646 (19)0.98448 (16)0.0415 (6)
H23A0.15340.44630.96330.050*
C240.1356 (3)0.5076 (2)1.07131 (17)0.0500 (7)
H24A0.06000.48281.10770.060*
C250.1930 (3)0.5658 (2)1.10280 (17)0.0508 (7)
H25A0.15750.58101.16140.061*
C260.3036 (3)0.60142 (19)1.04707 (17)0.0457 (7)
H26A0.34400.64091.06780.055*
C270.3552 (2)0.57877 (17)0.95985 (16)0.0339 (6)
C280.4746 (2)0.61537 (18)0.89526 (16)0.0353 (6)
C290.5408 (3)0.6765 (2)0.91684 (19)0.0502 (7)
H29A0.51030.69790.97310.060*
C300.6526 (3)0.7058 (2)0.8545 (2)0.0595 (8)
H30A0.69860.74700.86810.071*
C310.6950 (3)0.6735 (2)0.7725 (2)0.0539 (8)
H31A0.77090.69180.72960.065*
C320.6240 (3)0.61362 (19)0.75418 (19)0.0444 (7)
H32A0.65240.59270.69770.053*
C330.6221 (3)0.18375 (19)0.81790 (16)0.0399 (6)
C340.5646 (3)0.1055 (2)0.86429 (19)0.0566 (8)
H34A0.47070.11040.87300.068*
C350.6422 (4)0.0185 (2)0.8990 (2)0.0677 (9)
H35A0.60010.03300.93080.081*
C360.7771 (4)0.0106 (2)0.8860 (2)0.0683 (10)
H36A0.82840.04730.90910.082*
C370.9870 (4)0.0775 (3)0.8269 (2)0.0681 (10)
H37A1.03690.01900.85010.082*
C381.0529 (3)0.1503 (3)0.7835 (2)0.0718 (10)
H38A1.14600.14360.77980.086*
C390.9791 (3)0.2366 (2)0.74377 (19)0.0549 (8)
H39A1.02510.28660.71320.066*
C400.8424 (3)0.2495 (2)0.74856 (16)0.0406 (6)
C410.7661 (3)0.17662 (19)0.80045 (16)0.0416 (7)
C420.8443 (3)0.0873 (2)0.83827 (18)0.0523 (8)
C430.5196 (3)0.27347 (19)0.79374 (16)0.0364 (6)
C440.7856 (2)0.3351 (2)0.68661 (16)0.0380 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0333 (2)0.0320 (2)0.0315 (2)0.00393 (17)0.00973 (16)0.00581 (16)
Mn20.0315 (2)0.0347 (2)0.0302 (2)0.00291 (17)0.00903 (16)0.00567 (16)
O10.0309 (9)0.0412 (11)0.0367 (9)0.0018 (8)0.0149 (8)0.0085 (8)
O1W0.0375 (11)0.0660 (14)0.0461 (11)0.0069 (10)0.0108 (8)0.0143 (10)
O20.0279 (10)0.0872 (16)0.0441 (10)0.0038 (10)0.0082 (8)0.0219 (10)
O2W0.1071 (17)0.0392 (12)0.0356 (10)0.0111 (11)0.0227 (11)0.0040 (9)
O30.0370 (11)0.0511 (13)0.0691 (13)0.0090 (9)0.0165 (9)0.0124 (10)
O3W0.0442 (11)0.0711 (14)0.0375 (10)0.0161 (10)0.0086 (8)0.0071 (10)
O40.0353 (9)0.0334 (10)0.0339 (9)0.0017 (7)0.0099 (7)0.0045 (7)
O4W0.0425 (11)0.0464 (12)0.0609 (12)0.0088 (8)0.0163 (9)0.0144 (9)
O50.0408 (10)0.0348 (10)0.0376 (9)0.0003 (8)0.0130 (8)0.0099 (8)
O5W0.135 (2)0.0717 (17)0.0772 (16)0.0367 (16)0.0068 (15)0.0169 (13)
O60.0444 (11)0.0498 (12)0.0548 (11)0.0058 (9)0.0165 (9)0.0186 (9)
O6W0.0503 (12)0.0620 (14)0.0833 (15)0.0197 (11)0.0154 (11)0.0184 (12)
O70.0491 (12)0.0523 (13)0.0646 (13)0.0152 (10)0.0221 (10)0.0123 (10)
O80.0347 (10)0.0420 (11)0.0327 (9)0.0029 (8)0.0115 (7)0.0117 (8)
N10.0365 (12)0.0349 (13)0.0365 (11)0.0080 (10)0.0066 (9)0.0080 (10)
N20.0313 (12)0.0341 (12)0.0376 (11)0.0053 (10)0.0096 (9)0.0049 (9)
N30.0363 (12)0.0364 (12)0.0306 (11)0.0052 (10)0.0102 (9)0.0036 (9)
N40.0314 (12)0.0363 (13)0.0374 (11)0.0041 (10)0.0093 (9)0.0016 (10)
C10.0496 (18)0.0409 (17)0.0514 (16)0.0159 (14)0.0083 (13)0.0036 (13)
C20.0457 (19)0.062 (2)0.065 (2)0.0248 (17)0.0051 (15)0.0090 (17)
C30.0321 (16)0.068 (2)0.076 (2)0.0112 (16)0.0107 (15)0.0121 (18)
C40.0324 (16)0.0529 (19)0.0619 (18)0.0046 (14)0.0133 (13)0.0071 (15)
C50.0307 (14)0.0386 (16)0.0334 (13)0.0029 (12)0.0065 (11)0.0123 (12)
C60.0339 (14)0.0308 (15)0.0286 (12)0.0035 (12)0.0060 (10)0.0098 (11)
C70.0376 (15)0.0410 (17)0.0476 (16)0.0038 (13)0.0140 (12)0.0088 (13)
C80.0563 (19)0.0295 (16)0.0531 (17)0.0040 (14)0.0163 (14)0.0007 (13)
C90.0524 (19)0.0409 (18)0.0580 (18)0.0169 (15)0.0138 (14)0.0028 (14)
C100.0364 (15)0.0404 (17)0.0557 (17)0.0079 (13)0.0124 (13)0.0027 (14)
C110.0325 (14)0.0418 (16)0.0407 (14)0.0018 (12)0.0164 (11)0.0110 (12)
C120.0413 (17)0.075 (2)0.0647 (19)0.0169 (16)0.0157 (14)0.0275 (17)
C130.055 (2)0.081 (3)0.094 (3)0.0157 (19)0.0222 (19)0.044 (2)
C140.058 (2)0.075 (2)0.071 (2)0.0076 (15)0.0334 (18)0.0450 (19)
C150.080 (2)0.064 (2)0.0386 (16)0.0142 (19)0.0195 (16)0.0222 (16)
C160.076 (2)0.061 (2)0.0347 (16)0.0105 (19)0.0034 (15)0.0059 (15)
C170.0469 (17)0.0460 (18)0.0471 (16)0.0014 (14)0.0010 (13)0.0021 (14)
C180.0395 (15)0.0308 (15)0.0345 (13)0.0057 (12)0.0110 (12)0.0018 (11)
C190.0346 (14)0.0356 (15)0.0365 (13)0.0070 (12)0.0161 (11)0.0091 (11)
C200.0505 (17)0.0488 (17)0.0422 (15)0.0132 (12)0.0207 (13)0.0177 (14)
C210.0305 (15)0.0389 (15)0.0355 (13)0.0080 (12)0.0089 (11)0.0060 (12)
C220.0330 (12)0.0320 (15)0.0359 (13)0.0037 (10)0.0074 (11)0.0010 (11)
C230.0430 (16)0.0453 (17)0.0382 (14)0.0153 (13)0.0091 (12)0.0037 (12)
C240.0515 (18)0.0550 (19)0.0380 (15)0.0127 (15)0.0015 (13)0.0041 (14)
C250.0591 (19)0.058 (2)0.0301 (14)0.0049 (16)0.0044 (13)0.0104 (13)
C260.0567 (18)0.0458 (18)0.0395 (15)0.0067 (15)0.0176 (14)0.0130 (13)
C270.0383 (14)0.0308 (14)0.0334 (13)0.0007 (12)0.0165 (11)0.0028 (11)
C280.0347 (14)0.0318 (14)0.0399 (14)0.0007 (12)0.0165 (11)0.0033 (12)
C290.0487 (18)0.0542 (19)0.0550 (17)0.0127 (15)0.0199 (14)0.0109 (15)
C300.058 (2)0.055 (2)0.079 (2)0.0227 (17)0.0274 (17)0.0102 (17)
C310.0350 (16)0.0527 (19)0.070 (2)0.0142 (15)0.0120 (14)0.0043 (16)
C320.0336 (15)0.0435 (17)0.0510 (16)0.0032 (13)0.0096 (13)0.0022 (13)
C330.0509 (18)0.0347 (16)0.0338 (13)0.0002 (13)0.0129 (12)0.0107 (12)
C340.071 (2)0.0453 (19)0.0509 (17)0.0074 (17)0.0137 (15)0.0077 (15)
C350.099 (3)0.039 (2)0.058 (2)0.007 (2)0.018 (2)0.0017 (15)
C360.100 (3)0.045 (2)0.0519 (19)0.018 (2)0.031 (2)0.0111 (16)
C370.074 (3)0.066 (2)0.054 (2)0.033 (2)0.0330 (18)0.0194 (18)
C380.052 (2)0.096 (3)0.064 (2)0.020 (2)0.0286 (17)0.026 (2)
C390.0449 (18)0.068 (2)0.0556 (18)0.0027 (16)0.0219 (14)0.0202 (16)
C400.0414 (16)0.0465 (17)0.0355 (14)0.0057 (13)0.0148 (12)0.0186 (13)
C410.0542 (18)0.0390 (16)0.0328 (13)0.0074 (14)0.0192 (12)0.0153 (12)
C420.068 (2)0.0467 (19)0.0381 (15)0.0158 (16)0.0225 (14)0.0162 (14)
C430.0402 (16)0.0362 (16)0.0301 (13)0.0055 (13)0.0050 (11)0.0057 (12)
C440.0320 (15)0.0464 (18)0.0366 (14)0.0011 (13)0.0074 (11)0.0171 (13)
Geometric parameters (Å, º) top
Mn1—O12.1422 (15)C10—H10A0.9300
Mn1—O2W2.1590 (18)C11—C121.359 (3)
Mn1—O8i2.1864 (15)C11—C191.432 (3)
Mn1—O1W2.1878 (17)C11—C211.511 (3)
Mn1—N22.264 (2)C12—C131.400 (4)
Mn1—N12.276 (2)C12—H12A0.9300
Mn2—O42.1614 (16)C13—C141.340 (4)
Mn2—O3W2.1749 (16)C13—H13A0.9300
Mn2—O52.1913 (17)C14—C201.402 (4)
Mn2—O4W2.2288 (16)C14—H14A0.9300
Mn2—N32.2533 (18)C15—C161.350 (4)
Mn2—N42.258 (2)C15—C201.411 (4)
O1—C211.269 (3)C15—H15A0.9300
O1W—H1WA0.8451C16—C171.403 (4)
O1W—H1WB0.8403C16—H16A0.9300
O2—C211.238 (3)C17—C181.374 (3)
O2W—H2WA0.8269C17—H17A0.9300
O2W—H2WB0.8319C18—C191.423 (3)
O3—C221.243 (3)C18—C221.507 (3)
O3W—H3WA0.8400C19—C201.432 (3)
O3W—H3WB0.8399C23—C241.375 (3)
O4—C221.270 (3)C23—H23A0.9300
O4W—H4WA0.8733C24—C251.363 (4)
O4W—H4WB0.8342C24—H24A0.9300
O5—C431.265 (3)C25—C261.367 (4)
O5W—H5WA0.9661C25—H25A0.9300
O5W—H5WB0.9411C26—C271.383 (3)
O6—C431.260 (3)C26—H26A0.9300
O6W—H6WA0.8364C27—C281.488 (3)
O6W—H6WB0.8096C28—C291.375 (3)
O7—C441.247 (3)C29—C301.377 (4)
O8—C441.273 (3)C29—H29A0.9300
O8—Mn1i2.1864 (15)C30—C311.362 (4)
N1—C11.341 (3)C30—H30A0.9300
N1—C51.347 (3)C31—C321.372 (4)
N2—C101.337 (3)C31—H31A0.9300
N2—C61.342 (3)C32—H32A0.9300
N3—C231.332 (3)C33—C341.373 (4)
N3—C271.343 (3)C33—C411.420 (4)
N4—C321.342 (3)C33—C431.509 (3)
N4—C281.342 (3)C34—C351.399 (4)
C1—C21.374 (4)C34—H34A0.9300
C1—H1A0.9300C35—C361.333 (4)
C2—C31.361 (4)C35—H35A0.9300
C2—H2A0.9300C36—C421.411 (4)
C3—C41.378 (4)C36—H36A0.9300
C3—H3A0.9300C37—C381.344 (5)
C4—C51.386 (3)C37—C421.412 (4)
C4—H4A0.9300C37—H37A0.9300
C5—C61.480 (3)C38—C391.405 (4)
C6—C71.375 (3)C38—H38A0.9300
C7—C81.378 (4)C39—C401.363 (4)
C7—H7A0.9300C39—H39A0.9300
C8—C91.360 (4)C40—C411.436 (4)
C8—H8A0.9300C40—C441.494 (4)
C9—C101.375 (4)C41—C421.443 (4)
C9—H9A0.9300
O1—Mn1—O2W83.03 (6)C14—C13—C12119.0 (3)
O1—Mn1—O8i161.96 (6)C14—C13—H13A120.5
O2W—Mn1—O8i80.01 (6)C12—C13—H13A120.5
O1—Mn1—O1W89.79 (6)C13—C14—C20121.4 (3)
O2W—Mn1—O1W97.14 (7)C13—C14—H14A119.3
O8i—Mn1—O1W86.29 (6)C20—C14—H14A119.3
O1—Mn1—N296.36 (7)C16—C15—C20121.2 (3)
O2W—Mn1—N2174.79 (7)C16—C15—H15A119.4
O8i—Mn1—N2101.08 (6)C20—C15—H15A119.4
O1W—Mn1—N288.02 (7)C15—C16—C17119.7 (3)
O1—Mn1—N198.63 (6)C15—C16—H16A120.1
O2W—Mn1—N1103.07 (8)C17—C16—H16A120.1
O8i—Mn1—N191.17 (6)C18—C17—C16121.3 (3)
O1W—Mn1—N1158.87 (8)C18—C17—H17A119.4
N2—Mn1—N171.87 (7)C16—C17—H17A119.4
O4—Mn2—O3W83.70 (6)C17—C18—C19120.6 (2)
O4—Mn2—O5165.69 (6)C17—C18—C22114.4 (2)
O3W—Mn2—O585.90 (6)C19—C18—C22124.8 (2)
O4—Mn2—O4W84.94 (6)C18—C19—C11125.8 (2)
O3W—Mn2—O4W100.87 (7)C18—C19—C20117.1 (2)
O5—Mn2—O4W87.41 (6)C11—C19—C20117.1 (2)
O4—Mn2—N395.56 (6)C14—C20—C15119.8 (3)
O3W—Mn2—N3167.88 (7)C14—C20—C19120.2 (3)
O5—Mn2—N396.66 (7)C15—C20—C19119.9 (3)
O4W—Mn2—N391.10 (7)O2—C21—O1125.6 (2)
O4—Mn2—N494.31 (7)O2—C21—C11118.1 (2)
O3W—Mn2—N495.66 (7)O1—C21—C11116.1 (2)
O5—Mn2—N496.47 (7)O3—C22—O4124.5 (2)
O4W—Mn2—N4163.26 (7)O3—C22—C18118.5 (2)
N3—Mn2—N472.30 (7)O4—C22—C18116.8 (2)
C21—O1—Mn1124.46 (15)N3—C23—C24123.3 (2)
Mn1—O1W—H1WA101.5N3—C23—H23A118.3
Mn1—O1W—H1WB122.4C24—C23—H23A118.3
H1WA—O1W—H1WB103.1C25—C24—C23118.4 (3)
Mn1—O2W—H2WA120.1C25—C24—H24A120.8
Mn1—O2W—H2WB126.4C23—C24—H24A120.8
H2WA—O2W—H2WB105.6C24—C25—C26119.1 (2)
Mn2—O3W—H3WA117.9C24—C25—H25A120.4
Mn2—O3W—H3WB100.3C26—C25—H25A120.4
H3WA—O3W—H3WB136.0C25—C26—C27120.0 (2)
C22—O4—Mn2136.17 (15)C25—C26—H26A120.0
Mn2—O4W—H4WA93.6C27—C26—H26A120.0
Mn2—O4W—H4WB121.8N3—C27—C26120.9 (2)
H4WA—O4W—H4WB102.4N3—C27—C28116.1 (2)
C43—O5—Mn2124.04 (16)C26—C27—C28123.0 (2)
H5WA—O5W—H5WB83.4N4—C28—C29121.7 (2)
H6WA—O6W—H6WB106.2N4—C28—C27115.7 (2)
C44—O8—Mn1i132.04 (14)C29—C28—C27122.6 (2)
C1—N1—C5117.9 (2)C28—C29—C30119.4 (3)
C1—N1—Mn1124.66 (18)C28—C29—H29A120.3
C5—N1—Mn1117.44 (15)C30—C29—H29A120.3
C10—N2—C6117.5 (2)C31—C30—C29119.1 (3)
C10—N2—Mn1124.08 (17)C31—C30—H30A120.4
C6—N2—Mn1118.38 (16)C29—C30—H30A120.4
C23—N3—C27118.2 (2)C30—C31—C32118.9 (3)
C23—N3—Mn2123.94 (16)C30—C31—H31A120.5
C27—N3—Mn2117.85 (15)C32—C31—H31A120.5
C32—N4—C28118.0 (2)N4—C32—C31122.8 (3)
C32—N4—Mn2124.01 (17)N4—C32—H32A118.6
C28—N4—Mn2117.84 (16)C31—C32—H32A118.6
N1—C1—C2123.2 (3)C34—C33—C41119.8 (3)
N1—C1—H1A118.4C34—C33—C43114.2 (3)
C2—C1—H1A118.4C41—C33—C43125.9 (2)
C3—C2—C1118.8 (3)C33—C34—C35122.4 (3)
C3—C2—H2A120.6C33—C34—H34A118.8
C1—C2—H2A120.6C35—C34—H34A118.8
C2—C3—C4119.4 (3)C36—C35—C34119.2 (3)
C2—C3—H3A120.3C36—C35—H35A120.4
C4—C3—H3A120.3C34—C35—H35A120.4
C3—C4—C5119.2 (3)C35—C36—C42122.0 (3)
C3—C4—H4A120.4C35—C36—H36A119.0
C5—C4—H4A120.4C42—C36—H36A119.0
N1—C5—C4121.6 (2)C38—C37—C42121.9 (3)
N1—C5—C6116.4 (2)C38—C37—H37A119.0
C4—C5—C6122.0 (2)C42—C37—H37A119.0
N2—C6—C7121.9 (2)C37—C38—C39119.0 (3)
N2—C6—C5115.8 (2)C37—C38—H38A120.5
C7—C6—C5122.3 (2)C39—C38—H38A120.5
C6—C7—C8119.7 (3)C40—C39—C38122.2 (3)
C6—C7—H7A120.2C40—C39—H39A118.9
C8—C7—H7A120.2C38—C39—H39A118.9
C9—C8—C7118.8 (3)C39—C40—C41120.5 (3)
C9—C8—H8A120.6C39—C40—C44115.5 (3)
C7—C8—H8A120.6C41—C40—C44123.4 (2)
C8—C9—C10118.8 (3)C33—C41—C40126.5 (2)
C8—C9—H9A120.6C33—C41—C42117.1 (3)
C10—C9—H9A120.6C40—C41—C42116.4 (3)
N2—C10—C9123.4 (3)C36—C42—C37120.8 (3)
N2—C10—H10A118.3C36—C42—C41119.5 (3)
C9—C10—H10A118.3C37—C42—C41119.7 (3)
C12—C11—C19119.3 (2)O6—C43—O5124.7 (2)
C12—C11—C21114.2 (2)O6—C43—C33116.8 (2)
C19—C11—C21126.2 (2)O5—C43—C33118.1 (2)
C11—C12—C13123.0 (3)O7—C44—O8123.1 (2)
C11—C12—H12A118.5O7—C44—C40119.8 (2)
C13—C12—H12A118.5O8—C44—C40117.0 (2)
O2W—Mn1—O1—C2164.86 (19)C17—C18—C19—C204.1 (4)
O8i—Mn1—O1—C2144.9 (3)C22—C18—C19—C20169.9 (2)
O1W—Mn1—O1—C2132.36 (19)C12—C11—C19—C18178.5 (3)
N2—Mn1—O1—C21120.34 (19)C21—C11—C19—C184.3 (4)
N1—Mn1—O1—C21167.10 (19)C12—C11—C19—C200.7 (4)
O3W—Mn2—O4—C22168.7 (2)C21—C11—C19—C20175.0 (2)
O5—Mn2—O4—C22125.1 (3)C13—C14—C20—C15177.8 (3)
O4W—Mn2—O4—C2267.2 (2)C13—C14—C20—C190.0 (5)
N3—Mn2—O4—C2223.4 (2)C16—C15—C20—C14175.1 (3)
N4—Mn2—O4—C2296.1 (2)C16—C15—C20—C192.7 (4)
O4—Mn2—O5—C4323.0 (4)C18—C19—C20—C14178.3 (2)
O3W—Mn2—O5—C4366.42 (18)C11—C19—C20—C141.0 (4)
O4W—Mn2—O5—C4334.68 (18)C18—C19—C20—C150.5 (4)
N3—Mn2—O5—C43125.48 (18)C11—C19—C20—C15178.8 (2)
N4—Mn2—O5—C43161.66 (18)Mn1—O1—C21—O24.7 (4)
O1—Mn1—N1—C189.05 (19)Mn1—O1—C21—C11178.84 (15)
O2W—Mn1—N1—C14.3 (2)C12—C11—C21—O256.0 (3)
O8i—Mn1—N1—C175.76 (19)C19—C11—C21—O2129.5 (3)
O1W—Mn1—N1—C1158.48 (19)C12—C11—C21—O1118.6 (3)
N2—Mn1—N1—C1177.0 (2)C19—C11—C21—O155.8 (3)
O1—Mn1—N1—C593.41 (16)Mn2—O4—C22—O3105.4 (3)
O2W—Mn1—N1—C5178.20 (15)Mn2—O4—C22—C1870.1 (3)
O8i—Mn1—N1—C5101.78 (16)C17—C18—C22—O347.9 (3)
O1W—Mn1—N1—C519.1 (3)C19—C18—C22—O3137.7 (3)
N2—Mn1—N1—C50.50 (15)C17—C18—C22—O4127.8 (2)
O1—Mn1—N2—C1082.40 (19)C19—C18—C22—O446.5 (3)
O8i—Mn1—N2—C1092.99 (19)C27—N3—C23—C240.1 (4)
O1W—Mn1—N2—C107.17 (19)Mn2—N3—C23—C24177.8 (2)
N1—Mn1—N2—C10179.4 (2)N3—C23—C24—C250.6 (4)
O1—Mn1—N2—C695.01 (16)C23—C24—C25—C260.5 (4)
O8i—Mn1—N2—C689.60 (16)C24—C25—C26—C270.3 (4)
O1W—Mn1—N2—C6175.42 (16)C23—N3—C27—C261.0 (4)
N1—Mn1—N2—C62.01 (15)Mn2—N3—C27—C26178.81 (18)
O4—Mn2—N3—C2387.9 (2)C23—N3—C27—C28179.7 (2)
O3W—Mn2—N3—C23173.8 (3)Mn2—N3—C27—C281.9 (3)
O5—Mn2—N3—C2384.6 (2)C25—C26—C27—N31.1 (4)
O4W—Mn2—N3—C232.9 (2)C25—C26—C27—C28179.6 (2)
N4—Mn2—N3—C23179.3 (2)C32—N4—C28—C290.2 (4)
O4—Mn2—N3—C2789.76 (17)Mn2—N4—C28—C29176.44 (19)
O3W—Mn2—N3—C273.9 (4)C32—N4—C28—C27179.0 (2)
O5—Mn2—N3—C2797.70 (17)Mn2—N4—C28—C274.4 (3)
O4W—Mn2—N3—C27174.78 (17)N3—C27—C28—N41.7 (3)
N4—Mn2—N3—C273.01 (16)C26—C27—C28—N4177.6 (2)
O4—Mn2—N4—C3285.9 (2)N3—C27—C28—C29179.2 (2)
O3W—Mn2—N4—C321.8 (2)C26—C27—C28—C291.5 (4)
O5—Mn2—N4—C3284.7 (2)N4—C28—C29—C300.6 (4)
O4W—Mn2—N4—C32172.7 (2)C27—C28—C29—C30178.5 (3)
N3—Mn2—N4—C32179.6 (2)C28—C29—C30—C310.1 (4)
O4—Mn2—N4—C2890.49 (17)C29—C30—C31—C320.7 (4)
O3W—Mn2—N4—C28174.57 (17)C28—N4—C32—C310.7 (4)
O5—Mn2—N4—C2898.93 (17)Mn2—N4—C32—C31177.1 (2)
O4W—Mn2—N4—C283.7 (4)C30—C31—C32—N41.1 (4)
N3—Mn2—N4—C283.97 (16)C41—C33—C34—C352.7 (4)
C5—N1—C1—C20.4 (4)C43—C33—C34—C35174.6 (2)
Mn1—N1—C1—C2177.9 (2)C33—C34—C35—C360.7 (4)
N1—C1—C2—C30.6 (4)C34—C35—C36—C420.1 (5)
C1—C2—C3—C41.0 (4)C42—C37—C38—C393.7 (5)
C2—C3—C4—C50.5 (4)C37—C38—C39—C400.7 (4)
C1—N1—C5—C40.9 (3)C38—C39—C40—C414.3 (4)
Mn1—N1—C5—C4178.60 (18)C38—C39—C40—C44167.2 (2)
C1—N1—C5—C6178.6 (2)C34—C33—C41—C40176.1 (2)
Mn1—N1—C5—C60.9 (2)C43—C33—C41—C407.0 (4)
C3—C4—C5—N10.5 (4)C34—C33—C41—C423.8 (3)
C3—C4—C5—C6179.0 (2)C43—C33—C41—C42173.1 (2)
C10—N2—C6—C70.7 (3)C39—C40—C41—C33174.2 (2)
Mn1—N2—C6—C7176.86 (17)C44—C40—C41—C3315.1 (4)
C10—N2—C6—C5179.3 (2)C39—C40—C41—C426.0 (3)
Mn1—N2—C6—C53.1 (2)C44—C40—C41—C42164.8 (2)
N1—C5—C6—N22.6 (3)C35—C36—C42—C37178.9 (3)
C4—C5—C6—N2176.8 (2)C35—C36—C42—C411.4 (4)
N1—C5—C6—C7177.4 (2)C38—C37—C42—C36178.5 (3)
C4—C5—C6—C73.2 (3)C38—C37—C42—C411.7 (4)
N2—C6—C7—C80.5 (4)C33—C41—C42—C363.2 (3)
C5—C6—C7—C8179.5 (2)C40—C41—C42—C36176.7 (2)
C6—C7—C8—C90.1 (4)C33—C41—C42—C37177.1 (2)
C7—C8—C9—C100.1 (4)C40—C41—C42—C373.1 (3)
C6—N2—C10—C90.6 (4)Mn2—O5—C43—O610.1 (3)
Mn1—N2—C10—C9176.84 (19)Mn2—O5—C43—C33176.67 (15)
C8—C9—C10—N20.2 (4)C34—C33—C43—O648.6 (3)
C19—C11—C12—C130.6 (4)C41—C33—C43—O6134.4 (2)
C21—C11—C12—C13174.3 (3)C34—C33—C43—O5125.2 (2)
C11—C12—C13—C141.7 (5)C41—C33—C43—O551.8 (3)
C12—C13—C14—C201.3 (5)Mn1i—O8—C44—O7107.6 (3)
C20—C15—C16—C172.3 (5)Mn1i—O8—C44—C4068.3 (3)
C15—C16—C17—C181.4 (5)C39—C40—C44—O741.9 (3)
C16—C17—C18—C194.7 (4)C41—C40—C44—O7146.9 (2)
C16—C17—C18—C22169.9 (2)C39—C40—C44—O8134.2 (2)
C17—C18—C19—C11175.1 (2)C41—C40—C44—O837.0 (3)
C22—C18—C19—C1110.8 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.852.002.690 (2)139
O1W—H1WB···O6i0.842.012.776 (2)151
O2W—H2WA···O40.831.902.712 (2)166
O2W—H2WB···O5W0.831.902.716 (3)169
O3W—H3WA···O80.841.922.742 (2)167
O3W—H3WB···O2W0.842.243.083 (3)180
O4W—H4WA···O60.871.782.622 (2)161
O4W—H4WB···O6W0.832.032.853 (3)170
O5W—H5WA···O7i0.972.162.807 (3)123
O5W—H5WB···O6W0.942.072.930 (3)150
O6W—H6WA···O7ii0.841.992.798 (3)164
O6W—H6WB···O30.811.952.752 (3)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn4(C12H6O4)4(C10H8N2)4(H2O)8]·4H2O
Mr1917.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.3323 (3), 14.3847 (4), 15.4299 (5)
α, β, γ (°)77.760 (2), 74.198 (2), 76.009 (2)
V3)2114.77 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.37 × 0.17 × 0.05
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.87, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
32295, 9641, 6196
Rint0.041
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.06
No. of reflections9641
No. of parameters577
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.41

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.852.002.690 (2)138.7
O1W—H1WB···O6i0.842.012.776 (2)151.1
O2W—H2WA···O40.831.902.712 (2)166.1
O2W—H2WB···O5W0.831.902.716 (3)169.0
O3W—H3WA···O80.841.922.742 (2)166.5
O3W—H3WB···O2W0.842.243.083 (3)179.6
O4W—H4WA···O60.871.782.622 (2)161.4
O4W—H4WB···O6W0.832.032.853 (3)170.4
O5W—H5WA···O7i0.972.162.807 (3)123.3
O5W—H5WB···O6W0.942.072.930 (3)150.4
O6W—H6WA···O7ii0.841.992.798 (3)163.6
O6W—H6WB···O30.811.952.752 (3)170.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, X., Tang, Z. W., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Chin. J. Inorg. Chem. 24, 1713–1717.  CAS Google Scholar
First citationFu, J. D., Tang, Z. W., Feng, X. & Wen, Y. H. (2010). Sci. China Chem. 53, 1060–1067.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y. H., Feng, X., Feng, Y. L., Lan, Y. Z. & Yao, Y. G. (2008). Inorg. Chem. Commun. 11, 659–661.  Web of Science CSD CrossRef CAS Google Scholar
First citationWen, Y.-H., Feng, X., He, Y.-H., Lan, Y.-Z. & Sun, H. (2007). Acta Cryst. C63, m504–m506.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds