organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo­methyl-7,8-di­methyl­coumarin

aDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, bDepartment of Physics, Govt. College for Women, Mandya 571 401, Karnataka, India, and cDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
*Correspondence e-mail: kvarjunagowda@gmail.com

(Received 14 November 2010; accepted 24 November 2010; online 30 November 2010)

In the title mol­ecule, C12H11BrO2, all non-H atoms with the exception of the Br atom are essentially coplanar (r.m.s. deviation = 0.018 Å). The C—Br bond is inclined by 80.17 (12)° to this plane. The crystal structure is stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For potential synthetic applications of the title compound, see: Cui et al. (2007[Cui, X., Li, J., Zhang, Z.-P., Fu, Y., Liu, L. & Guo, Q.-X. (2007). J. Org. Chem. 72, 9342-9345.]); Zhao et al. (2008[Zhao, J., Liu, Y. & Ma, S. (2008). Org. Lett. 10, 1521-1523.]). For related structures, see: Gowda et al. (2009[Gowda, R., Alawandi, G. N., Kulkarni, M. V. & Gowda, K. V. A. (2009). Acta Cryst. E65, o2446.], 2010[Gowda, R., Basanagouda, M., Kulkarni, M. V. & Gowda, K. V. A. (2010). Acta Cryst. E66, o2906.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11BrO2

  • Mr = 267.12

  • Monoclinic, C 2/c

  • a = 18.5025 (14) Å

  • b = 9.8785 (7) Å

  • c = 13.1639 (10) Å

  • β = 118.908 (2)°

  • V = 2106.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.88 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.432, Tmax = 0.571

  • 14710 measured reflections

  • 3610 independent reflections

  • 2516 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.05

  • 3610 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 1.78 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O2i 0.97 2.40 3.342 (3) 163
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994)[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound has potential use in Heck and Suzuki cross coupling reactions (Cui et al., 2007) and Negishi coupling reactions (Zhao et al., 2008). In continuation of our work on the crystal structures of halogenated coumarin derivatives (Gowda et al., 2009; 2010) herein we report crystal structure of title compound.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, with the exception of the Br atom, all non-hydrogen atoms [C1-C12/O1/O2] are essentially planar [r.m.s. = 0.018Å]]. The C-Br bond is inclined [defined by the C7/C12/Br1 plane] by 80.17 (12)° to this plane. The crystal structure is stabilized by weak C-H···O hydrogen bonds (Fig. 2).

Related literature top

For potential synthetic applications of the title compound, see: Cui et al. (2007); Zhao et al. (2008). For related structures, see: Gowda et al. (2009, 2010).

Experimental top

To a mixture of equimolar quantities of 2,3-dimethylphenol (0.1 mol) and 4-bromoethylacetoacetate (0.1 mol), sulfuric acid (30 ml) was added dropwise with stirring while maintaining the temperature between 273-278K. The reaction mixture was allowed to stand in ice chest overnight and the deep red coloured solution was poured into a stream of crushed ice. The solid which separated was filtered and washed with water and then with cold ethanol to yield a colourless compound which was recrystallized from acetic acid.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with bond lengths 0.96 (methyl) or 0.93 Å (aromatic) and Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Structure description top

The title compound has potential use in Heck and Suzuki cross coupling reactions (Cui et al., 2007) and Negishi coupling reactions (Zhao et al., 2008). In continuation of our work on the crystal structures of halogenated coumarin derivatives (Gowda et al., 2009; 2010) herein we report crystal structure of title compound.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, with the exception of the Br atom, all non-hydrogen atoms [C1-C12/O1/O2] are essentially planar [r.m.s. = 0.018Å]]. The C-Br bond is inclined [defined by the C7/C12/Br1 plane] by 80.17 (12)° to this plane. The crystal structure is stabilized by weak C-H···O hydrogen bonds (Fig. 2).

For potential synthetic applications of the title compound, see: Cui et al. (2007); Zhao et al. (2008). For related structures, see: Gowda et al. (2009, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure showing weak C-H···O hydrogen bonds as dashed lines.
4-Bromomethyl-7,8-dimethylcoumarin top
Crystal data top
C12H11BrO2F(000) = 1072
Mr = 267.12Dx = 1.685 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5018 reflections
a = 18.5025 (14) Åθ = 2.4–28.6°
b = 9.8785 (7) ŵ = 3.88 mm1
c = 13.1639 (10) ÅT = 292 K
β = 118.908 (2)°Block, colourless
V = 2106.3 (3) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3610 independent reflections
Radiation source: fine-focus sealed tube2516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 31.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 2727
Tmin = 0.432, Tmax = 0.571k = 1414
14710 measured reflectionsl = 1913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0574P)2 + 1.9612P]
where P = (Fo2 + 2Fc2)/3
3610 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 1.78 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C12H11BrO2V = 2106.3 (3) Å3
Mr = 267.12Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.5025 (14) ŵ = 3.88 mm1
b = 9.8785 (7) ÅT = 292 K
c = 13.1639 (10) Å0.30 × 0.20 × 0.20 mm
β = 118.908 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3610 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
2516 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 0.571Rint = 0.026
14710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 1.78 e Å3
3610 reflectionsΔρmin = 0.73 e Å3
138 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36207 (15)0.1296 (2)0.0849 (2)0.0332 (5)
C20.39174 (15)0.1512 (2)0.2032 (2)0.0363 (5)
C30.40658 (16)0.2836 (3)0.24674 (19)0.0398 (5)
H30.42630.29740.32570.048*
C40.39291 (16)0.3930 (3)0.17644 (19)0.0366 (5)
H40.40330.47970.20790.044*
C50.36354 (14)0.3756 (2)0.05795 (17)0.0289 (4)
C60.34902 (13)0.2433 (2)0.01547 (17)0.0292 (4)
C70.34654 (14)0.4850 (2)0.02371 (18)0.0303 (4)
C80.31617 (15)0.4562 (2)0.13705 (19)0.0354 (5)
H80.30250.52720.18960.043*
C90.30411 (16)0.3200 (2)0.1796 (2)0.0371 (5)
C100.34498 (19)0.0090 (2)0.0328 (3)0.0460 (6)
H10A0.30140.00430.04610.069*
H10B0.32870.06740.07640.069*
H10C0.39390.04430.03460.069*
C110.4099 (2)0.0349 (3)0.2855 (3)0.0530 (7)
H11A0.35940.01100.26780.079*
H11B0.43500.06840.36370.079*
H11C0.44690.02710.27780.079*
C120.36044 (16)0.6286 (2)0.0163 (2)0.0383 (5)
H12A0.34230.64210.07340.046*
H12B0.32870.68830.04890.046*
O10.32072 (11)0.21805 (17)0.10098 (13)0.0360 (4)
O20.28162 (15)0.2864 (2)0.27881 (15)0.0554 (5)
Br10.478174 (17)0.67133 (3)0.08473 (2)0.04795 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0327 (11)0.0270 (10)0.0415 (11)0.0027 (9)0.0190 (9)0.0012 (9)
C20.0344 (12)0.0387 (13)0.0398 (11)0.0035 (10)0.0211 (10)0.0077 (9)
C30.0438 (13)0.0458 (13)0.0298 (10)0.0008 (11)0.0178 (9)0.0007 (9)
C40.0432 (13)0.0338 (12)0.0336 (10)0.0029 (10)0.0192 (9)0.0068 (9)
C50.0311 (11)0.0248 (9)0.0302 (9)0.0002 (8)0.0143 (8)0.0018 (7)
C60.0300 (10)0.0285 (10)0.0293 (9)0.0007 (8)0.0144 (8)0.0022 (7)
C70.0296 (10)0.0252 (10)0.0348 (9)0.0003 (8)0.0145 (8)0.0006 (8)
C80.0386 (12)0.0317 (11)0.0333 (9)0.0003 (9)0.0153 (9)0.0036 (8)
C90.0383 (12)0.0369 (12)0.0323 (9)0.0018 (10)0.0140 (9)0.0019 (9)
C100.0564 (16)0.0264 (11)0.0576 (14)0.0007 (11)0.0295 (13)0.0007 (10)
C110.0552 (17)0.0542 (17)0.0511 (14)0.0062 (14)0.0269 (13)0.0211 (13)
C120.0402 (13)0.0256 (10)0.0434 (12)0.0017 (10)0.0158 (10)0.0003 (9)
O10.0464 (10)0.0278 (8)0.0312 (7)0.0013 (7)0.0169 (7)0.0053 (6)
O20.0764 (15)0.0524 (11)0.0310 (8)0.0053 (11)0.0208 (9)0.0057 (8)
Br10.04529 (18)0.04007 (16)0.04762 (16)0.00806 (11)0.01383 (12)0.00024 (10)
Geometric parameters (Å, º) top
C1—C61.393 (3)C8—C91.433 (3)
C1—C21.394 (3)C8—H80.9300
C1—C101.495 (3)C9—O21.210 (3)
C2—C31.401 (4)C9—O11.368 (3)
C2—C111.502 (3)C10—H10A0.9600
C3—C41.364 (4)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C4—C51.392 (3)C11—H11A0.9600
C4—H40.9300C11—H11B0.9600
C5—C61.396 (3)C11—H11C0.9600
C5—C71.447 (3)C12—Br11.959 (3)
C6—O11.382 (2)C12—H12A0.9700
C7—C81.346 (3)C12—H12B0.9700
C7—C121.492 (3)
C6—C1—C2117.3 (2)C9—C8—H8118.9
C6—C1—C10120.4 (2)O2—C9—O1116.7 (2)
C2—C1—C10122.3 (2)O2—C9—C8125.9 (2)
C1—C2—C3119.6 (2)O1—C9—C8117.38 (19)
C1—C2—C11121.2 (2)C1—C10—H10A109.5
C3—C2—C11119.2 (2)C1—C10—H10B109.5
C4—C3—C2121.7 (2)H10A—C10—H10B109.5
C4—C3—H3119.1C1—C10—H10C109.5
C2—C3—H3119.1H10A—C10—H10C109.5
C3—C4—C5120.4 (2)H10B—C10—H10C109.5
C3—C4—H4119.8C2—C11—H11A109.5
C5—C4—H4119.8C2—C11—H11B109.5
C4—C5—C6117.4 (2)H11A—C11—H11B109.5
C4—C5—C7124.5 (2)C2—C11—H11C109.5
C6—C5—C7118.09 (18)H11A—C11—H11C109.5
O1—C6—C1115.77 (19)H11B—C11—H11C109.5
O1—C6—C5120.65 (19)C7—C12—Br1109.33 (17)
C1—C6—C5123.6 (2)C7—C12—H12A109.8
C8—C7—C5119.4 (2)Br1—C12—H12A109.8
C8—C7—C12120.0 (2)C7—C12—H12B109.8
C5—C7—C12120.64 (19)Br1—C12—H12B109.8
C7—C8—C9122.3 (2)H12A—C12—H12B108.3
C7—C8—H8118.9C9—O1—C6122.16 (18)
C6—C1—C2—C30.3 (4)C7—C5—C6—C1179.3 (2)
C10—C1—C2—C3180.0 (2)C4—C5—C7—C8178.3 (2)
C6—C1—C2—C11178.3 (2)C6—C5—C7—C81.2 (3)
C10—C1—C2—C111.3 (4)C4—C5—C7—C120.3 (4)
C1—C2—C3—C40.1 (4)C6—C5—C7—C12179.7 (2)
C11—C2—C3—C4178.6 (3)C5—C7—C8—C93.5 (4)
C2—C3—C4—C50.1 (4)C12—C7—C8—C9178.0 (2)
C3—C4—C5—C60.0 (4)C7—C8—C9—O2175.6 (3)
C3—C4—C5—C7179.5 (2)C7—C8—C9—O13.3 (4)
C2—C1—C6—O1179.1 (2)C8—C7—C12—Br1101.7 (2)
C10—C1—C6—O10.5 (3)C5—C7—C12—Br179.8 (2)
C2—C1—C6—C50.4 (4)O2—C9—O1—C6178.2 (2)
C10—C1—C6—C5180.0 (2)C8—C9—O1—C60.8 (4)
C4—C5—C6—O1179.3 (2)C1—C6—O1—C9179.1 (2)
C7—C5—C6—O11.2 (3)C5—C6—O1—C91.4 (3)
C4—C5—C6—C10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O2i0.972.403.342 (3)163
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H11BrO2
Mr267.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)18.5025 (14), 9.8785 (7), 13.1639 (10)
β (°) 118.908 (2)
V3)2106.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)3.88
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.432, 0.571
No. of measured, independent and
observed [I > 2σ(I)] reflections
14710, 3610, 2516
Rint0.026
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.05
No. of reflections3610
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.78, 0.73

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O2i0.972.403.342 (3)163
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Footnotes

Alternative affiliation: MVJ College of Engineering, Bangalore 560 067, India.

Acknowledgements

RG thanks MVJ College of Engineering, Bangalore (VTU Research center), for providing research facilities. The authors also thank the SAIF IIT Madras, Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, X., Li, J., Zhang, Z.-P., Fu, Y., Liu, L. & Guo, Q.-X. (2007). J. Org. Chem. 72, 9342–9345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, R., Alawandi, G. N., Kulkarni, M. V. & Gowda, K. V. A. (2009). Acta Cryst. E65, o2446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, R., Basanagouda, M., Kulkarni, M. V. & Gowda, K. V. A. (2010). Acta Cryst. E66, o2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J., Liu, Y. & Ma, S. (2008). Org. Lett. 10, 1521–1523.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds