organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Chloro-2-hy­dr­oxy­benzyl­­idene)-2-meth­­oxy­benzohydrazide

aDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China
*Correspondence e-mail: jyxygzb@163.com

(Received 3 June 2010; accepted 7 June 2010; online 16 June 2010)

The title Schiff base compound, C15H13ClN2O3, was prepared by the reaction of equimolar quanti­ties of 5-chloro-2-hy­droxy­benzaldehyde with 2-meth­oxy­benzohydrazide in a methanol solution. The dihedral angle between the two benzene rings is 20.6 (3)°. An intra­molecular O—H⋯N hydrogen bond may influence the mol­ecular conformation. In the crystal structure, mol­ecules form chains along the b direction via inter­molecular N—H⋯O hydrogen bonds which are bifurcated involving an intra­molecular N—H⋯O hydrogen bond.

Related literature

For the pharmaceutical and medicinal activities of Schiff bases, see: Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]). For the coordination chemistry of Schiff bases, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For the crystal structures of Schiff base compounds, see: Fun et al. (2009[Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349-o350.]); Nadeem et al. (2009[Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576-o577.]). For the structures of related Schiff base compounds previously reported by the author, see: Hao (2009a[Hao, Y.-M. (2009a). Acta Cryst. E65, o1400.],b[Hao, Y.-M. (2009b). Acta Cryst. E65, o2098.],c[Hao, Y.-M. (2009c). Acta Cryst. E65, o2600.],d[Hao, Y.-M. (2009d). Acta Cryst. E65, o2990.], 2010[Hao, Y.-M. (2010). Acta Cryst. E66, o1177.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O3

  • Mr = 304.72

  • Orthorhombic, P b c a

  • a = 15.392 (3) Å

  • b = 9.110 (2) Å

  • c = 20.128 (3) Å

  • V = 2822.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.928

  • 9958 measured reflections

  • 3051 independent reflections

  • 1463 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.150

  • S = 0.99

  • 3051 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.93 2.649 (3) 145
N2—H2A⋯O2i 0.89 (1) 2.11 (2) 2.946 (3) 155 (3)
N2—H2A⋯O3 0.89 (1) 2.26 (3) 2.733 (3) 113 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds are a class of important materials used as pharmaceutical and medicinal fields (Sriram et al., 2006; Karthikeyan et al., 2006; Dao et al., 2000). Schiff bases have also been used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). Recently, the crystal structures of a large number of Schiff base compounds bearing the hydrazone groups have been reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). As a continuous work (Hao, 2009a,b,c,d; Hao, 2010), in this paper, the title Schiff base compound, Fig. 1, is reported.

In the title compound, the dihedral angle between the two benzene rings is 20.6 (3)°. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the b direction (Fig. 2).

Related literature top

For the pharmaceutical and medicinal activities of Schiff bases, see: Sriram et al. (2006); Karthikeyan et al. (2006); Dao et al. (2000). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For the structures of related Schiff base compounds previously reported by the author, see: Hao (2009a,b,c,d, 2010). For standard bond-length data, see: Allen et al. (1987).

Experimental top

5-Chloro-2-hydroxybenzaldehyde (0.1 mmol, 15.6 mg) and 2-methoxybenzohydrazide (0.1 mmol, 16.6 mg) were refluxed in a 30 ml methanol solution for 30 min to give a clear colorless solution. Colorless block-shaped single crystals of the compound were formed by slow evaporation of the solvent over several days at room temperature.

Refinement top

H2A was located from a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å, and with Uiso fixed at 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C—H) = 0.93-0.96Å, d(O—H) = 0.82Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and C15).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids. Intramolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonds drawn as dashed lines.
N'-(5-Chloro-2-hydroxybenzylidene)-2-methoxybenzohydrazide top
Crystal data top
C15H13ClN2O3F(000) = 1264
Mr = 304.72Dx = 1.434 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 868 reflections
a = 15.392 (3) Åθ = 2.4–24.5°
b = 9.110 (2) ŵ = 0.28 mm1
c = 20.128 (3) ÅT = 298 K
V = 2822.4 (9) Å3Block, colorless
Z = 80.30 × 0.30 × 0.27 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3051 independent reflections
Radiation source: fine-focus sealed tube1463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 199
Tmin = 0.920, Tmax = 0.928k = 911
9958 measured reflectionsl = 2125
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
3051 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C15H13ClN2O3V = 2822.4 (9) Å3
Mr = 304.72Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.392 (3) ŵ = 0.28 mm1
b = 9.110 (2) ÅT = 298 K
c = 20.128 (3) Å0.30 × 0.30 × 0.27 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3051 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1463 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.928Rint = 0.067
9958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.17 e Å3
3051 reflectionsΔρmin = 0.27 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.23358 (6)1.00596 (10)0.43870 (5)0.0931 (4)
N10.83185 (15)1.0819 (2)0.38838 (11)0.0491 (6)
N20.76629 (15)1.0034 (2)0.35851 (13)0.0532 (7)
O10.89608 (14)1.2927 (2)0.46463 (12)0.0713 (7)
H10.85751.24520.44660.107*
O20.67478 (12)1.1960 (2)0.36350 (11)0.0626 (6)
O30.71657 (13)0.8451 (2)0.24964 (11)0.0675 (6)
C10.9728 (2)1.2226 (3)0.45691 (15)0.0547 (8)
C21.0460 (2)1.2825 (3)0.48644 (16)0.0670 (9)
H21.04101.36900.51070.080*
C31.1255 (2)1.2168 (4)0.48063 (16)0.0710 (10)
H31.17411.25790.50070.085*
C41.13245 (19)1.0896 (4)0.44478 (16)0.0600 (8)
C51.06147 (18)1.0276 (3)0.41535 (16)0.0557 (8)
H51.06760.94070.39160.067*
C60.97993 (17)1.0929 (3)0.42047 (14)0.0477 (7)
C70.90686 (18)1.0219 (3)0.38947 (14)0.0487 (7)
H70.91440.93050.36980.058*
C80.68942 (18)1.0680 (3)0.34816 (13)0.0467 (7)
C90.61993 (17)0.9746 (3)0.31858 (15)0.0494 (7)
C100.53588 (19)1.0005 (3)0.34012 (16)0.0573 (8)
H100.52591.07370.37140.069*
C110.4666 (2)0.9204 (4)0.31633 (18)0.0675 (9)
H110.41080.93750.33220.081*
C120.4811 (2)0.8159 (4)0.26919 (19)0.0721 (10)
H120.43460.76240.25240.086*
C130.5630 (2)0.7886 (3)0.24629 (17)0.0654 (9)
H130.57160.71700.21400.078*
C140.63371 (19)0.8664 (3)0.27054 (15)0.0519 (8)
C150.7318 (2)0.7299 (4)0.20290 (18)0.0821 (11)
H15A0.71090.63880.22080.123*
H15B0.79300.72220.19430.123*
H15C0.70180.75130.16220.123*
H2A0.7748 (19)0.9090 (14)0.3487 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0545 (5)0.1169 (8)0.1077 (9)0.0004 (5)0.0070 (5)0.0248 (6)
N10.0517 (14)0.0446 (13)0.0510 (16)0.0044 (11)0.0067 (12)0.0020 (12)
N20.0528 (14)0.0403 (13)0.0666 (18)0.0001 (12)0.0152 (12)0.0101 (13)
O10.0792 (16)0.0573 (13)0.0775 (17)0.0036 (11)0.0003 (13)0.0150 (12)
O20.0662 (13)0.0397 (11)0.0821 (16)0.0041 (9)0.0057 (11)0.0110 (11)
O30.0613 (13)0.0702 (14)0.0709 (15)0.0022 (10)0.0046 (12)0.0297 (12)
C10.070 (2)0.0471 (18)0.0470 (19)0.0062 (15)0.0006 (16)0.0012 (15)
C20.092 (3)0.055 (2)0.053 (2)0.0216 (18)0.0115 (18)0.0081 (17)
C30.068 (2)0.084 (3)0.062 (2)0.029 (2)0.0157 (18)0.012 (2)
C40.0542 (18)0.071 (2)0.055 (2)0.0117 (16)0.0066 (16)0.0146 (18)
C50.0583 (19)0.0567 (18)0.0521 (19)0.0077 (14)0.0017 (15)0.0031 (16)
C60.0528 (17)0.0460 (16)0.0443 (18)0.0091 (13)0.0031 (14)0.0041 (14)
C70.0556 (18)0.0408 (16)0.0497 (19)0.0043 (13)0.0001 (14)0.0026 (14)
C80.0556 (18)0.0415 (16)0.0428 (18)0.0015 (13)0.0012 (14)0.0010 (14)
C90.0533 (17)0.0428 (16)0.0523 (19)0.0023 (13)0.0116 (14)0.0046 (15)
C100.060 (2)0.0517 (18)0.060 (2)0.0040 (15)0.0089 (16)0.0027 (15)
C110.0522 (19)0.071 (2)0.080 (3)0.0043 (16)0.0053 (18)0.012 (2)
C120.063 (2)0.070 (2)0.082 (3)0.0143 (17)0.0148 (19)0.006 (2)
C130.070 (2)0.0587 (19)0.068 (2)0.0113 (16)0.0126 (18)0.0106 (17)
C140.0526 (18)0.0482 (17)0.055 (2)0.0008 (14)0.0085 (15)0.0001 (16)
C150.079 (2)0.079 (2)0.088 (3)0.0057 (18)0.005 (2)0.033 (2)
Geometric parameters (Å, º) top
Cl1—C41.737 (3)C5—H50.9300
N1—C71.278 (3)C6—C71.439 (4)
N1—N21.375 (3)C7—H70.9300
N2—C81.338 (3)C8—C91.491 (4)
N2—H2A0.892 (10)C9—C101.385 (4)
O1—C11.351 (3)C9—C141.397 (4)
O1—H10.8200C10—C111.377 (4)
O2—C81.227 (3)C10—H100.9300
O3—C141.357 (3)C11—C121.363 (5)
O3—C151.429 (3)C11—H110.9300
C1—C21.386 (4)C12—C131.365 (4)
C1—C61.395 (4)C12—H120.9300
C2—C31.367 (5)C13—C141.387 (4)
C2—H20.9300C13—H130.9300
C3—C41.369 (4)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.365 (4)C15—H15C0.9600
C5—C61.393 (4)
C7—N1—N2116.6 (2)O2—C8—N2122.8 (2)
C8—N2—N1119.2 (2)O2—C8—C9120.8 (2)
C8—N2—H2A121 (2)N2—C8—C9116.5 (2)
N1—N2—H2A119 (2)C10—C9—C14118.6 (3)
C1—O1—H1109.5C10—C9—C8116.6 (3)
C14—O3—C15117.6 (2)C14—C9—C8124.8 (3)
O1—C1—C2118.4 (3)C11—C10—C9121.6 (3)
O1—C1—C6122.0 (3)C11—C10—H10119.2
C2—C1—C6119.6 (3)C9—C10—H10119.2
C3—C2—C1121.3 (3)C12—C11—C10119.1 (3)
C3—C2—H2119.4C12—C11—H11120.5
C1—C2—H2119.4C10—C11—H11120.5
C2—C3—C4119.0 (3)C11—C12—C13120.9 (3)
C2—C3—H3120.5C11—C12—H12119.6
C4—C3—H3120.5C13—C12—H12119.6
C5—C4—C3121.1 (3)C12—C13—C14120.8 (3)
C5—C4—Cl1120.4 (3)C12—C13—H13119.6
C3—C4—Cl1118.6 (3)C14—C13—H13119.6
C4—C5—C6120.9 (3)O3—C14—C13123.7 (3)
C4—C5—H5119.6O3—C14—C9117.3 (2)
C6—C5—H5119.6C13—C14—C9119.0 (3)
C5—C6—C1118.1 (3)O3—C15—H15A109.5
C5—C6—C7118.7 (3)O3—C15—H15B109.5
C1—C6—C7123.1 (3)H15A—C15—H15B109.5
N1—C7—C6121.4 (3)O3—C15—H15C109.5
N1—C7—H7119.3H15A—C15—H15C109.5
C6—C7—H7119.3H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.932.649 (3)145
N2—H2A···O2i0.89 (1)2.11 (2)2.946 (3)155 (3)
N2—H2A···O30.89 (1)2.26 (3)2.733 (3)113 (2)
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O3
Mr304.72
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)15.392 (3), 9.110 (2), 20.128 (3)
V3)2822.4 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.920, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
9958, 3051, 1463
Rint0.067
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.150, 0.99
No. of reflections3051
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.932.649 (3)145.3
N2—H2A···O2i0.892 (10)2.111 (16)2.946 (3)155 (3)
N2—H2A···O30.892 (10)2.26 (3)2.733 (3)113 (2)
Symmetry code: (i) x+3/2, y1/2, z.
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349–o350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHao, Y.-M. (2009a). Acta Cryst. E65, o1400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Y.-M. (2009b). Acta Cryst. E65, o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Y.-M. (2009c). Acta Cryst. E65, o2600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Y.-M. (2009d). Acta Cryst. E65, o2990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Y.-M. (2010). Acta Cryst. E66, o1177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds